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Abstract: A phenotype is the composite of an observable expression of a genome for traitsina 1
given environment. The trajectories of phenotypes computed from an image sequence and timing of =
important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the s
plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet 4
which uses deep neural networks for detecting flowers from multiview image sequences for high s
throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-
based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the 7
total number of flowers present in the plant at a given time, the highest number of flowers bloomed
in the plant, growth trajectory of a flower and the blooming trajectory of a plant. To develop anew o
algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset 1o
is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno which comprises 11
image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a 12
visible light camera in a high throughput plant phenotyping platform from multiple view angles. The 13
experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet. 14

Keywords: High Throughput Plant Phenotyping; Deep Neural Network; Flower Detection; Temporal 15
Phenotypes; Benchmark Dataset; Flower Status Report 16

1. Introduction 17

Image-based plant phenotyping refers to the proximal sensing and quantification of a  1s
plant’s traits resulting from complex interactions between the genotype and its environ-
ment based on noninvasive analysis of image sequences that obviate the need for physical 20
human labor Das Choudhury et al. (2018). It is an interdisciplinary research field that lies 2
at the intersection of computer science, plant science, remote sensing, data science, and 22
genomics, with the goal to link complex plant phenotypes to genetic expression for global =3
food security under dwindling natural resources and climate variability Das Choudhury 2
et al. (2019). The image-based plant phenotypes can be broadly classified into three cat- =5
egories, i.e., structural, physiological, and temporal (Samal et al. (2020)). The structural 2.
phenotypes characterize a plant’s shape and topology, (e.g., plant height, biomass) whereas -
physiological phenotypes refer to the physiological characteristics of plants, e.g., the plant’s 2.
temperature, the carbohydrate content of the stem, and photosynthetic capability of a leaf. 2o
In addition, the genotypic and environmental impact on the growth of a plant and its 0
different components (leaves, stems, flowers, and fruits) over time has given rise to anew s
category of phenotype, called the temporal phenotype. 32

Image-based temporal phenotypes are subdivided into two categories, namely, trajectory- s
based and event-based. Structural and physiological phenotypes are often computed froma  sa

w
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sequence of images captured at regular time intervals to demonstrate the temporal variation s
of phenotypes regulated by genotypes and environment, e.g., the growth rate of a plant, 6
propagation of stress symptoms over time, or the leaf elongation rate. These are called -
trajectory based temporal phenotypes. The fundamental difference between the growth s
characteristics of plants and animals is that, while most animals are born with all their body 3¢
organs, plants grow throughout their life cycle by continuously producing new tissues 4o
and structures, e.g., leaves, flowers, and fruits. Furthermore, the different organs have
different growth rates, and their shapes change over time both in topology and geometry. 4
Plants not only develop new organs and bifurcate into different components during their 4
life cycle, but they also show symptoms of senescence. The timing of important events 4
in a plant’s life, e.g., germination, the emergence of a new leaf, flowering, fruiting, and s
onset of senescence, is crucial in the understanding of the overall plant’s vigor, which is 46
likely to vary with the interaction between genotype and environment. Such phenotypes 4
are referred to as event-based phenotypes. 48

Unlike the visual tracking of rigid bodies, e.g., vehicles and pedestrians, whose move- 4
ments are merely characterized by the change in location, the emergence timing detection  so
of new organs and tracking their growth over time in plants requires a different problem s
formulation with an entirely new set of challenges. The newly emerged organs, e.g., buds, s
are often occluded by leaves and assume the color and texture of the leaves, making their  ss
detection challenging. Furthermore, the rate of change (for both growth and senescence) is  sa
typically more gradual than the rigid body motion. Phyllotaxy, the plant’s mechanism to s
optimize light interception by re-positioning the leaves, leads to self-occlusions and leaf e
crossovers and adds another layer of complexity in tracking the plant’s growth. 57

Monitoring flower development over time plays a significant role in production man-  ss
agement, yield estimation and breeding programs Xu ef al. (2018). This paper introduces  se
a novel system called FlowerPhenoNet for flower phenotyping analysis based on the de-  eo
tection of flowers in a plant image sequence using deep learning. Deep learning has been &
successfully employed in a number of real-time object detection tasks, e.g., abandoned =
luggage detection in public places Santad et al. (2018) and detection and counting of vehicles s
on highways for visual surveillance Song et al. (2019). FlowerPhenoNet has the following s
novelties. It introduces (a) a novel approach to flower detection from a multiview image s
sequence using deep learning technique for application in plant phenotyping; (b) a set of s
new temporal flower phenotypes with a discussion on their significance in plant science; (c) o7
a publicly available benchmark dataset to facilitate research advancement in flower-based s
plant phenotyping analysis. 69

2. Related Works 70

Deep learning has been effectively explored in the state-of-the-art methods for de- =
tecting and counting flowers and fruits from images. Zhenglin et al. in Wang et al. (2019) 7
proposed a MangoYOLO algorithm for detecting, tracking, and counting mangoes froma
time-lapse video sequence. The method uses the Hungarian algorithm to correlate fruit 7
between neighboring frames, and the Kalman filter to predict the position of fruit in the
following frames. The method in Afonso et al. (2020) uses the MaskRCNN algorithm for 7
detecting tomato fruits from images captured in the controlled greenhouse environment. 77
A faster R-CNN has been effectively used in Mai et al. (2020), Bargoti and Underwood 7
(2017) to develop a reliable fruit detection system from images, which is a critical task for 7
automated yield estimation. To improve the detection performance for the case of small s
fruits, the method proposed in Mai et al. (2020) incorporated a multiple classifier fusion e
strategy in the faster R-CNN. 82

Some notable research in event-based plant phenotyping includes the detection of
budding and bifurcation events from 4D point clouds using a forward-backward analysis  =a
framework Li ef al. (2013) and plant emergence detection and tracking of the coleoptile s
based on adaptive hierarchical segmentation and optical flow using spatio-temporal image s
sequence analysis Agarwal (2017). For a large-scale phenotypic experiment, the seeds are &
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usually sown in smaller pots until germination, and then transplanted to bigger pots based s
on visual inspection of the germination date, size, and health of the seedlings. The method s
described in Scharr et al. (2020) developed a deep learning based automated germination e
detection system that also supports visual inspection and transplantation of seedlings. A o
benchmark dataset is released to pose the germination detection problem as a new challenge. 2
The method described in Bashyam et al. (2021) uses a skeleton-graph transformation s
approach to detect the emergence timing of each leaf and track the individual leaves over o
the image sequence for automated leaf stage monitoring of maize plants. 95

Trajectory-based phenotypes have drawn the attention of researchers due to their s
efficacy in demonstrating the environmental and genotypic impact on a plant’s health o
for an extended time of its life cycle. Das Choudhury et. al. Das Choudhury et al. (2018) s
introduced a set of new holistic and component phenotypes computed from 2D side view o9
image sequences of maize plants, and demonstrated the temporal variations of these 100
phenotypes regulated by genotypes using line graphs. The method in Das Choudhury ef al. 101
(2017) used a skeleton-graph transformation approach to compute stem angles from plant 12
image sequences. The trajectories of stem angles are analyzed using time series cluster 1os
analysis and angular histogram analysis to investigate the genotypic influence on the stem 104
angle trajectories at a given environmental condition. 105

The state-of-the-art methods have used deep learning techniques for detecting and 106
counting flowers by analyzing images captured by unmanned aerial vehicles (UAVs) Xu 107
et al. (2018), Lu et al. (2017). Time-series phenotyping for flowers based on analyzing ios
images captured in high throughput plant phenotyping platforms (HTP3) by proximal 10e
sensing, is yet to be explored. This paper introduces a novel system called FlowerPhenoNet 110
which uses a deep learning technique to detect flowers from an input image sequence and 111
produces a flower status report consisting of a set of novel trajectory-based and event-based 112
flower phenotypes. The paper also publicly releases a benchmark dataset, the first of its 112
kind, consisting of image sequences of 60 plants belonging to three economically important 11
species, namely, sunflower, canna, and coleus. This dataset is intended to advance the s
image-based time series flower phenotyping analysis. 116

3. Materials and Methods 117

FlowerPhenoNet considers a sequence of images of a plant from the early vegetative s
to the flowering stage as the input. The goal of FlowerPhenoNet is: Given an input image 110
sequence of a plant, P, compute the set of phenotypes, G, where P and G are formally 120
defined as below. 121

Problem definition: FlowerPhenoNet

Input: The image sequence of a plant, i.e., P={ay,, ag,,.. 2}, where, a;. denotes the
image obtained on day d;, n denotes the total number of imaging days, and d; < d;;1,
V1 <i < n. Furthermore, ag={ag. o, &, 0,/ - -, 4, 0,,}, Where X0, is the j-th view of
the plant P taken on day d; where d; < d;1, and m denotes the total number of views.
Goal: To compute a set, G of flower based phenotypes for each image in the sequence,

where G = {Gy,, Gg,, ..., Gy, } and Gy, is the set of phenotypes for day d;.

As with all deep learning based approaches, training is an essential process in Flower- 122
PhenoNet. After the network is trained, a test image sequence of a plant is used to locate  12:
the flowers in each image and evaluate the performance of the network. Then, a set of 124
novel temporal flower-based phenotypes are computed. Figure 1 shows the schematic of 125
the FlowerPhenoNet system. Each of the steps is described next. 126

3.1. Image Labeling 127

We randomly selected 597 images from the dataset containing multiple views of a  12s
set of plants for training the network. The plants are at different stages of growth bearing 2o
flowers from emergence to full bloom. Thus, the training set consists of a range of images 130
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Figure 1. Block diagram of FlowerPhenoNet

containing buds to full-grown flowers, which is an essential criterion to achieve the goal of 13
flower emergence timing detection. The flowers in the training set are manually enclosed by 132
rectangular boxes using the open source image annotation tool called ‘Labellmg’ Tzutalin  1ss
(2015). Figure 2 shows some sample labeled images of the training set. 134

3.2. Data Augmentation 135

Deep convolutional neural networks perform remarkably well on many computer 13
vision tasks, e.g., image segmentation, image classification, and object detection. However, 1s
these networks are heavily reliant on large training datasets to combat overfitting by 1ss
increasing the generalizability of the models Shorten and Khoshgoftaar (2019). Data 13e
augmentation strategy encompasses a suite of techniques to increase the size and quality of 140
the training sets by usually applying various geometric and photometric transformations 1
to the original labeled images during training Shorten and Khoshgoftaar (2019). It helpsin = 12
adding more variety to the training set without actually having to increase the number of a3
labeled training samples. In this method, the images in the training set are first cropped 14
and then labeled for flowers before being subjected to augmentation. In FlowerPheno, data 145
augmentation is performed after flower samples are labeled prior to training the network. 146
The transformations used in this step include random horizontal flipping, scaling, and 1
changing contrast. Figure 3 shows the results of data augmentation strategies used in  1as
FlowerPhenoNet. Note that test images are supposed to be representative of the original 1as
images without any alteration, and hence, must not be subjected to data augmentation for 1so
unbiased evaluation. 151

3.3. Neural Network Architecture and Training 152

Flower detection can be logically mapped to the object detection problem that has been 1ss
widely studied in computer vision using both traditional and deep learning approaches. 1sa
Object detection typically entails identifying the presence of the object, its location, and its  1ss
type. YOLO (You Only Look Once) is one of the fast object detection algorithms Redmon  1se
and Farhadi (2017) that has been widely used in a variety of applications. Its architecture s
consists of a feature extraction network followed by a detection network. YOLO-V3 used  1ss
in this research uses the Darknet-53 Mao et al. (2019) network which has 53 convolution 1se
layers with residual blocks. Residual blocks are used in deep neural networks to avoid e
saturation of accuracy with increasing depth. 161

The performance of the YOLO detector depends heavily on the quality of the labeling, 1e2
i.e.,, masks generated from the images in the training dataset corresponding to different ies
instances of the classes. Many open-source tools are available to generate the masks 1es
effectively. In this research, we have used the ‘Labellmg’ Tzutalin (2015), a graphical ies
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Figure 2. Sample labeled multi-view images from FlowerPheno dataset used for training:
Coleus (row-1); Canna (row-2) and Sunflower (row-3). Top-view (column-1); Side-view 0° (column-2);
Side-view 108° (column-3); Side-view 288° (column-4).

Figure 3. Illustration of data augmentation strategies using transformations and illumination alter-
ation: original image (top-left); scaled image (top-right); reflected image (bottom-left) and illumination
altered image (bottom-right).
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image annotation tool, that generates the masks in the “YOLO’ format and hence can be 166
fed directly into the YOLO architecture for training. Then, the images, along with their e
corresponding masks (ground-truth) are used to train the Darknet-53 framework, the core 1es
of the YOLOV3 architecture. The network is pre-trained on the COCO dataset Lin ef al. 160
(2014) consisting of 80 classes. We then retrained the network with our labeled training 7o
data. Some important hyperparameters specified in our configuration include batch size 17
(set to 32), max batches (set to 2000), and the number of filters (set to 18). The updated 17
weights in the network were saved after 3000 epochs to constitute the FlowerPhenoNet. 17

Modern deep learning based object detectors make use of anchor boxes to predict 17
the location and size of an object in an image accurately with faster speed Zhong et al. 17s
(2020). Thus, choosing the number of anchors is an important training hyperparameter 17
that requires careful consideration and is determined using empirical analysis. Figure 4 177
shows the mean intersection-over-union (IoU) versus the number of anchors. Note thata 17s
value greater than 0.5 for mean IoU implies that the anchor boxes overlap well with the 17
bounding boxes of the training samples. The mean IOU can be improved if the number 1z
of anchor boxes is increased. However, using more anchor boxes in an object detector can e
also increase the computational complexity and lead to overfitting, which results in poor e
detection performance. To make a trade-off between the computational complexity and the ies
performance, we chose the value of the number of anchor boxes to be nine. 184
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Figure 4. Determination of the number of anchor boxes using a sunflower test sequence by analyzing
the evaluation metric mean IOU.

3.4. Testing and Evaluation 165

For testing the performance of the flower detector, we used an image sequence con-  1ss
sisting of images of all days for available views of a plant. The test images are resized to  1s7
match the size of the images in the training set. We have used IoU, confidence score (CS), 1ss
and precision-recall curve as our evaluation metrics. IoU is an evaluation metric used to  1se
measure the accuracy of an object detector on a particular dataset. IoU is computed using 1e0
Equation (1) where the numerator is the area of overlap between the predicted bounding 1o
box and the ground-truth bounding box. The denominator is the area of the union of the 12
predicted bounding box and the ground-truth bounding box. 103
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The confidence Score, CS, is the probability that an anchor box contains an object. Itis 10s
usually predicted by a classifier. It is calculated using equation (2) as follows: 195

CS = P(Object) x IoU )
where P(Object) is the probability of a predicted bounding box containing an object. 196

We use the average precision metric to evaluate the performance of the algorithm. o7
The average precision is a single number that incorporates the ability of the detector to 1ss
make correct classifications, i.e., precision, and the ability of the detector to find all relevant 100
objects, i.e., recall, which is computed as the area under the precision-recall curve. The 200
precision/recall curve highlights how precise a detector is at varying levels of recall. The 201

ideal value of precision is 1 at all levels of recall, i.e., the area under the curve equals 1. 202
3.5. Phenotype Computation 203

After the flowers are detected in the plant images, FlowerPhenoNet generates a flower 2o
status report consisting of the following temporal phenotypes. 20
3.5.1. Trajectory-based 206

In HTP3, a plant is imaged at regular intervals for a significant period of its life 207
cycle to capture salient information about its development. The phenotypes computed  zos
by analyzing each image of the sequence can therefore be represented as a discrete time 00
series, mathematically represented by, p1, p2, ..., pn, where p; denotes the phenotype p for 210
the i-th image of the plant (which is also the i-th timestamp), and 7 is the number of times 21
the plant was imaged and hence is the length of the sequence Das Choudhury (2020). A 212
set of phenotypes computed from a time series of plant images is called a trajectory-based 213
phenotype. Trajectory-based phenotypes are often represented graphically for visualization. 2is
In this research, we compute two trajectory based phenotypes, i.e., flower growth trajectory zis
and blooming trajectory. Flower growth trajectory (flower blooming trajectory) is formally 216
denoted by the graphical representation of py, p, ..., pn, where p; represents the flower size 217
(for flower growth trajectory) or total flower count (for blooming trajectory) for the i-th 21
image of the plant. 210

3.5.2. Event-based 220

Event-based phenotype reports the timing (i.e, the day of imaging) of the significant 221
events of a plant’s life cycle, i.e., the timing of transition from the vegetative stage to the 2z
reproductive stage by the emergence of the first flower. Thus, the flower status report zzs
consists of the following phenotypes, i.e., the timing of emergence of the first flower, the 224
total number of flowers present at any given time in the image sequence, the size of each 225
flower, flower growth trajectory, and the highest number of flowers bloomed in the plant 2z
during its life cycle. 227

4. Dataset 228

Development and public dissemination of datasets are critical for advancing research, =20
particularly in emerging areas like image-based plant phenotyping analysis. In order to 230
foster the development of novel algorithms and their uniform evaluation, a benchmark =zs:
dataset is indispensable. Its availability in the public domain provides the broad computer 232
vision community with a common basis for comparative performance evaluations of 2s
different algorithms. Thus, we introduce a benchmark dataset called FlowerPheno with an 23
aim to facilitate the development of algorithms for the detection and counting of flowers to 235
compute flower-based phenotypes. The imaging setup used to acquire the images and the =236
description of the dataset is given below. 237
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4.1. Imaging Setup 238

The plants used to create the FlowerPheno dataset were grown in the greenhouse 230
equipped with the Lemnatec 3D Scanalyzer of the high throughput plant phenotyping core 240
facilities located at the University of Nebraska-Lincoln (UNL), USA. The system has the 2
capacity to host 672 plants with heights up to 2.5 meters. It has three watering stations, 2a2
each with a balance that can add water to a target weight or specific volume, and records zas
the specific quantity of water added daily. The plants are placed on metallic and composite 24
containers on a movable conveyor belt that transfers the plants from the greenhouse to the 245
imaging chambers in succession to capture images of the plants in multiple modalities by 246
proximal sensing. The cameras installed in the four imaging chambers from left to right are 4
(a) chamber 1- visible light side view and visible light top view, (b) chamber 2- infrared 24
side view and infrared top view, (c) chamber 3- fluorescent side view and fluorescent top 240
view, and (d) chamber 4- hyperspectral side view and near-infrared top view. Each imaging  zso
chamber has a rotating lifter for up to 360 side view images. The specifications of the 25
different types of cameras and detailed descriptions of the time required to capture images sz
using those cameras can be found in Das Choudhury ef al. (2018, 2019). 253

4.2. Dataset Description 254

The dataset consists of 60 folders containing RGB image sequences of three flowering  =ss
plant species, i.e., sunflower (Helianthus annuus), canna (Canna generalis) and coleus (Plec-  2s6
tranthus scutellarioides). There are 20 plants for each species. The images are captured from sz
a top view, and nine side views, i.e., 0°, 36°, 72°, 108°, 144°, 216°, 252°, 288°, 324°. The s
images are captured in the LemnaTec Scanalyzer 3D high throughput plant phenotyping  2se
facility located at the University of Nebraska-Lincoln, USA for 24 to 35 days, starting five 260
days after germination. The total number of images in the dataset is 17,022. The resolution e
of the original images is 4384 x 6576. In the released version, the images are downsampled  ze2

to 420 x 420. The dataset can be freely downloaded from here. 263
5. Experimental Design and Analysis 264

The performance of FlowerPhenoNet is evaluated based on experimental analysis of  zes
the FlowerPheno dataset for (a) flower detection and (b) phenotype computation. 266
5.1. Flower Detection 267

Figure 5 and Figure 6 show the image sequences of a sunflower plant (Plant-ID 2es
D2) captured from a side view and the top view, respectively, along with the detected zes
sunflowers. The figures show that multiple flowers with different sizes and orientations 27
are efficiently detected. a1

Figure 7 shows the precision/recall curve for the sunflower test sequence shown in 27
Figure 5. The average precision for all images of this sequence is 0.93. Canna and coleus 273
plants are considered to be characterized by the presence of a single flower in an image. 27
FlowerPhenoNet was able to detect all of them for all image sequences of FlowerPheno 2rs
dataset. Hence, for canna and coleus, we show the IoUs against days for different view 276
angles. Figure 8 and Figure 9 show the IoUs against different days for a canna and a coleus 277
image sequence, respectively. The figures show that the IoU values lie in the range of [0.6 278
0.95], where majority of them are above 0.75. 279

Figure 10 shows the average precision and mean IoU for all 20 sunflower plants from  2eo
the FlowerPheno dataset. Mean IoU is computed by taking the mean of IoUs of all flowers  2s:
in a given image. The figure shows that average precision lies in the range [0.89 0.94], zs:
whereas a slightly lower range of values is reported by mean IoU, i.e., [0.816 0.835]. 203

Figure 11 and Figure 12 show the image sequences of a canna plant (Plant-ID D1) 2s
captured from the side view 0° and the top view, respectively, along with the detected 2es
canna flower in each image. The confidence score is shown on the top of the bounding 2ss
rectangle enclosing each detected flower. For the side view 0°, the confidence score lies  ze7
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Figure 5. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for a side view 0° starting from Day 10 (top-left) to Day 24 (bottom-right).

Figure 6. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).
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Figure 7. The precision/recall curve for a sunflower test sequence.
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Figure 9. Performance analysis using IoU for a coleus image sequence for multiple views (Plant-ID:
Coleus-D1).
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Figure 11. Illustration of flower emergence timing detection and its growth over time using a sample
canna image sequence (D1) for the side view 0° starting from Day 28 (top-left) to Day 35 (bottom-
right).
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Figure 12. Illustration of flower emergence timing detection and its growth over time using a sample
canna image sequence (D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).

in the range of [0.980 0.999] (Figure 11), while in the case of the top view (Figure 12), the 2ss
confidence score lies in the range of [0.621 0.988]. 280

Similarly, Figure 13 and Figure 14 show the image sequences of a coleus plant (Plant-ID 200
D1) captured from the side view 0° and the top view, respectively, along with the detected 2o
flowers in each image. The figures show a very high range of confidence scores for both  ze:
the side view and the top view, in the range of [0.911 0.999]. In summary, the results o3
demonstrate the efficacy of FlowerPhenoNet in detecting flowers in three diverse species, 204
where the flowers are detected even at very early stages of appearance. 208

5.2. Phenotype Computation 206

The flower emergence day of a plant is defined as the day on which the flower is first o7
detected in the image sequence. It is clear from Figure 5 that the day of the first appearance 208
of the flower as detected by the FlowerPhenoNet is Day 15. However, Figure 6 reports that 200
Day 17 is the day on which the flower is first detected in this plant. 300

The 3D bar graphs in Figure 15(a) and (b) represent the flower status graphs for two = so:
sample sunflower plants (plant-IDs D5 and D6, respectively). The flower status graph o
provides important information including (a) the emergence day of the flower in each view; zos
(b) the total number of flowers present in the plant for a given view on any day; and (3) o
the highest number of flowers bloomed in the plant. The 3D bars in the graph represent  sos
the number of flowers present in the plant image sequence in all views. It is clear from 306
Figure 15(b) that Day 13 is the earliest when flowers are first detected in the image sequence o
(reported by side view 144° and the top view). Hence, Day 13 is denoted as the flower o
emergence day for this plant. Note that, all views report the existence of at least one flower o0
for this plant on Day 16. The flower status graph reports the number of flowers presentin 1o
all views and helps us determine the highest number of flowers in the plant on a given day. s
For example, the highest number of flowers on Day 19 is 4. The highest number of flowers 1
blooming in the plant is 5, and that first appeared on Day 20 in several views. For plant-ID 31
D5 (see 15(a)), the top-view first shows a detected flower on Day 12, and hence, Day 12is 314
noted as the flower emergence day for this plant. Again, all views report the existence of at  s1s
least one flower for this plant on Day 15. The highest number of flowers blooming in this 16
plant is 7, and they first appeared on Day 20 in the top view. 317

The size of the flower is measured by the area of the bounding box enclosing the 1.
detected flower in the image. The flower size as a function of time is represented as the 1o
flower growth trajectory. Note that drooping of petals, frequent change in orientation sz
of flowers, and partial occlusions of flowers by leaves pose challenges in the accurate sz
estimation of flower size based on area measurement from a 2D image. The computation of 322
flower growth trajectory is not applicable for the flowers which change their orientation  s2s
frequently (e.g., sunflower). Because, for those cases, the area of the bounding rectangle sz
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Figure 13. Illustration of flower emergence timing detection and its growth over time using a sample
Coleus image sequence (D2) for the side view 0° starting from Day 16 (top-left) to Day 27 (bottom-
right).

Figure 14. Illustration of flower emergence timing detection and its growth over time using a sample
Coleus image sequence (D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).
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Figure 15. The flower status graphs for two sample sunflower plants: (a) Plant-ID D5; and (b) Plant-ID
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Figure 16. [llustration of the growth trajectory of a canna flower in multiple views (Plant-ID: Canna-

D1).
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Figure 17. Illustration of the growth trajectory of a coleus flower in multiple views (Plant-ID: Coleus-
D1).
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enclosing a detected flower in the time series image data changes in accordance to the sz
change of orientation of the flower, and hence, is not a representation of the growth of the sz
flower. Thus, this paper uses coleus and canna to demonstrate the flower growth trajectory. ez
Figure 16 and Figure 17 show the growth trajectories of coleus and canna flowers for each 2.
of the nine side views and the top view, respectively. The figures show an overall increasing = szo
trend of flower size for both canna and coleus flowers for most views. 330

6. Discussion 331

Flowering plants (angiosperms) emerged on our planet approximately 140 to 160 332
million years ago and currently, they represent about 90% of the more than 350,000 known  ss»
plant species Paton et al. (2008). Flowers are the reproductive organs of a plant and play = s:a
a critical role in the production of fruits and seeds. The transition timing of vegetative 3s
meristems to the formation of flowers and their morphological development manifested in 336
shape, size, and color provide crucial information about a plant’s vigor. Hence, the study 37
of flower-based phenotyping is important in the understanding of plant growth processes. s3s
Furthermore, the timing of flowering is critical for reproductive success in many plant s
species. For example, flowering must occur early enough in the growing season to enable 340
proper seed development, but premature flowering when a plant is small will limit the = sa
amount of seed that can be produced Amasino ef al. (2017). 242

In this paper, we focus on three different flowering plant species, i.e., sunflower, s
canna, and coleus, which pose different computer vision challenges due to their variations s
in architecture, and thus, enable us to establish the robustness of the proposed system. s
Sunflower is an economically important crop primarily used as a source of edible o0il, and 34
sunflower seeds are used for food as well. One of the fastest growing plants, sunflowers are  sar
often used by farmers to feed livestock. A sunflower plant is characterized by the presence as
of multiple flowers that rotate to align with the direction of incident sunlight. Cannaisa s
tropical plant with gladiolus-like flower spikes that bloom atop erected stems. It is one sso
of the most popular garden plants, however, in some parts of the world, its rhizomes are s
consumed as a source of starch. Canna seeds are also used as beads in jewellery. Coleus  ss:
is a plant that has been used since ancient times to treat heart disorders such as high s
blood pressure and chest pain (angina), and respiratory disorders such as asthma. In the = ssa
FlowerPheno dataset, both canna and coleus plant images are considered to have single s
composite flowers. 356

This paper introduces a novel deep learning based framework called FlowerPhenoNet s
to detect flowers in an image sequence and generate a flower status report consisting of a  sss
set of novel temporal flower phenotypes. The paper also introduces a benchmark dataset sso
to allow further development of new methods and provide a common basis for uniform  seo
comparison of the state-of-the-art methods. The dataset consists of three representative e
flowering plant species, i.e., sunflower, canna, and coleus. These three different species of  s2
plants have different architectures and flowering patterns. The shapes and textures of their s
flowers are also different. The demonstrated high performance of FlowerPhenoNet on this  ses
dataset shows its potential applicability to a wide variety of flower species with different ses
shapes and topologies. 366

Plants are not static but living organisms that change in shape and topology over time. ez
The occlusions of flowers by the leaves, drooping of petals, and change in orientation of  ses
flowers in accordance with the incident sunlight pose challenges to the accurate compu- 360
tation of flower size from 2D images. Note that it is not feasible to compute the growth sz
trajectory of a sunflower from any single view image based on estimating the area of its 37
enclosed bounding rectangle, as the sunflower changes its orientation based on incident sz
sunlight at different times of the day, resulting in the change in the area of the bounding s7s
rectangle in accordance to flower rotation but not its growth. However, our proposed sz
system shows a consistent overall increasing trend of flower growth for coleus and canna. s7s

The highest number of flowers blooming in the plant is estimated by the maximum sz
number of flowers visible in any view in any image of the sequence. Although this s
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assumption holds true for all sunflower plants in the FlowerPheno dataset, however, there 7
might be cases where the image view with the maximum number of flowers excludes a few 37
flowers that are visible in other views. Thus future work will consider view registration to  sso
ensure all flowers are counted accurately to report the highest number of flowers blooming s
in the plant. 382

7. Conclusions 383

The transition timing of vegetative meristems to the formation of flowers and their s
morphological development over time plays a significant role in yield estimation and breed-  ses
ing. The paper introduces a novel deep learning based system called FlowerPhenoNet s
for monitoring flower based phenotypes using time-series images captured in an HTP3. e
FlowerPhenoNet uses the YOLO-v3 Redmon and Farhadi (2017) deep learning based object  zes
detector to locate flowers in the multiview image sequence for application in temporal ses
plant phenotyping. A benchmark dataset is indispensable for new algorithm development, 30
performance evaluation, and uniform comparisons among the existing algorithms. To = se:
support this goal, we publicly introduce a benchmark dataset called FlowerPheno com- sz
prising visible light image sequences of sunflower, canna, and coleus plants captured from s
multiple viewing angles in the LemnaTec Scanalyzer 3D HTP3. Following flower detection, o4
a set of novel phenotypes are computed, e.g., the day of emergence of the first flower in 05
a plant’s life cycle, the total number of flowers present in the plant at a given time, the 306
highest number of flowers bloomed in the plant, flower growth trajectory, and blooming  ser
trajectory. Finally, the efficacy of FlowerPhenoNet is demonstrated based on experimental  ses
analysis of the FlowerPheno dataset. 399
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