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Abstract. We propose a phenomenological theory of spin behavior in a magnetic field, which 

explains from the point of view of classical physics the two-valued result of the Stern-Gerlach 

experiment. The behavior of the spin and intrinsic magnetic moment of an electron wave of an 

atom in an external magnetic field is considered. We show that in a weak magnetic field, the 

intrinsic magnetic moment of an electron wave is always oriented parallel to the magnetic field 

strength vector, while in a strong magnetic field, depending on the initial orientation of the 

intrinsic magnetic moment, two orientations are realized: either parallel or antiparallel to the 

magnetic field strength vector. Within the framework of classical electrodynamics, the 

calculation of the motion of an atomic beam in an inhomogeneous magnetic field is carried out, 

which reproduces the results of the Stern-Gerlach experiment. 
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1. Introduction 

 

According to classical electrodynamics, particles with non-zero magnetic moment are deflected, 

due to the magnetic field gradient, from a straight path. 

In the Stern-Gerlach experiment [1], silver atoms were passed through a spatially 

inhomogeneous magnetic field. When the magnetic field was null, the silver atoms were 

deposited as a single band on the detecting glass slide (Fig. 1). When the field was made 

stronger, the middle of the band began to widen and eventually to split into two, so that the 

glass-slide image looked like a lip-print, with an opening in the middle, and closure at either end 

(Fig. 1). 

 

Fig.1. Atomic beam image on the detecting glass slide in Stern-Gerlach experiments in the 

absence of a magnetic field (left) and in the presence of an inhomogeneous magnetic field (right) 

(adopted from [1]). 
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The Stern-Gerlach experiments led to the conclusion that atoms have their own magnetic 

moment (spin). Moreover, if the direction of the magnetic moment were randomly uniform, then 

a continuous spot would be observed on the detecting glass slide, and not the splitting the atomic 

beam into two parts, as in the Stern-Gerlach experiments. This indicated that the intrinsic 

magnetic moment is quantized and in a magnetic field can have only two directions: parallel and 

antiparallel to the magnetic field strength vector. It is for this reason that in the Stern-Gerlach 

experiments in an inhomogeneous magnetic field, the silver atoms were deflected up or down 

depending on their spin before they struck a detector screen. The screen revealed discrete points 

of accumulation, rather than a continuous distribution owing to their quantized spin. 

In 1927, T.E. Phipps and J.B. Taylor reproduced the effect using hydrogen atoms in their ground 

state [2]. 

The Stern-Gerlach experiment [1] is a seminal experiment in quantum mechanics. He played a 

huge role in the development of modern concepts underlying quantum mechanics and quantum 

physics in general. In fact, it convinced physicists of the reality of spatial quantization and 

allowed formulating one of the basic ideas of quantum mechanics, and of all modern physics, 

namely, the idea of a half-integer electron spin. The Stern-Gerlach experiment is one of those 

keystones that form the foundation of modern quantum theory. 

The Stern-Gerlach experiment is not only of historical significance. At present, it is considered 

as a thought tool when discussing such fundamental questions for quantum mechanics as the 

interpretation of quantum mechanics, quantum measurements, EPR paradox, Bell’s theorem, 

Bell’s inequality, the possibility of constructing hidden-variable theories [3-7], quantum 

computing [8 ]etc. 

The Stern–Gerlach experiment is considered to be the prototype of a quantum measurement, 

demonstrating the observation of a single, real value (eigenvalue) of an initially unknown 

physical property. According to quantum measurement theory, the wave function representing 

the atom magnetic moment is in a superposition of those two directions entering the magnet. At 

the moment of the measurement, only one spin direction eigenvalue is recorded (the so called 

collapse of the wave function) [9]. 

Note that, although it is believed that the Stern-Gerlach experiment demonstrates the purely 

quantum properties of atoms, in its analysis, starting from the Stern’s work [10], the methods of 

classical mechanics and classical electrodynamics are used. 

Thus, the spin of an atom in a Stern–Gerlach experiment is treated as a quantum degree of 

freedom, while the atom moving through a magnetic field is described by the classical 

(Maxwellian) electrodynamics [10]. 
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From the point of view of classical physics, the behavior of the intrinsic magnetic moment in a 

magnetic field seems inexplicable. According to classical electrodynamics, the most 

energetically favorable is the parallel orientation of the intrinsic magnetic moment relative to the 

vector of the external magnetic field. Indeed, the potential energy of a magnetic dipole in a 

magnetic field is equal to 𝑈 = −(𝛍𝐇), where 𝛍 is the magnetic moment, 𝐇 is the strength of the 

external magnetic field, while any system tends to the state with the lowest potential energy. In 

the case under consideration, the potential energy minimum corresponds to (𝛍𝐇) = |𝛍||𝐇|. 

From the point of view of classical electrodynamics and classical mechanics, the spontaneous 

antiparallel orientation of the vectors 𝛍 and 𝐇, corresponding to the maximum potential energy 

𝑈, is energetically unfavorable: although such an orientation is stationary, it is unstable. 

The statement that the spin in a magnetic field can take only two orientations (parallel and 

antiparallel to the field) in quantum mechanics is considered as a postulate, i.e. as a statement 

that does not require (or rather, does not have) proof. In other words, this property of the spin 

cannot currently be theoretically derived from any first principles. 

Attempts [11-25] were made to give a rational explanation for the results of the Stern-Gerlach 

experiments, i.e. to explain the physical mechanism (reason) why in an external magnetic field 

the intrinsic magnetic moment of half of the atoms in the atomic beam is oriented parallel to the 

magnetic field strength vector, while the other half is antiparallel. 

None of the previous attempts to rationally explain the results of the Stern-Gerlach experiments 

was found to be satisfactory. 

The self-consistent theory of Maxwell-Pauli and Maxwell-Dirac developed in [26, 27] and its 

analysis [28] prompted the author of this work to a new idea that can explain, at least from a 

mathematical point of view, the two-valued results of the Stern - Gerlach experiments. 

 

 

2. Spin behavior in a magnetic field 

 

In [26, 27], a self-consistent Maxwell-Pauli and Maxwell-Dirac theory was developed, in which 

the intrinsic angular momentum (spin) of an electron wave and the intrinsic magnetic moment 

associated with it are considered as real physical vectors that have a simple and clear classical 

meaning. In particular, the spin and intrinsic magnetic moment of an electron wave in a 

hydrogen atom are determined by the relations [26] 

𝐒 =
ℏ

2
𝛎      (1) 

and   
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𝛍 = −𝜇𝐵𝛎     (2) 

where 𝛎 is the unit vector: |𝛎| = 1. 

From relations (1) and (2) it follows that for an electron wave in a hydrogen atom, the vector of 

its intrinsic angular momentum (spin) 𝐒 and the vector of its intrinsic magnetic moment 𝛍 are 

antiparallel. 

In the absence of a magnetic field, the orientation of the vector 𝛎 can be any and does not change 

with time. 

It was shown in [28] that in an external magnetic field the unit vector 𝛎 satisfies the equation 

�̇� = 𝛾𝑒𝛎 × 𝐇 − 2𝛼𝛎 × �̇� +
𝑏

𝑐
𝛎 × �̈�    (3) 

where 𝐇 is the strength of the external magnetic field; 𝛾𝑒 = −
𝑒

𝑚𝑒𝑐
 is the intrinsic (spin) 

gyromagnetic ratio of the electron wave; 𝛼 =
𝑒2

ℏ𝑐
 is the fine structure constant; 𝑏 is some 

parameter having the dimension of length. In [28], within the framework of the self-consistent 

Maxwell-Pauli theory [25], it was obtained 

𝑏 = 𝛼 ∫ ∫ 𝑅|𝜓(𝐫)|2|𝜓(𝐫′)|2𝑑𝑉′ 𝑑𝑉    (4) 

where 𝑅 = |𝐫 − 𝐫′|, 𝜓(𝐫) is the wave function describing the state of the atom. 

As shown in [28], Eq. (3) holds only for the spin magnetic moment, but not for the orbital 

magnetic moment of an electron wave in an atom. 

For 𝑏 = 0, equation (3) has the form the Landau–Lifshitz–Gilbert equation [29, 30] with a 

damping parameter 2𝛼. 

Note that a phenomenological equation similar to (3) was considered in [31–35] as applied to 

magnetization dynamics of ferromagnets and ferrimagnets. 

In this paper, we consider equations (3) as applied to an individual atom that has only a spin 

magnetic moment. 

It is further assumed that the second and third terms on the right side of Eq. (3) are much smaller 

than the first one, which describes the classical Larmor precession of the spin in an external 

magnetic field with a frequency 

𝛀𝜈 =
𝑒

𝑚𝑒𝑐
𝐇      (5) 

Multiply equation (3) on the left vectorially by 𝛎. As a result of simple transformations, one 

obtains  

𝛎 × �̇� = 𝛾𝑒𝛎 × 𝛎 × 𝐇 + 2𝛼�̇� +
𝑏

𝑐
𝛎 × 𝛎 × �̈�    (6) 

Let us substitute (3) into the right-hand side of equation (6). As a result, one obtains 

𝛎 × �̇� =
𝛾𝑒

(1+4𝛼2)
𝛎 × 𝛎 × 𝐇 +

2𝛼𝛾𝑒

(1+4𝛼2)
𝛎 × 𝐇 +

2𝛼𝑏

(1+4𝛼2)𝑐
𝛎 × �̈� +

𝑏

(1+4𝛼2)𝑐
𝛎 × 𝛎 × �̈�    (7) 
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Taking into account (7), we reduce equation (3) to the form 

�̇� =
𝛾𝑒

1+4𝛼2 𝛎 × 𝐇 +
𝑏

(1+4𝛼2)𝑐
𝛎 × �̈� −

2𝛼𝛾𝑒

1+4𝛼2 𝛎 × 𝛎 × 𝐇 −
2𝛼𝑏

(1+4𝛼2)𝑐
𝛎 × 𝛎 × �̈�  (8) 

To calculate the derivative �̈�, we take into account that the second and subsequent terms on the 

right-hand side of Eq. (8) are small compared to the first one. As a result, one can write 

approximately  

�̇� ≈
𝛾𝑒

1+4𝛼2 𝛎 × 𝐇     (9) 

�̈� ≈
𝛾𝑒

1+4𝛼2 �̇� × 𝐇 ≈ − (
𝛾𝑒

1+4𝛼2)
𝟐

𝐇 × 𝛎 × 𝐇 = − (
𝛾𝑒

1+4𝛼2)
𝟐

(𝛎𝐇2 − 𝐇(𝛎𝐇)) (10) 

Substituting (10) into (8), one obtains 

�̇� =
𝛾𝑒

1+4𝛼2
(1 +

𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)) 𝛎 × 𝐇 −

2𝛼

1+4𝛼2
𝛾𝑒 [1 +

𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)] 𝛎 × 𝛎 × 𝐇 (11) 

Note that, as follows from Eq. (11), the true frequency of the Larmor precession of the spin in an 

external magnetic field differs from (5) and is equal to  

𝛀′𝜈 =
1

1+4𝛼2 (1 −
1

(1+4𝛼2)2

𝑒𝐻𝑏

𝑚𝑒𝑐2 cos 𝜃)
𝑒

𝑚𝑒𝑐
𝐇   (12) 

Assuming the vector 𝐇 to be constant, we multiply equation (11) by it: 

𝐇�̇� = −
2𝛼

1+4𝛼2 𝛾𝑒 [1 +
𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)] [(𝛎𝐇)2 − 𝐇2]  (13) 

Taking into account that (𝛎𝐇) = 𝐻 cos 𝜃, where 𝜃 is the angle between the vectors 𝛎 and 𝐇, one 

obtains 

𝑑𝜃

𝑑𝑡
= −

2𝛼

1+4𝛼2 𝛾𝑒H (1 +
𝑏𝛾𝑒

(1+4𝛼2)2𝑐
𝐻 cos 𝜃) sin 𝜃   (14) 

At 

𝐻 > −
(1+4𝛼2)

2
𝑐

𝑏𝛾𝑒
= (1 + 4𝛼2)2 𝑚𝑒𝑐2

𝑏𝑒
    (15) 

the right-hand side of equation (14) changes sign as the angle 𝜃 changes from zero to 𝜋. In this 

case, when  

cos 𝜃 < −
(1+4𝛼2)

2
𝑐

𝑏𝛾𝑒𝐻
     (16) 

the right-hand side of equation (14) is positive, and the angle 𝜃 increases until it reaches the 

value 𝜃 = 𝜋. That is, the magnetic moment (2) of an electron wave in an atom turns in a 

magnetic field until it becomes parallel to the vector 𝐇. On the contrary, when 

cos 𝜃 > −
(1+4𝛼2)

2
𝑐

𝑏𝛾𝑒𝐻
     (17) 

the right-hand side of equation (14) is negative, and the angle 𝜃 decreases until it reaches the 

value 𝜃 = 0. That is, the magnetic moment of an electron wave in an atom turns in a magnetic 

field until it becomes antiparallel to the vector 𝐇. 
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We introduce nondimensional time 

𝜏 = −
2𝛼

1+4𝛼2
𝛾𝑒𝐻𝑡 =

2𝛼

(1+4𝛼2)

𝑒𝐻

𝑚𝑒𝑐
𝑡    (18) 

Then equation (14) can be written in the form 

𝑑𝜃

𝑑𝜏
= (1 − 𝜆 cos 𝜃) sin 𝜃    (19) 

where 

𝜆 = −
𝑏𝛾𝑒

(1+4𝛼2)2𝑐
𝐻 =

1

(1+4𝛼2)2

𝑒𝐻𝑏

𝑚𝑒𝑐2
    (20) 

The formal solution of equation (19) has the form 

∫
𝑑𝜃

(1−𝜆 cos 𝜃) sin 𝜃

𝜃

𝜃0
= 𝜏     (21) 

After integration, one obtains 

−
1

𝜆(1−𝜆2)
ln

1−𝜆 cos 𝜃

1−𝜆 cos 𝜃0
+

1

2(1−𝜆)
ln

1−cos 𝜃

1−cos 𝜃0
−

1

2(1+𝜆)
ln

1+cos 𝜃

1+cos 𝜃0
= 𝜏  (22) 

where 𝜃0 is the initial angle between the spin vector and the vector 𝐇. 

Let us introduce the critical angle 𝜃𝑐𝑟 satisfying the equation  

𝜆 cos 𝜃𝑐𝑟 = 1      (23) 

Then conditions (15)-(17) can be formulated as follows. 

For 0 ≤ 𝜆 ≤ 1, the right-hand side of equation (19) has a constant sign (positive) at any angles 

𝜃, while for 𝜆 > 1, the right-hand side of equation (19) is positive for 𝜃 > 𝜃𝑐𝑟 and negative for 

𝜃 < 𝜃𝑐𝑟. 

That is, at 0 ≤ 𝜆 ≤ 1, the spin vector in a magnetic field always acquires an orientation 

antiparallel to the vector 𝐇, regardless of the initial angle 𝜃0. When 𝜆 > 1, the angle 𝜃 increases 

and tends to 𝜋 if 𝜃 > 𝜃𝑐𝑟 and vice versa decreases and tends to zero if 𝜃 < 𝜃𝑐𝑟. 

The dependence of the critical angle 𝜃𝑐𝑟 on the parameter 𝜆 is shown in Fig. 2. In the 

calculations, 𝜃0 = 𝜃𝑐𝑟 ± ∆𝜃 was used as the initial condition, where 0 < ∆𝜃 ≪ 𝜃𝑐𝑟. 

Solutions of equation (19) are shown in Fig. 3. 

We introduce the function 

𝑓(𝜏) =
1

∆𝜃

𝑑𝜃

𝑑𝜏
=

(1−𝜆 cos 𝜃) sin 𝜃

∆𝜃
   (24) 

where  

∆𝜃 = {
−𝜃𝑐𝑟 ,      for 𝜃 < 𝜃𝑐𝑟

𝜋 − 𝜃𝑐𝑟 , for 𝜃 > 𝜃𝑐𝑟
     (25) 

Function 𝑓(𝜏) is a bell-shaped one, and 

∫ 𝑓(𝜏)𝑑𝜏
∞

0
= 1     (26) 

Then the characteristic nondimensional time ∆𝜏 of turn of the spin vector can be defined as 

∆𝜏 = 1/𝑓max      (27) 
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where 

𝑓max =
(1−𝜆 cos 𝜃𝑚) sin 𝜃𝑚

∆𝜃
     (28) 

is the maximum value of the function 𝑓(𝜃); 𝜃𝑚 is the angle 𝜃 at which the maximum of the 

function 𝑓(𝜃) is reached. The angle 𝜃𝑚 is determined from the equation  

𝜆 cos 2𝜃𝑚 = cos 𝜃𝑚      (29) 

 

Fig. 2. Dependence of the critical angle 𝜃𝑐𝑟 and the degree of uniformity 𝜒 of the distribution of 

the spin vector orientation on the parameter 𝜆. 

 

Dependences of ∆𝜏 on the parameter 𝜆 are shown in Figs. 4. 

The characteristic dimensional time of the spin vector reversal 

∆𝑡 = 𝑡𝜈∆𝜏     (30) 

where taking into account (18), 

𝑡𝜈 = (1 + 4𝛼2)
𝑚𝑒𝑐

2𝛼𝑒𝐻
= 3.9 × 10−6𝐻−1   (31) 

Here, the magnetic field 𝐇 is measured in gauss, and the time is measured in seconds. 

Using (5), one obtains  

|𝛀𝜈|𝑡𝜈 =
1

2
(1 + 4𝛼2)𝛼−1 ≫ 1   (32) 

That is, the period of the Larmor precession of the vector 𝛎 is much shorter than the 

characteristic time of the turn of this vector in an external magnetic field. From this point of 

view, we can say that the Larmor precession of the vector 𝛎 occurs quasi-stationary. 

Thus, according to equation (11), the vector 𝛎 (vector of intrinsic angular momentum 𝐒) of a 

hydrogen atom in an external magnetic field performs a Larmor precession around the vector 𝐇 

with an angular frequency (5) and, at the same time, slowly turns, tending to take an orientation 

parallel or antiparallel to the vector 𝐇 depending on its initial orientation. 
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a  

b  

 

c  

Fig.3. Dependences of the angle 𝜃 on the nondimensional time 𝜏 =
2𝛼

(1+4𝛼2)

𝑒𝐻

𝑚𝑒𝑐
𝑡 for different 

values of the parameter 𝜆: a) 𝜆 = 2, 𝜃𝑐𝑟 = 60°; b) 𝜆 = 5, 𝜃𝑐𝑟 = 78.46°; c) 𝜆 = 20, 𝜃𝑐𝑟 = 87.13° 
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In the Stern-Gerlach experiment, the magnetic field had a strength of 𝐻 < 15000 gauss. Thus, 

in the Stern-Gerlach experiment, 𝑡𝜈 > 5.2 × 10−10 𝑠, i.e. this is a fairly fast process. At the 

thermal speed of the atom ~100 m/s, the atom has time to cover a distance of >5×10
-8

 m=0.05 

μm during this time. That is, once in such a field, an atom will almost instantly acquire an 

orientation in which its intrinsic magnetic moment will be directed either parallel or antiparallel 

to the magnetic field, depending on its initial orientation. 

Consider a statistical ensemble of atoms. Let at the initial moment of time all atoms have a 

random and uniformly distributed orientation along the angle 𝜃: 𝜌(𝜃0, 0) = 1/𝜋, where 

𝜌(𝜃, 𝜏)𝑑𝜃 is the probability that the angle between the vector of the intrinsic angular momentum 

of the atom and the vector 𝐇 lies in the range [𝜃, 𝜃 + 𝑑𝜃]. This distribution will change over 

time: 𝜌(𝜃, 𝜏). Taking into account that 𝜌(𝜃0, 0)𝑑𝜃0 = 𝜌(𝜃, 𝜏)𝑑𝜃, one obtains 

𝜌(𝜃, 𝑡) = 𝜌(𝜃0, 0) (
𝜕𝜃0

𝜕𝜃
)

𝑡
    (33) 

Differentiating (21) with respect to 𝜃0 at constant 𝜏, one obtains  

(
𝜕𝜃0

𝜕𝜃
)

𝜏
=

(1−𝜆 cos 𝜃0) sin 𝜃0

(1−𝜆 cos 𝜃) sin 𝜃
     (34) 

Thus, 

𝜌(𝜃, 𝜏) =
1

𝜋

(1−𝜆 cos 𝜃0) sin 𝜃0

(1−𝜆 cos 𝜃) sin 𝜃
     (35) 

where 𝜃0 = 𝜃0(𝜃, 𝜏) according to (21). 

Dependences 𝜌(𝜃) for different values of the nondimensional time 𝜏 for different values of the 

parameter 𝜆 are shown in Fig. 5. 

 

Fig. 4. Dependence of the characteristic nondimensional time ∆𝜏 of the spin vector turn on the 

parameter 𝜆. 
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a  

b  

c  

Fig. 5. Dependences of the distribution density 𝜌(𝜃) at different instants of nondimensional time 

𝜏 =
2𝛼

(1+4𝛼2)

𝑒𝐻

𝑚𝑒𝑐
𝑡 for different values of the parameter 𝜆: a) 𝜆 = 2; b) 𝜆 = 5; c) 𝜆 = 20. 
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It can be seen from Fig. 5 that the spin vector is nonuniformly distributed in directions: the 

fraction of atoms whose spin vector is antiparallel to the vector 𝐇 is always greater than the 

fraction of atoms with a spin orientation parallel to the vector 𝐇, and this nonuniformity depends 

on the parameter 𝜆. 

The nonuniform distribution of the spin vector in directions in a magnetic field can be 

characterized by the parameter (degree) of uniformity 

𝜒 =
𝑁↑

𝑁↓
      (36) 

where 𝑁↑ and 𝑁↓ is the number of atoms whose spin vector has an orientation parallel and 

antiparallel to the vector 𝐇, respectively. 

If initially (before entering the magnetic field) the atoms had a random and equally probable 

orientation of the spin vector in space, then  

𝑁↑ = 𝑁𝜃𝑐𝑟/𝜋, 𝑁↓ = 𝑁(𝜋 − 𝜃𝑐𝑟)/𝜋    (37) 

where 𝑁 is the total number of atoms. 

Then the degree of uniformity of the orientation of the spin vector in the magnetic field 

𝜒 =
𝜃𝑐𝑟

𝜋−𝜃𝑐𝑟
      (38) 

The dependence of the degree of uniformity 𝜒 on the parameter 𝜆 is shown in Fig. 2. As the 

parameter 𝜆 increases, the distribution of atoms on the spin directions relative to the vector 𝐇 

becomes more uniform: the number of atoms with a spin orientation parallel to the vector 𝐇 

tends to the number of atoms with an antiparallel spin orientation. 

Thus, taking into account (2), we can consider that in a sufficiently strong external magnetic 

field the atomic beam is divided into two equal parts: one of which has a parallel orientation of 

intrinsic magnetic moments with respect to the vector 𝐇, while the other has an antiparallel 

orientation. Then, according to classical electrodynamics, an atom having intrinsic magnetic 

moment 𝛍 in a inhomogeneous magnetic field will be affected by the force 

𝐅 = ∇(𝛍𝐇) = ±𝜇𝐵∇𝐻     (39) 

where 𝐻 = |𝐇|; the signs “+” and “-“ correspond to the parallel and antiparallel orientation of 

the vector 𝛍 with respect to the vector 𝐇. 

If the field 𝐇 is inhomogeneous (as in the Stern-Gerlach experiments), this will lead to the 

separation of the beam of atoms in space into two parts, one of which corresponds to the parallel 

while the other to the antiparallel orientation of the intrinsic magnetic moment of the electron 

wave of the atom with respect to the vector 𝐇. 

Thus, the fulfillment of condition (15), in fact, means an explanation of the two-valued results of 

the Stern-Gerlach experiments. 
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If condition (15) is not satisfied, then the intrinsic magnetic moment of the atom is always 

oriented parallel to the field 𝐇. In this case, the atomic beam does not split into two parts in an 

inhomogeneous external magnetic field. 

 

 

3. Numerical simulation of the Stern-Gerlach experiment 

 

For illustration and completeness of presentation, we will calculate the Stern-Gerlach 

experiment, assuming that the intrinsic magnetic moment of an electron wave in an atom is 

always oriented either parallel or antiparallel to the magnetic field strength vector according to 

the phenomenological theory proposed in this paper. 

In this case, taking into account (39), the equations of motion of an electrically neutral atom in a 

magnetic field have the form 

𝑚
𝑑𝐯±

𝑑𝑡
= ±𝜇𝐵∇𝐻     (40) 

𝑑𝐫±

𝑑𝑡
= 𝐯±      (41) 

The sketch of the Stern-Gerlach experiment is shown in Fig. 6. 

 

Fig. 6. Sketch of the Stern-Gerlach experiment. Dashed lines are magnetic field lines. 

 

Assuming that the width of the magnets is much less than their length in the direction of the 

atomic beam propagation, it can be approximately assumed that the magnetic field is uniform in 

the direction of the beam propagation (i.e., along the 𝑥 axis): 

𝐇 = (0, 𝐻𝑦(𝑦, 𝑧), 𝐻𝑧(𝑦, 𝑧))     (42) 

Considering that the purpose of this calculation is not to model a specific Stern-Gerlach 

experiment, but to illustrate the theory developed in the previous section, we consider a model 

inhomogeneous magnetic field described by the equations 

𝐻𝑦 = 𝑞
𝑦

(𝑦2+𝑧2)3/2 , 𝐻𝑧 = 𝑞
𝑧

(𝑦2+𝑧2)3/2     (43) 

Where 𝑞 > 0 is some constant characteristic of the magnet. 

Then 
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𝐻 =
𝑞

𝑦2+𝑧2      (44) 

It is assumed here that the line 𝑦 = 𝑧 = 0 coincides with the nose of the upper magnet (Fig. 6) 

and the motion of the atomic beam occurs in the region 𝑧 < 0. 

We assume that at the entrance to the magnetic field (i.e., in the cross section 𝑥 = 0) the 

velocities of all atoms are the same (monovelocity beam) and equal to 𝐯(0) = (𝑉0, 0, 0). In other 

words, in these calculations, we do not take into account the velocity distribution of atoms 

associated with the final temperature of the source. 

For the convenience of calculations, we pass to nondimensional variables, leaving the previous 

notations: 

𝑡 →
𝑉0𝑡

𝐿
, 𝐫 →

r

𝐿
, 𝐯 →

𝐯

𝑉0
     (45) 

Then equation (41) in nondimensional variables will retain its form, while equation (40), taking 

into account (44), will take the form 

𝑑𝑣𝑥

𝑑𝑡
= 0      (46) 

𝑑𝑣𝑦

𝑑𝑡
= ∓𝛽

𝑦

(𝑦2+𝑧2)2     (47) 

𝑑𝑣𝑧

𝑑𝑡
= ∓𝛽

𝑧

(𝑦2+𝑧2)2     (48) 

where 

𝛽 =
2𝜇𝐵𝑞

𝑚𝑉0
2𝐿2      (49) 

From equations (41) and (46), taking into account the initial conditions, one obtains 

𝑣𝑥 = 1       (50) 

𝑥 = 𝑡       (51) 

From (51) it follows that the exit from the magnet corresponds to 

𝑥𝐿 = 𝑡𝐿 = 1      (52) 

When modeling the Stern-Gerlach experiment, the motion of each individual atom was 

successively calculated according to equations (47), (48), (50) and (51) for a fixed value of the 

parameter 𝛽. 

To do this, at the entrance to the magnetic field (𝑥 = 0) for each atom, the initial conditions were 

set: 

- initial coordinates of the atom 𝑦(0), 𝑧(0), uniformly generated by the random number 

generator in the range: 𝑦(0) = [−𝑑/2, 𝑑/2], 𝑧(0) = [−𝐷 − ∆/2, −𝐷 + ∆/2] (it is assumed that 

atoms enter the magnet through a narrow slit of length 𝑑 and width ∆≪ 𝑑, parallel to the 𝑦 axis 

and located symmetrically with respect to the 𝑧 axis: the center of the slit has coordinates 
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𝑦 = 0, 𝑧 = −𝐷; it is considered that the atomic beam is distributed uniformly over the entire area 

of the slit); 

- initial speed of the atom 𝐯(0) = (1, 0, 0); 

- the orientation of the intrinsic magnetic moment (spin) of the atom with respect to the external 

magnetic field, i.e. the sign “+” or “-“ in equations (47) and (48). To do this, it is assumed that at 

the exit from the source of atoms (at the entrance to the magnetic field), the intrinsic magnetic 

moment (spin) of the atom can have an arbitrary (random, equiprobable) orientation in space. 

When it enters a magnetic field (i.e., in the 𝑥 = +0 cross section), the spin of an atom instantly 

changes its orientation, acquiring either parallel (“-” sign in equations (47) and (48)), or 

antiparallel (“+” sign in equations (47) and (48)) orientation with respect to the magnetic field 

strength vector 𝐇. When an atom moves inside a magnet, the orientation of the spin with respect 

to the vector 𝐇 (the sign in equations (47) and (48)) is saved. 

Taking into account (37), one obtains the probabilities of parallel 𝑝↑ and antiparallel 𝑝↓ 

orientations of the spin vector with respect to the vector 𝐇: 

𝑝↑ = 𝜃𝑐𝑟/𝜋, 𝑝↓ = (𝜋 − 𝜃𝑐𝑟)/𝜋    (53) 

Thus, the signs “+” and “-“ in equations (47) and (48) are calculated using the random numbers 

generator and ratios (53). 

After leaving the magnet (𝑥 > 1), the atoms move by inertia along rectilinear trajectories 

described by the equations  

𝑦 = 𝑦(1) + (𝑥 − 1)𝑣𝑦(1), 𝑧 = 𝑧(1) + (𝑥 − 1)𝑣𝑧(1)  (54) 

where 𝑦(1) and 𝑧(1) are the coordinates of the atom at the exit of the magnet (i.e. at 𝑥 = 1); 

𝑣𝑦(1) and 𝑣𝑧(1) are the velocities of the atom at the exit of the magnet. 

The calculations were carried out with the following nondimensional parameters: 

𝜆 = 2; 𝛽0 = 0.001; 𝐷 = 0.2; 𝑑 = 1; ∆= 0.02   (55) 

The number of particles involved in the calculations, 𝑁 = 10000. 

The results of calculations are shown in Figs. 7-9. 

The results of the calculations allow drawing the following conclusions: 

(i) The shape of the atomic beam image on the detecting screen, obtained in calculations 

for the case when the detecting screen is located directly at the exit from the magnet 

(𝑥 = 1, Fig. 8), qualitatively reproduces the results of the Stern-Gerlach experiment 

(Fig. 1). It can be expected that quantitative agreement can also be achieved if a real 

magnetic field 𝐇(y, z) is used in the calculations and the velocity distribution of 

atoms corresponding to the source temperature is taken into account. 
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(ii) The thickness of the lines on the detecting screen is practically independent on the 

parameter 𝜆, because it is determined by the width of the slit. The intensity of the 

lines depends on the parameter 𝜆: the fewer particles fall on the line, the paler it is. In 

the Stern-Gerlach experiments, the lower (left in Fig. 1) line corresponding to 𝜃 = 0 

looks paler, although this can be attributed to image quality. 

(iii) As shown in Fig. 8 and 9, the picture on the detecting screen for the same experiment 

changes significantly when the 𝑥 position of the screen changes. Thus, the picture on 

the detecting screen, obtained in the Stern-Gerlach experiments (Fig. 1), could be 

observed only when the detecting screen was placed in the immediate vicinity of the 

magnet (𝑥 = 1, Fig. 8). If the detecting screen were located at large distances from 

the magnet (𝑥 > 1), then, as can be seen from Fig. 9, the observed picture would be 

more complex, and it would apparently be difficult to draw a conclusion about the 

spatial quantization of the electron spin and the magnitude of intrinsic magnetic 

moment on the basis of these experiments. 

 

 

Fig. 7. Distribution of velocities 𝑣𝑦(1) and 𝑣𝑧(1) of atoms at the exit of the magnet (𝑥 = 1) for 

parameters (55). 
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Fig. 8. Distribution of coordinates 𝑦 = 𝑦(1) and 𝑧 = 𝑧(1) of atoms at the exit of the magnet 

(𝑥 = 1) for parameters (55). 

 

 

Fig. 9. Distribution of coordinates 𝑦 and 𝑧 of atoms in cross sections 𝑥 = 2 (left) and 𝑥 = 5 

(right) for parameters (55). 

 

 

4. Concluding remarks 

 

Thus, we have shown that the phenomenological theory of the behavior of the intrinsic magnetic 

moment (spin) of an electron wave of an atom in an external magnetic field proposed in this 

paper allows naturally explaining the two-valued result of the Stern-Gerlach experiments and 

calculating the Stern-Gerlach experiment in all details based on classical mechanics and classical 

electrodynamics without resorting to quantization. 
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The theory under consideration predicts the existence of a threshold value of the magnetic field 

strength 

𝐻𝑡ℎ = (1 + 4𝛼2)2 𝑚𝑒𝑐2

𝑏𝑒
    (56) 

If the magnetic field strength 𝐻 < 𝐻𝑡ℎ, the intrinsic magnetic moment of the electron wave of 

the atom will always be oriented parallel to the magnetic field strength vector, and in an 

inhomogeneous magnetic field the two-valued result characteristic of the Stern-Gerlach 

experiment [1, 2] will not be observed. In this case, the atoms will be deposited as a single band 

on the detecting screen, just as in the absence of a magnetic field, and only at 𝐻 > 𝐻𝑡ℎ in the 

Stern-Gerlach experiments will a two-valued result be observed, in which the atomic beam is 

split into two parts. This conclusion of the theory under consideration can be verified 

experimentally, although I am well aware of the difficulties that experimenters will encounter 

along the way, taking into account the small magnitude of the effect being studied. 

As mentioned above, formally, equation (3) follows from the self-consistent Maxwell-Pauli 

theory [26-28]. 

Let us estimate the right-hand side of inequality (15) for the hydrogen atom in the ground state. 

Calculating the integral (4), one obtains [28] 

𝑏 = 𝛼
35

16
𝑎𝐵     (57) 

Substituting (57) into the right side of (15), one obtains 

(1 + 4𝛼2)2 𝑚𝑒𝑐2

𝑏𝑒
= 2 × 1013Gauss    (58) 

which is a billion times greater than the value of the magnetic field strength in the Stern-Gerlach 

experiments. Thus, condition (15) is not satisfied in the Stern-Gerlach experiments. This means 

that the theory considered in this paper is still phenomenological, and cannot be derived directly 

from the self-consistent Maxwell-Pauli theory [26-28]. 

At the same time, equation (14), and hence equation (3), with a different value of the coefficient 

𝑏, shows a possible mechanism leading to a two-valued result in the Stern-Gerlach experiments. 

Such an explanation of the Stern-Gerlach experiments is visual, plausible and seems very 

tempting. 

It is possible that a certain modification of the self-consistent Maxwell-Dirac theory [26-28] will 

make it possible in the future to strictly derive equation (3) from a more general theory. 
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