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Abstracts: Biochemical oxygen demand (BOD) is one of the most important factors to consider when 
evaluating water contamination. BOD5 is the amount of oxygen consumed in five days by microor-
ganisms that oxidize biodegradable organic materials in an aerobic biochemical manner. The pri-
mary objective of this effort is to use microbial fuel cells (MFCs) to shorten the time required for 
BOD5 measurements. We created a regression artificial neural network (AI), and the predictions we 
obtained for BOD5 measurements were taken over 6 – 24 hours with an average error of just 7%. 
The outcomes demonstrated by our AI MFC/BES BOD5 sensor’s viability for use in real-world sce-
narios. 
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1. Introduction 
An MFC is a device that converts the energy of chemical bonds of organic substances 

into an electric current with the direct participation of bacteria. Microbial fuel cells (MFCs) 
have grown in popularity as a way to evaluate the quality of wastewater in recent years. 
A dual-chamber MFC is made up of an ion-selective membrane that can only allow pro-
tons to flow through, as well as anode and cathode chambers, while a single-chamber 
MFC consists of an anode chamber and an air-cathode. Electroactive bacteria form a bio-
film over the anode electrode, generating electrons during the oxidation of organic mate-
rials which they move to the electrode surface. As a result, biodegradable organics in the 
water’s composition can be inferred from the electric output.  Yang et al. (2015) and 
Lóránt et al. (2019) claim that this technology can detect and even quantify dangerous 
toxic or organic substances. Thanks to electrogenic bacteria that can transform the chemi-
cal energy stored in organic material into electrical energy, MFCs may be used as an al-
ternative technology to determine the extent of water contamination as well as a substitute 
energy source. The MFC is an energy-efficient device that can clean water, provide power 
sufficient to run low-energy devices, monitor water quality, and find dangerous com-
pounds all at on(Rabaey and Verstraete, 2005). ce (Rabaey and Verstraete, 2005).. 

A study (Tardy et al. 2021) proposed a method for using MFCs as biosensors to meas-
ure five-day biochemical oxygen demand (𝐵𝐵𝐵𝐵𝐵𝐵5).  𝐵𝐵𝐵𝐵𝐵𝐵5 is one of the most important 
parameters to assess water pollution levels by biodegradable organic substances. Envi-
ronmental agencies use it to monitor wastewater treatment plants and natural water re-
sources. Ongoing experiments with microbial fuel cells (MFCs) as biosensors have re-
duced the time required to obtain the initial data needed to predict 𝐵𝐵𝐵𝐵𝐵𝐵5 in wastewater 
(Tardy et al. 2021). The method is based on the correlation between the total amount of 
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generated electricity and the 𝐵𝐵𝐵𝐵𝐵𝐵5 of the sample. Compared to the conventional respiro-
metric method with a fix 5 days long measurement, the prediction time was reduced to 1-
4 days dependent on the composition of the investigated sample (Tardy et al. 2021).  

An artificial neural network (ANN) is one of the well-known predictive methods 
used to find a solution when other statistical methods are not applicable. The advantages 
of using ANNs are the ability to learn from training data and to predict non-linear data, 
making ANNs a widely used statistical tool. In this work, we will use fully connected 
multilayer neural networks – multilayer perceptron (MLP). MLPs are classical feed-for-
ward neural networks that are used in both regression and classification problems (Pal 
and Mitra 1992). MLPs are widely used in various fields such as remote sensing (Zhang 
et al. 2018) and engineering (Yilmaz and Kaynar 2011) or plant sciences (Yoosefzadeh-
Najafabadi et. al. 2021) and environmental sciences (Wang and Gao 2018). 

Two approaches were considered, in the first the ANN directly predicted one 𝐵𝐵𝐵𝐵𝐵𝐵5 
value from the raw electrical parameters. In the second, the ANN was using electrical data 
obtained during a measurement time, and the total charge was calculated. Further, based 
on the linear dependence of 𝐵𝐵𝐵𝐵𝐵𝐵5 and the charge, the predicted values of 𝐵𝐵𝐵𝐵𝐵𝐵5 were 
obtained and compared with real ones. 

2. Material and methods  
2.1. Data set  

The dataset was obtained using MFCs described by Tardy et al (2021). The main pur-
pose of a microbial fuel cell biosensor is to convert the chemical energy of biodegradable 
organic substances to electrical energy by the metabolic processes of exoelectrogenic bac-
teria that are capable of transporting the generated electrons outside the cell. The amount 
of generated electricity (voltage, current) is recorded. The study is based on the conclusion 
about the linear dependence of the biochemical oxygen demand (𝐵𝐵𝐵𝐵𝐵𝐵5) and the charge 
accumulated during the biodegradation in the MFC (Tardy et al. 2021).  

Two types of wastewaters were used as samples for MFC: domestic and brewery 
wastewater.  Three identical air cathode MFCs were operated in parallel, with 230 ml 
internal volume each. The volume of the injected substrate was 60 ml. Some cases the 
wastewater samples were diluted to cover a wider range of BOD5. The external resistance 
was set equal to 100 ohms (Tardy et al. 2021). 

During the measurements, the voltage was recorded by the data acquisition device 
(Graphtec midi logger GL840) every 5 minutes. It should be noted that in the initial period 
of each experiment, the voltage increased rapidly and reached its maximum value as a 
result of the rapid biodegradation of a readily biodegradable organic fraction of the 
wastewater. Having the readily biodegradable substrates consumed, the voltage value 
began to drop. When the voltage dropped below 0.02 V, the substrates were considered 
to be depleted and the measurements were terminated. Fig. 1 shows several examples of 
voltage measurement plots when domestic wastewater was used. Examples of voltage 
graphs for water samples from breweries are shown in Fig.2. 
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Fig. 1. Several typical examples of voltage variation over time, when domestic wastewater was used 
as a sample for MFC. 

  
Fig. 2. Several typical examples of voltage variation over time, when brewery wastewater was used 
as samples for MFC. 

In this work, a set of 56 voltage measurements was used. The longest experiment was 
7550 minutes, so to equalize the dimension of all experiments, the missing values of other 
experiments were filled with zeros up to 7550 minutes. Since the voltage values in each 
experiment were recorded every 5 minutes, then 1511 discrete voltage values corre-
sponded to 7550 minutes. Thus, the voltage dataset was presented as a matrix of 56 col-
umns and 1511 rows. It is worth noting that 289 discrete voltage values corresponded to 
24 hours of measurement, we also note that 16, 12, 8, 6 and 2 hours of measurement cor-
responded to 193, 145, 97, 73, and 25 discrete voltage values. In addition, the 𝐵𝐵𝐵𝐵𝐵𝐵5 con-
centrations in mg corresponding to each experiment were reported in the data set. The 
𝐵𝐵𝐵𝐵𝐵𝐵5 data is represented as a vector of 56 values (𝑦𝑦1, 𝑦𝑦2, …, 𝑦𝑦56), where each 𝑦𝑦𝑗𝑗 value 
corresponds to the 𝐵𝐵𝐵𝐵𝐵𝐵5 value in the j-th experiment. The minimum 𝐵𝐵𝐵𝐵𝐵𝐵5 content of 
the 60 ml samples was 4.13 mg and the maximum concentration was 46.84 mg, corre-
sponding to a wide BOD5 concentration range from ~69 to 781 mg/L. 

2.2. Neural networks  
The purpose of this study was to develop artificial neural network models for pre-

dicting 𝐵𝐵𝐵𝐵𝐵𝐵5. We used fully connected multilayer neural networks (multilayer percep-
tron (MLP)) – a classical feedforward neural network, which consists of an input layer, an 
output layer, and intermediate layers (hidden layers), each of which consists of several 
neurons. The value in each of the neurons is the value of the weighted sum of all neuron 
values from the previous layer, converted through the activation function, plus the bias 
coefficient. MLP is effective in regression problems, for example, (Wang and Gao, 2018) 
MLP gave good results in predicting the water content of biodiesel and diesel blends in 
terms of temperature and composition, and for predicting gas density (Sedaghat and Ki-
omarsiyan 2019). 

 As described in the introduction, two approaches were considered. The 𝐵𝐵𝐵𝐵𝐵𝐵5 direct 
prediction approach was that the ANNs predict one value – 𝐵𝐵𝐵𝐵𝐵𝐵5 in each experiment. 
The approach of indirect prediction of 𝐵𝐵𝐵𝐵𝐵𝐵5 consisted of the ANNs output voltage val-
ues, from which 𝐵𝐵𝐵𝐵𝐵𝐵5 values were subsequently obtained. When implementing both ap-
proaches, the voltage values obtained for 24, 16, 12, 8, 6, and 2 hours of measurements 
were used as input data for the ANN, i.e. it was required to develop twelve ANN models 
in total, six ANNs for each approach. 

The input data set was represented by 56 vectors (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, …, 𝑥𝑥𝑛𝑛1𝑗𝑗), where 𝑥𝑥𝑖𝑖𝑖𝑖  is the 
voltage value at the i-th moment in time and j-th experiment; 𝑛𝑛1 = 289, 193, 145, 97, 73, 
25, which corresponds to the length of the voltage vectors for the first 24, 16, 12, 8, 6, and 
2 hours of measurements, respectively; j = 1, …, 56. That is, the number of neurons in the 
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input layers in the implementation of both approaches was 289, 193, 145, 97, 73, and 25. In 
each experiment, the final voltage value was reached at different times, for example, one 
experiment ran for two days and another for five days, but the output of the neural net-
work requires these values to be of the same time. Therefore, the voltage measurement 
was complimented with zero values to generate five-day time sequences. 

Three hidden layers were used for the neural networks, for each of which the Recti-
fied Linear Unit (ReLU) activation function was used. In addition, after each hidden layer, 
a thinning (dropout) method was used to reduce overfitting. This method consists of elim-
inating a certain percentage of random neurons at different iterations during neural net-
work training (Srivastava et. al. 2014). Then the output layer was followed, in which the 
dimensions differed depending on which of the two approaches was used. So, when im-
plementing the 𝐵𝐵𝐵𝐵𝐵𝐵5 direct prediction, the number of neurons in the output layer was 
one for all six ANNs, since only the 𝐵𝐵𝐵𝐵𝐵𝐵5 value was predicted. The set of output data for 
direct prediction can be represented as a vector of 56 values (𝑦𝑦1, 𝑦𝑦2, …, 𝑦𝑦56), where each 
value of 𝑦𝑦𝑗𝑗 corresponds to the 𝐵𝐵𝐵𝐵𝐵𝐵5 value in the j-th experiment. 

When 𝐵𝐵𝐵𝐵𝐵𝐵5  the indirect prediction was implemented, the output set was repre-
sented by 56 vectors (𝑦𝑦1𝑗𝑗 , 𝑦𝑦2𝑗𝑗 , …, 𝑦𝑦𝑛𝑛2𝑗𝑗), where 𝑦𝑦𝑖𝑖𝑖𝑖  is the voltage value at the i-th time 
point in the j-th experiment; 𝑛𝑛2 = 1486, 1438, 1414, 1366, 1318, 1222, which corresponds to 
the length of the voltage vectors obtained after 2, 6, 8, 12, 16 and 24 hours of measure-
ments, respectively; j = 1, …, 56. Therefore, the number of neurons in the output layer for 
the indirect prediction was 1486, 1438, 1414, 1366, 1318, and 1222 respectively, which 
matches the voltage vectors for each time measurement. 

The parameters used for neural networks in the 𝐵𝐵𝐵𝐵𝐵𝐵5 direct prediction approach is 
shown in Table 1, and the indirect prediction approach in Table 2. 

Table 1. Neural network parameters for the direct prediction approach. 

Input Dense 1 Dropout1 Dense 2 Dropout2  Dense 3  Dropout3 Output 
25  128 30%  128 30% 64 50% 1 
73 128 10%  128  50% 64 50% 1 
97 128 10%  64 30% 64 50% 1 

145 96 10%  96 10% 64 40% 1 
193 128 10% 128 30% 128 30% 1 
289 128 10% 128 10% 64 30% 1 

Table 2. Neural network parameters for the indirect prediction approach. 

Input Dense 1 Dropout1 Dense 2 Dropout2  Dense 3  Dropout3 Output 
25  128 30%  128 30% 64 50% 1486 
73 128 20%  64  50% 64 50% 1438 
97 128 25%  128 50% 64 50% 1414 

145 128 10%  64 30% 64 50% 1366 
193 128 10% 64 10% 64 50% 1318 
289 128 10% 128 20% 64 50% 1222 

As described earlier, a dataset of 56 experiments was used in this work. Of these, 16 
experiments (8 experiments with domestic wastewater and 8 experiments with 
wastewater from breweries) were used as the test set for the final evaluation of the models 
once model tuning and training were completed. With the remaining 40 experiments, the 
K-fold cross-validation (K=5) method was applied to assess the quality of the ANNs dur-
ing parameter selection.  The data set of 40 experiments were divided into 5 blocks, with 
each block clustered into 8 experiments. In the first stage, the first block (20% of the data) 
was used as a validation block, and the remaining 4 blocks (80% of the data) were used as 
training. In the next stage, the second block (20% of the data) was used as validation and 
the remaining blocks (80% of the data) as training data. And so on, until each block of 20% 
has been used in the validation. 
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According to the obtained five estimates, the average value of the loss function was 
calculated. The root means square error (MSE) was defined as the loss function to be min-
imized during training. Moreover, when implementing the 𝐵𝐵𝐵𝐵𝐵𝐵5 direct prediction ap-
proach, the MSE of the predicted 𝐵𝐵𝐵𝐵𝐵𝐵5 values relative to the actual 𝐵𝐵𝐵𝐵𝐵𝐵5 values were 
minimized. The formula for the direct MSE is (1): 

 𝑀𝑀𝑀𝑀𝑀𝑀1 =
1
𝑛𝑛�

(𝑦𝑦i − 𝑦𝑦i)2
𝑛𝑛

𝑖𝑖=1

, (1) 

where n is the number of ANN output values (in all cases equal to 1) multiplied by 
the number of experiments in the validation set (there were 8 experiments in each of the 
5 validation blocks); 𝑦𝑦i  – real values of 𝐵𝐵𝐵𝐵𝐵𝐵5 ; 𝑦𝑦i– predicted values (the value of the 
weighted sum of all neuron values from the previous layer plus the bias factor converted 
through the activation function) 𝐵𝐵𝐵𝐵𝐵𝐵5. 

And when implementing the 𝐵𝐵𝐵𝐵𝐵𝐵5  indirect prediction approach, the MSE of the 
predicted voltage values relative to the real ones was minimized. The formula for the in-
direct MSE is (2): 

 𝑀𝑀𝑀𝑀𝑀𝑀2 =
1

𝑛𝑛 ∙ 𝑛𝑛2
���𝑦𝑦ij − 𝑦𝑦ij�

2
𝑛𝑛2

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

, (2) 

where n is the number of experiments in the validation set (there were 8 experiments 
in each of the 5 validation blocks); ); 𝑛𝑛2 = 1486, 1438, 1414, 1366, 1318, 1222,   which cor-
responds to the length of the voltage vectors obtained after 2, 6, 8, 12, 16, and 24 hours of 
measurements, respectively; 𝑦𝑦i𝑗𝑗 – real voltage values at the i-th moment of time in the j-
th experiment; 𝑦𝑦ij – predicted stress values at the i-th time point in the j-th experiment. 

To minimize the loss function during training, the Adam optimizer (adaptive mo-
ment) was used in this work.  For the BOD5 direct prediction approach, the learning rate 
was 0.001, the rest of the parameters of the Adam method were left at the default settings 
for the Keras library. 

For the BOD5 indirect prediction approach, the learning rate was 0.0001, the rest of 
the parameters of the Adam method were left at the default settings for the Keras library. 
Adam is an efficient stochastic optimization method that combines the benefits of meth-
ods such as AdaGrad and RMSProp (Kingma and Ba 2015). 

After the final selection of all parameters, such as the number of neurons in the layers 
and thinning percentages, the number of epochs for each of the 12 ANNs were selected, 
at which the average MSE over 5 validation blocks was minimal. These epochs for 12 
ANNs were used to train the final ANNs on a sample of 40 experiments and tested on a 
leave-out sample of 16 experiments. 

3. Results and discussion 
3.1. Results of direct prediction of 𝐵𝐵𝐵𝐵𝐵𝐵5 using ANN 

Six ANN models were developed for the 𝐵𝐵𝐵𝐵𝐵𝐵5  direct prediction approach. After 
training 40 sets in K-fold cross-validation, a set of weights were stored that resulted in a 
minimum loss value. These weights were applied for inference. 

To compare actual and predicted 𝐵𝐵𝐵𝐵𝐵𝐵5 values, the mean absolute percentage error 
(MAPE) was used (3): 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚�

|𝑦𝑦i − 𝑦𝑦i|
|𝑦𝑦i|

100%
𝑚𝑚

𝑖𝑖=1

 (3) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0006.v1

https://doi.org/10.20944/preprints202211.0006.v1


 6 of 10 
 

 

and the maximum absolute error (MAX) (4): 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝑦𝑦i − 𝑦𝑦i|, 𝑖𝑖 = 1, … ,𝑚𝑚, (4) 
where m = 16 when assessing 𝐵𝐵𝐵𝐵𝐵𝐵5 on the test set (because there were 16 experi-

ments in the test set) and m = 8 when assessing 𝐵𝐵𝐵𝐵𝐵𝐵5 on each of the validation blocks; 𝑦𝑦i 
– real values of 𝐵𝐵𝐵𝐵𝐵𝐵5; 𝑦𝑦i – predicted 𝐵𝐵𝐵𝐵𝐵𝐵5 values. 

In addition to the errors described above, to estimate the predicted values of 𝐵𝐵𝐵𝐵𝐵𝐵5  
relative to the actual values of 𝐵𝐵𝐵𝐵𝐵𝐵5, the coefficient of determination was used (𝑅𝑅2) (5): 

 𝑅𝑅2 = 1 −
∑ (𝑦𝑦i − 𝑦𝑦i)2𝑚𝑚
𝑖𝑖=1

∑ (𝑦𝑦i − 𝑦𝑦�i)2𝑚𝑚
𝑖𝑖=1

, (5) 

where  𝑦𝑦�i   are the average overall real values of 𝑦𝑦i . The larger the value of 𝑅𝑅2 
(close to 1), the better the accuracy of the linear relationship between the actual and pre-
dicted results. 

The errors of the predicted BOD5 compared to the actual values of  𝐵𝐵𝐵𝐵𝐵𝐵5  for K-fold 
cross-validation are shown in Table 3. 

Table 3. Mean errors over 5 validation blocks. 

Input MAPE MAX 𝑹𝑹𝟐𝟐 
2 hours 39.63 % 15.79 mg 0.208 
6 hours 23.39 % 9.56 mg 0.65 
8 hours 20.06 % 10.43 mg 0.73 

12 hours 16.63 % 9.22 mg 0.745 
16 hours 12.4 % 5.41 mg 0.845 
24 hours 8.14 % 3.39 mg 0.938 

Next, the models were trained on 40 sets and tested on a delayed sample of 16 exper-
iments. The results are shown in Table 4. 

Table 4. Model errors on delayed set. 

Input MAPE MAX 𝑹𝑹𝟐𝟐 
2 hours 36.6 % 25.36 mg 0.385 
6 hours 21.02 % 18.74 mg 0.659 
8 hours 15.76 % 9.46 mg 0.857 

12 hours 13.59 % 10.62 mg 0.875 
16 hours 11.23 % 11.33 mg 0.877 
24 hours 8.72 % 9.61 mg 0.923 

It can be seen that the results on the test set do not differ much from the results ob-
tained during cross-validation for 5 blocks. The models were able to predict the correct 
values, corresponding to the expected ones, when the voltage values for 24, 16, and 12 
hours were applied to the input (determination coefficient on the delayed sample: 0.923, 
0.877, 0.875). 

A high level of 𝐵𝐵𝐵𝐵𝐵𝐵5 (more than 220 mg/l) can cause the growth of excess biomass, 
therefore, for wastewater, the indicator 𝐵𝐵𝐵𝐵𝐵𝐵5 (more than 220 mg/l) indicates water pol-
lution. In total, there were 10 different types of wastewater with pollution and six types 
of wastewater without pollution in the test sample, therefore, indicators of specificity, sen-
sitivity, and accuracy were also calculated to evaluate the neural network. Sensitivity was 
calculated as the ratio of the number of polluted waters correctly identified by the neural 
network to the true number of polluted waters in the test. Specificity was calculated as the 
number of unpolluted waters detected by the neural network to the true number of un-
polluted waters in the test. Thus, the sensitivity was 1 when the input data was 24 hours 
of measurements, 0.9 for the cases of 16 and 12 hours, and 0.8 for the remaining cases (8, 
6, and 2 hours). The specificity was 1 for 24, 12, and 8 hours of measurements, 0.83 for 16 
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hours, and 0.67 for the 6 and 2-hour cases. In addition to specificity and sensitivity, accu-
racy was also calculated as the ratio of the number of correctly guessed water states (con-
tamination or not) to the amount of data in the test set (16 experiments). The accuracy was 
1 for the entry at 24 hours of measurement, 0.975 for 12 hours, 0.875 for the entry at 16 and 
8 hours, and 0.75 for the entry at 6 and 2 hours. 

3.2. Results of indirect 𝐵𝐵𝐵𝐵𝐵𝐵5 prediction using ANN 
The indirect prediction approach of  𝐵𝐵𝐵𝐵𝐵𝐵5  using ANN was that, knowing the volt-

age and external resistance, which, as already described earlier, was set to 100 Ohm to 
accelerate the biodegradation process, the current strength can be obtained according to 
Ohm's law. By numerically integrating the current over time, the total charge can be cal-
culated as shown in the formula below (6): 

 𝑄𝑄 = � 𝐼𝐼 𝑑𝑑𝑑𝑑

𝑡𝑡𝑒𝑒

𝑡𝑡𝑠𝑠

, (6) 

where Q is the total charge (C), I is the current in the external circuit (A), 𝑡𝑡𝑠𝑠 (s) is the 
starting time of the experiment, 𝑡𝑡𝑒𝑒 (s) is the end time of the measurement. Due to the 
linear relationship between 𝐵𝐵𝐵𝐵𝐵𝐵5  and charge, the resulting total charge can be used to 
estimate 𝐵𝐵𝐵𝐵𝐵𝐵5.  

When implementing this approach, six ANN models were developed that predict 
voltage values after a certain measurement time. After selecting epochs that give the min-
imum mean square error over 5 validation blocks, ANNs were trained for 40 experiments 
with voltage measurement and tested on 16 experiments from the test set.  

The ANN was able to predict the correct values corresponding to those expected 
when the input voltage values were applied for 24, 16, and 12 hours and in some cases 
even 8 and 6 hours. For example, some graphs of the predicted and experimental voltage 
values, when voltage values obtained for 12 hours were applied to the ANN input, are 
shown in Fig. 3. 

 
Fig. 3. A few examples of the ratio of real to predicted voltage when voltage values measured over 
12 hours were used as input to the ANN. Blue graph – real voltage data, orange – obtained using a 
neural network. 

As a rule, in experiments in which the voltage did not peak and did not begin to 
decrease after the input time allowed, the results were worse compared to those experi-
ments in which the voltage peak was reached before the time of the input data measure-
ment. Therefore, when using voltage values obtained for 6 and 2 hours as input data, the 
measurement results deteriorated significantly in comparison with other cases (see Fig. 4, 
which shows the ratio of the real and predicted voltage graphs, when voltage values were 
applied to the ANN input received within 2 hours). The voltage did not peak and did not 
begin to decrease by this time.  
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Fig. 4. A few examples of the ratio of real voltage to predicted voltage, when voltage values meas-
ured over 2 hours were used as input data for the ANN. Blue graph – real voltage data, orange – 
obtained using a neural network. 

Knowing the voltage and external resistance, the current strength was calculated ac-
cording to Ohm's law. Then the total charge was calculated by numerically integrating the 
current as a function of time. At the same time, taking into account that during the devel-
opment of the ANN, empty voltage values were filled with zeros up to 5 days, when cal-
culating the integral, regression voltage values were discarded, which were less than 0.01 
V. To equalize the dimensionality of all experiments, we filled in the missing stress values 
with zeros until day 5, so the regression stress gradually tended to zero over time, but 
these near-zero values could introduce an additional error in obtaining BOD5. At the same 
time, if we cut off the regression voltage at 0.02 V, we could finish the experiment earlier 
than the real one would go, since the regression voltage did not always reach 0.02 V ex-
actly at the time when 0.02 V was achieved at a real experiment. Therefore, it was decided 
to cut off the regression voltage when it had already passed the cutoff point but had not 
yet reached zero, namely, when it was less than 0.01 V. Several examples of the ratios of 
the charge obtained from real data and the charge obtained from predicted data are shown 
in Fig. 5 and Fig. 6. 

 
Fig. 5. The ratio of the real and predicted charge, when voltage values measured over 2 hours were 
applied to the ANN input. Blue graph – charge values obtained from real data, orange – charge 
values obtained from predicted data. . 
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Fig. 6. The ratio of the real and predicted charge, when voltage values measured over 12 hours were 
applied to the ANN input.  Blue graph – charge values obtained from real data, orange – charge 
values obtained from predicted data. 

Due to the linear dependence of 𝐵𝐵𝐵𝐵𝐵𝐵5 and charge, the resulting total charge was 
used to estimate 𝐵𝐵𝐵𝐵𝐵𝐵5. Moreover, the values described in paragraph 3.1 (MAPE, MAX 
and 𝑅𝑅2) were used for the assessment. The results of these values for comparison 𝐵𝐵𝐵𝐵𝐵𝐵5 
obtained by the formulas of linear dependence on the predicted charge with reference 
values  𝐵𝐵𝐵𝐵𝐵𝐵5  are shown in Table 5. 

Table 5. Errors of 𝐵𝐵𝐵𝐵𝐵𝐵5 obtained from the predicted charge. 

Input MAPE MAX 𝑹𝑹𝟐𝟐 
2 hours 48.35 % 20.06 mg  0.483 
6 hours 15.62 % 10.32 mg  0.867 
8 hours 11.95 % 8.72 mg 0.907 

12 hours 10.66 % 5.53 mg 0.946 
16 hours 8.42 % 4.69 mg 0.961 
24 hours 7.5 % 4.49 mg 0.976 

As in the case of direct prediction 𝐵𝐵𝐵𝐵𝐵𝐵5, sensitivity, specificity and accuracy were 
calculated. The sensitivity was 1 when the input data were 24, 16, and 12 hours of meas-
urements, 0.9 for 8 hours of measurements, and 0.8 for other cases (6, 2 hours). Specificity 
was 1 for 24, 16, 12, and 8 hours of measurements 0.5 for 2 hours. The accuracy was 1 for 
the inputs at 24, 16, and 12 hours of measurements, 0.9375 for 8 hours, 0.875 for the input 
at 6 hours, and 0.6875 for the input of 2 hours of measurements. 

3.3. Discussion 
Firstly, ANN models were used to predict directly the values of  𝐵𝐵𝐵𝐵𝐵𝐵5,  one value 

for each experiment. With this approach, acceptable results were obtained when com-
pared to reference values of  𝐵𝐵𝐵𝐵𝐵𝐵5 for 24, 16, and 12 hours of measurement. This ap-
proach is more reliable since only one value is predicted, but it is less informative since it 
does not reflect the process of voltage change.  

Using the second approach, ANN models predicted the voltage values from which a 
charge can be calculated and, as a consequence, 𝐵𝐵𝐵𝐵𝐵𝐵5. Moreover, as soon as the predicted 
voltage data reached small values (Tardy et al. 2021) a value of 0.02 V was determined as 
the end point of the measurement, and then the charge was considered until the day when 
the predicted voltage became less than 0.01 V. In comparison with the first approach, the 
results were better (see Table 4 and Table 5), but for entries at 6 and 2 hours, and in some 
experiments for entries at 8 and 12 hours, the results, as in the first approach, gave a high 
error because voltage did not reach the peak and did not begin to decrease by this time. 
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4.Сonclusions 
ANN models were trained on voltage data obtained by MFC for 24, 16, 12, 8, 6, and 

2 hours and used to predict 𝐵𝐵𝐵𝐵𝐵𝐵5 values. Two approaches were considered in the pre-
diction of  𝐵𝐵𝐵𝐵𝐵𝐵5 – when the ANN directly predicts BOD5, and when the ANN predicts 
voltage, from which 𝐵𝐵𝐵𝐵𝐵𝐵5 can be calculated. The results obtained during cross-valida-
tion and on the delayed test set did not differ much from each other. When using the 
voltage values obtained at 12 hours as input, the error on the delayed set was 13.59% in 
the first approach and 10.66% in the second. For cases when voltage values measured for 
more than 12 hours were input to the models, the relative error was even smaller, for an 
entry at 24 hours, the relative error was 8.72% and 7.5% for the first and second ap-
proaches, respectively. ANN models for these cases showed good results regardless of the 
water sample used (domestic or brewery wastewater). Namely, the problem of determin-
ing the minimum measurement time required for a sufficiently accurate determination of 
the 𝐵𝐵𝐵𝐵𝐵𝐵5  was solved. Rapid acquisition of 𝐵𝐵𝐵𝐵𝐵𝐵5  values can offer benefits for 
wastewater monitoring and treatment. This will enable us to react faster, take necessary 
actions promptly, and identify optimal treatments under changing needs. In turn, it will 
help to reduce costs and assist in being compliant with legal requirements to maintain 
𝐵𝐵𝐵𝐵𝐵𝐵5 under certain levels. 

For future work, more complex neural network methods will be explored. The goal 
will be to identify if it is possible to further improve the performance and reduce the num-
ber of monitoring hours. One such network is the Transformer network used for time se-
ries forecasting (Li et al. 2019) which has shown strong results. It identifies local relation-
ships from the given sequence, while also maintaining long-term memory dependencies. 
The Transformer network can be adapted for both direct and indirect 𝐵𝐵𝐵𝐵𝐵𝐵5 predictions. 
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