Supporting Information: Surface *versus* Bulk State Transitions in Inkjet Printed All-Inorganic Perovskite Quantum Dot Films

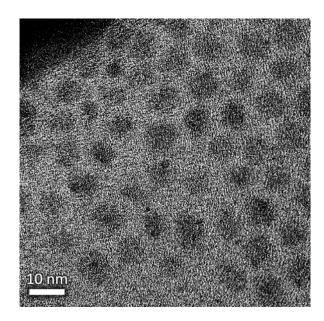
Thilini K. Ekanayaka¹, Dylan Richmond², Mason McCormick³, Shashank R. Nandyala⁴, Halle Helfrich^{5,6}, Alexander Sinitskii³, John Pikal⁴, Carolina C. Ilie², Peter A. Dowben¹, and Andrew J. Yost^{5,7*}

¹Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299

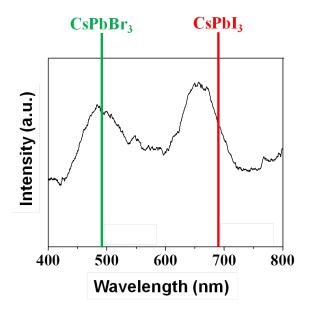
²Department of Physics, State University of New York-Oswego, Oswego, NY 13126-3599

³Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304

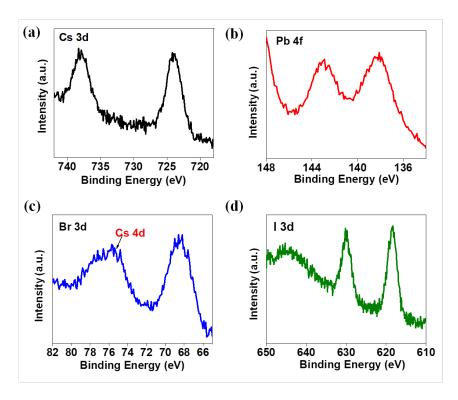
⁴Department of Electrical and Computer Engineering, University of Wyoming, Laramie, Wyoming 82071


⁵Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA 74078

⁶Department of Physics, Pittsburg State University, Pittsburg KS, USA 66762


⁷Oklahoma Photovoltaic Research Institute

NOTE: Below are transmission electron microscopy images indicating particle size of the CsPbBr₃ nanoparticles and additional figures illustrating the X-ray photoemission (XPS) core level features for the printed CsPbBr_{2.4}I_{0.6} nanoparticle textured thin films, through both direct mixing of nanoparticles in solution. There is also photoluminescence spectroscopy data for the thicker bi-layer printed CsPbBr₃/CsPbI₃ quantum dot thin films and the time dependent alloying of CsPbBr_{3-x}I_x quantum dot solutions. These data were taken at room temperature. TEM was performed on a JEOL JEM-2100 scanning transmission electron microscope at an accelerating voltage of 200kV. XPS was performed with a SPECS Phoibos 150 hemispherical analyzer using non-monochromatized Al-K α X-ray radiation and a pass energy of 15 eV in an ultra-high vacuum chamber with a chamber pressure better than 5.0×10^{-10} mbar. The photoluminescent spectroscopy was measured using an Ocean Optics DH-2000-BAL Deuterium-Halogen light source equipped with an Ocean Optics HR4000CG-UV-NIR high resolution spectrometer.


^{*}Corresponding Author: andrew.yost@okstate.edu

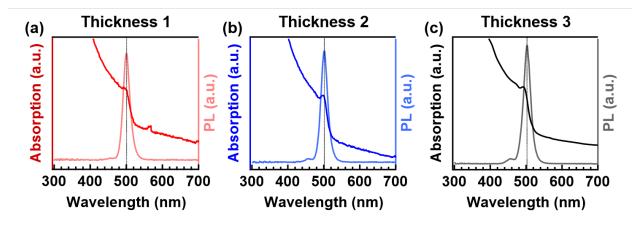

Figure S1: TEM image of the CsPbBr₃ quantum dots with average size of 7.3 nm.

Figure S2: Photoluminescence of the bi-layer CsPbBr₃/CsPbI₃ quantum dot printed thin film, the presence of two separate peaks located at roughly 490 nm and 650 nm suggests the presence of segregated CsPbBr₃ (green line) and CsPbI₃ (red line), thus confirming the bi-layer printing method results in unmixed layers of CsPbBr₃/CsPbI₃.

Figure S3: X-ray photoelectron spectroscopy of (a) the Cs 3d core level peaks, (b) Pb 4f core level peaks, and (c) the Br 3d core level peaks and Cs 4d core level peaks and (d) the I 3d core level peaks for the direct mixed perovskite $CsPbBr_{2.4}I_{0.6}$ quantum dot printed thin films.

Figure S4: Optical absorption and photoluminescence profiles for CsPbBr3 films, printed with single-layer printing method, of (a) thickness 1, (b) thickness 2, and (c) thickness 3. The vertical dashed line indicates the position of the PL peak.