
Citation: Das Choudhury, S.; Guha, S.;

Das, A.; Das, AK.; Samal, A.; Awada, T.

FlowerPhenoNet. Journal Not Specified

2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

FlowerPhenoNet: Automated Flower Detection from Multi-view
Image Sequences using Deep Neural Networks for Temporal
Plant Phenotyping Analysis
Sruti Das Choudhury 1,2* , Samarpan Guha 3 , Aankit Das 3 , Amit Kumar Das4, Ashok Samal2, Tala Awada1,5

1 School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA.
2 School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA.
3 Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
4 Department of Computer Science and Engineering, Institute of Engineering and Management, Kolkata, India.
5 Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, USA.
* Correspondence: S.D.Choudhury@unl.edu

Abstract: A phenotype is the composite of an observable expression of a genome for traits in a 1

given environment. The trajectories of phenotypes computed from an image sequence and timing of 2

important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the 3

plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet 4

which uses deep neural networks for detecting flowers from multiview image sequences for high 5

throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower- 6

based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the 7

total number of flowers present in the plant at a given time, the highest number of flowers bloomed 8

in the plant, growth trajectory of a flower and the blooming trajectory of a plant. To develop a new 9

algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset 10

is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno which comprises 11

image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a 12

visible light camera in a high throughput plant phenotyping platform from multiple view angles. The 13

experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet. 14

Keywords: High Throughput Plant Phenotyping; Deep Neural Network; Flower Detection; Temporal 15

Phenotypes; Benchmark Dataset; Flower Status Report 16

1. Introduction 17

Image-based plant phenotyping refers to the proximal sensing and quantification of a 18

plant’s traits resulting from complex interactions between the genotype and its environ- 19

ment based on noninvasive analysis of image sequences that obviate the need for physical 20

human labor Das Choudhury et al. (2018). It is an interdisciplinary research field that lies 21

at the intersection of computer science, plant science, remote sensing, data science, and 22

genomics, with the goal to link complex plant phenotypes to genetic expression for global 23

food security under dwindling natural resources and climate variability Das Choudhury 24

et al. (2019). The image-based plant phenotypes can be broadly classified into three cat- 25

egories, i.e., structural, physiological, and temporal (Samal et al. (2020)). The structural 26

phenotypes characterize a plant’s shape and topology, (e.g., plant height, biomass) whereas 27

physiological phenotypes refer to the physiological characteristics of plants, e.g., the plant’s 28

temperature, the carbohydrate content of the stem, and photosynthetic capability of a leaf. 29

In addition, the genotypic and environmental impact on the growth of a plant and its 30

different components (leaves, stems, flowers, and fruits) over time has given rise to a new 31

category of phenotype, called the temporal phenotype. 32

Image-based temporal phenotypes are subdivided into two categories, namely, trajectory- 33

based and event-based. Structural and physiological phenotypes are often computed from a 34
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sequence of images captured at regular time intervals to demonstrate the temporal variation 35

of phenotypes regulated by genotypes and environment, e.g., the growth rate of a plant, 36

propagation of stress symptoms over time, or the leaf elongation rate. These are called 37

trajectory based temporal phenotypes. The fundamental difference between the growth 38

characteristics of plants and animals is that, while most animals are born with all their body 39

organs, plants grow throughout their life cycle by continuously producing new tissues 40

and structures, e.g., leaves, flowers, and fruits. Furthermore, the different organs have 41

different growth rates, and their shapes change over time both in topology and geometry. 42

Plants not only develop new organs and bifurcate into different components during their 43

life cycle, but they also show symptoms of senescence. The timing of important events 44

in a plant’s life, e.g., germination, the emergence of a new leaf, flowering, fruiting, and 45

onset of senescence, is crucial in the understanding of the overall plant’s vigor, which is 46

likely to vary with the interaction between genotype and environment. Such phenotypes 47

are referred to as event-based phenotypes. 48

Unlike the visual tracking of rigid bodies, e.g., vehicles and pedestrians, whose move- 49

ments are merely characterized by the change in location, the emergence timing detection 50

of new organs and tracking their growth over time in plants requires a different problem 51

formulation with an entirely new set of challenges. The newly emerged organs, e.g., buds, 52

are often occluded by leaves and assume the color and texture of the leaves, making their 53

detection challenging. Furthermore, the rate of change (for both growth and senescence) is 54

typically more gradual than the rigid body motion. Phyllotaxy, the plant’s mechanism to 55

optimize light interception by re-positioning the leaves, leads to self-occlusions and leaf 56

crossovers and adds another layer of complexity in tracking the plant’s growth. 57

Monitoring flower development over time plays a significant role in production man- 58

agement, yield estimation and breeding programs Xu et al. (2018). This paper introduces 59

a novel system called FlowerPhenoNet for flower phenotyping analysis based on the de- 60

tection of flowers in a plant image sequence using deep learning. Deep learning has been 61

successfully employed in a number of real-time object detection tasks, e.g., abandoned 62

luggage detection in public places Santad et al. (2018) and detection and counting of vehicles 63

on highways for visual surveillance Song et al. (2019). FlowerPhenoNet has the following 64

novelties. It introduces (a) a novel approach to flower detection from a multiview image 65

sequence using deep learning technique for application in plant phenotyping; (b) a set of 66

new temporal flower phenotypes with a discussion on their significance in plant science; (c) 67

a publicly available benchmark dataset to facilitate research advancement in flower-based 68

plant phenotyping analysis. 69

2. Related Works 70

Deep learning has been effectively explored in the state-of-the-art methods for de- 71

tecting and counting flowers and fruits from images. Zhenglin et al. in Wang et al. (2019) 72

proposed a MangoYOLO algorithm for detecting, tracking, and counting mangoes from a 73

time-lapse video sequence. The method uses the Hungarian algorithm to correlate fruit 74

between neighboring frames, and the Kalman filter to predict the position of fruit in the 75

following frames. The method in Afonso et al. (2020) uses the MaskRCNN algorithm for 76

detecting tomato fruits from images captured in the controlled greenhouse environment. 77

A faster R-CNN has been effectively used in Mai et al. (2020), Bargoti and Underwood 78

(2017) to develop a reliable fruit detection system from images, which is a critical task for 79

automated yield estimation. To improve the detection performance for the case of small 80

fruits, the method proposed in Mai et al. (2020) incorporated a multiple classifier fusion 81

strategy in the faster R-CNN. 82

Some notable research in event-based plant phenotyping includes the detection of 83

budding and bifurcation events from 4D point clouds using a forward-backward analysis 84

framework Li et al. (2013) and plant emergence detection and tracking of the coleoptile 85

based on adaptive hierarchical segmentation and optical flow using spatio-temporal image 86

sequence analysis Agarwal (2017). For a large-scale phenotypic experiment, the seeds are 87
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usually sown in smaller pots until germination, and then transplanted to bigger pots based 88

on visual inspection of the germination date, size, and health of the seedlings. The method 89

described in Scharr et al. (2020) developed a deep learning based automated germination 90

detection system that also supports visual inspection and transplantation of seedlings. A 91

benchmark dataset is released to pose the germination detection problem as a new challenge. 92

The method described in Bashyam et al. (2021) uses a skeleton-graph transformation 93

approach to detect the emergence timing of each leaf and track the individual leaves over 94

the image sequence for automated leaf stage monitoring of maize plants. 95

Trajectory-based phenotypes have drawn the attention of researchers due to their 96

efficacy in demonstrating the environmental and genotypic impact on a plant’s health 97

for an extended time of its life cycle. Das Choudhury et. al. Das Choudhury et al. (2018) 98

introduced a set of new holistic and component phenotypes computed from 2D side view 99

image sequences of maize plants, and demonstrated the temporal variations of these 100

phenotypes regulated by genotypes using line graphs. The method in Das Choudhury et al. 101

(2017) used a skeleton-graph transformation approach to compute stem angles from plant 102

image sequences. The trajectories of stem angles are analyzed using time series cluster 103

analysis and angular histogram analysis to investigate the genotypic influence on the stem 104

angle trajectories at a given environmental condition. 105

The state-of-the-art methods have used deep learning techniques for detecting and 106

counting flowers by analyzing images captured by unmanned aerial vehicles (UAVs) Xu 107

et al. (2018), Lu et al. (2017). Time-series phenotyping for flowers based on analyzing 108

images captured in high throughput plant phenotyping platforms (HTP3) by proximal 109

sensing, is yet to be explored. This paper introduces a novel system called FlowerPhenoNet 110

which uses a deep learning technique to detect flowers from an input image sequence and 111

produces a flower status report consisting of a set of novel trajectory-based and event-based 112

flower phenotypes. The paper also publicly releases a benchmark dataset, the first of its 113

kind, consisting of image sequences of 60 plants belonging to three economically important 114

species, namely, sunflower, canna, and coleus. This dataset is intended to advance the 115

image-based time series flower phenotyping analysis. 116

3. Materials and Methods 117

FlowerPhenoNet considers a sequence of images of a plant from the early vegetative 118

to the flowering stage as the input. The goal of FlowerPhenoNet is: Given an input image 119

sequence of a plant, P, compute the set of phenotypes, G, where P and G are formally 120

defined as below. 121

Problem definition: FlowerPhenoNet
Input: The image sequence of a plant, i.e., P={αd1 , αd2 ,...,αdn }, where, αdi

denotes the
image obtained on day di, n denotes the total number of imaging days, and di < di+1,
∀ 1 ≤ i < n. Furthermore, αdi

= {αdi ,v1 , αdi ,v2 , . . . , αdi ,vm }, where αdi ,vj
is the j-th view of

the plant P taken on day di where di < di+1, and m denotes the total number of views.
Goal: To compute a set, G of flower based phenotypes for each image in the sequence,
where G = {Gd1 , Gd2 , . . . , Gdn} and Gdi

is the set of phenotypes for day di.

As with all deep learning based approaches, training is an essential process in Flower- 122

PhenoNet. After the network is trained, a test image sequence of a plant is used to locate 123

the flowers in each image and evaluate the performance of the network. Then, a set of 124

novel temporal flower-based phenotypes are computed. Figure 1 shows the schematic of 125

the FlowerPhenoNet system. Each of the steps is described next. 126

3.1. Image Labeling 127

We randomly selected 597 images from the dataset containing multiple views of a 128

set of plants for training the network. The plants are at different stages of growth bearing 129

flowers from emergence to full bloom. Thus, the training set consists of a range of images 130
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Figure 1. Block diagram of FlowerPhenoNet

containing buds to full-grown flowers, which is an essential criterion to achieve the goal of 131

flower emergence timing detection. The flowers in the training set are manually enclosed by 132

rectangular boxes using the open source image annotation tool called ‘LabelImg’ Tzutalin 133

(2015). Figure 2 shows some sample labeled images of the training set. 134

3.2. Data Augmentation 135

Deep convolutional neural networks perform remarkably well on many computer 136

vision tasks, e.g., image segmentation, image classification, and object detection. However, 137

these networks are heavily reliant on large training datasets to combat overfitting by 138

increasing the generalizability of the models Shorten and Khoshgoftaar (2019). Data 139

augmentation strategy encompasses a suite of techniques to increase the size and quality of 140

the training sets by usually applying various geometric and photometric transformations 141

to the original labeled images during training Shorten and Khoshgoftaar (2019). It helps in 142

adding more variety to the training set without actually having to increase the number of 143

labeled training samples. In this method, the images in the training set are first cropped 144

and then labeled for flowers before being subjected to augmentation. In FlowerPheno, data 145

augmentation is performed after flower samples are labeled prior to training the network. 146

The transformations used in this step include random horizontal flipping, scaling, and 147

changing contrast. Figure 3 shows the results of data augmentation strategies used in 148

FlowerPhenoNet. Note that test images are supposed to be representative of the original 149

images without any alteration, and hence, must not be subjected to data augmentation for 150

unbiased evaluation. 151

3.3. Neural Network Architecture and Training 152

Flower detection can be logically mapped to the object detection problem that has been 153

widely studied in computer vision using both traditional and deep learning approaches. 154

Object detection typically entails identifying the presence of the object, its location, and its 155

type. YOLO (You Only Look Once) is one of the fast object detection algorithms Redmon 156

and Farhadi (2017) that has been widely used in a variety of applications. Its architecture 157

consists of a feature extraction network followed by a detection network. YOLO-V3 used 158

in this research uses the Darknet-53 Mao et al. (2019) network which has 53 convolution 159

layers with residual blocks. Residual blocks are used in deep neural networks to avoid 160

saturation of accuracy with increasing depth. 161

The performance of the YOLO detector depends heavily on the quality of the labeling, 162

i.e., masks generated from the images in the training dataset corresponding to different 163

instances of the classes. Many open-source tools are available to generate the masks 164

effectively. In this research, we have used the ‘LabelImg’ Tzutalin (2015), a graphical 165
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Figure 2. Sample labeled multi-view images from FlowerPheno dataset used for training:
Coleus (row-1); Canna (row-2) and Sunflower (row-3). Top-view (column-1); Side-view 0◦ (column-2);
Side-view 108◦ (column-3); Side-view 288◦ (column-4).

Figure 3. Illustration of data augmentation strategies using transformations and illumination alter-
ation: original image (top-left); scaled image (top-right); reflected image (bottom-left) and illumination
altered image (bottom-right).
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image annotation tool, that generates the masks in the ‘YOLO’ format and hence can be 166

fed directly into the YOLO architecture for training. Then, the images, along with their 167

corresponding masks (ground-truth) are used to train the Darknet-53 framework, the core 168

of the YOLOv3 architecture. The network is pre-trained on the COCO dataset Lin et al. 169

(2014) consisting of 80 classes. We then retrained the network with our labeled training 170

data. Some important hyperparameters specified in our configuration include batch size 171

(set to 32), max batches (set to 2000), and the number of filters (set to 18). The updated 172

weights in the network were saved after 3000 epochs to constitute the FlowerPhenoNet. 173

Modern deep learning based object detectors make use of anchor boxes to predict 174

the location and size of an object in an image accurately with faster speed Zhong et al. 175

(2020). Thus, choosing the number of anchors is an important training hyperparameter 176

that requires careful consideration and is determined using empirical analysis. Figure 4 177

shows the mean intersection-over-union (IoU) versus the number of anchors. Note that a 178

value greater than 0.5 for mean IoU implies that the anchor boxes overlap well with the 179

bounding boxes of the training samples. The mean IOU can be improved if the number 180

of anchor boxes is increased. However, using more anchor boxes in an object detector can 181

also increase the computational complexity and lead to overfitting, which results in poor 182

detection performance. To make a trade-off between the computational complexity and the 183

performance, we chose the value of the number of anchor boxes to be nine. 184

Figure 4. Determination of the number of anchor boxes using a sunflower test sequence by analyzing
the evaluation metric mean IOU.

3.4. Testing and Evaluation 185

For testing the performance of the flower detector, we used an image sequence con- 186

sisting of images of all days for available views of a plant. The test images are resized to 187

match the size of the images in the training set. We have used IoU, confidence score (CS), 188

and precision-recall curve as our evaluation metrics. IoU is an evaluation metric used to 189

measure the accuracy of an object detector on a particular dataset. IoU is computed using 190

Equation (1) where the numerator is the area of overlap between the predicted bounding 191

box and the ground-truth bounding box. The denominator is the area of the union of the 192

predicted bounding box and the ground-truth bounding box. 193
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IoU =
Area o f Overlap
Area o f Union

(1)

The confidence Score, CS, is the probability that an anchor box contains an object. It is 194

usually predicted by a classifier. It is calculated using equation (2) as follows: 195

CS = P(Object)× IoU (2)

where P(Object) is the probability of a predicted bounding box containing an object. 196

We use the average precision metric to evaluate the performance of the algorithm. 197

The average precision is a single number that incorporates the ability of the detector to 198

make correct classifications, i.e., precision, and the ability of the detector to find all relevant 199

objects, i.e., recall, which is computed as the area under the precision-recall curve. The 200

precision/recall curve highlights how precise a detector is at varying levels of recall. The 201

ideal value of precision is 1 at all levels of recall, i.e., the area under the curve equals 1. 202

3.5. Phenotype Computation 203

After the flowers are detected in the plant images, FlowerPhenoNet generates a flower 204

status report consisting of the following temporal phenotypes. 205

3.5.1. Trajectory-based 206

In HTP3, a plant is imaged at regular intervals for a significant period of its life 207

cycle to capture salient information about its development. The phenotypes computed 208

by analyzing each image of the sequence can therefore be represented as a discrete time 209

series, mathematically represented by, p1, p2, ..., pn, where pi denotes the phenotype p for 210

the i-th image of the plant (which is also the i-th timestamp), and n is the number of times 211

the plant was imaged and hence is the length of the sequence Das Choudhury (2020). A 212

set of phenotypes computed from a time series of plant images is called a trajectory-based 213

phenotype. Trajectory-based phenotypes are often represented graphically for visualization. 214

In this research, we compute two trajectory based phenotypes, i.e., flower growth trajectory 215

and blooming trajectory. Flower growth trajectory (flower blooming trajectory) is formally 216

denoted by the graphical representation of p1, p2, ..., pn, where pi represents the flower size 217

(for flower growth trajectory) or total flower count (for blooming trajectory) for the i-th 218

image of the plant. 219

3.5.2. Event-based 220

Event-based phenotype reports the timing (i.e, the day of imaging) of the significant 221

events of a plant’s life cycle, i.e., the timing of transition from the vegetative stage to the 222

reproductive stage by the emergence of the first flower. Thus, the flower status report 223

consists of the following phenotypes, i.e., the timing of emergence of the first flower, the 224

total number of flowers present at any given time in the image sequence, the size of each 225

flower, flower growth trajectory, and the highest number of flowers bloomed in the plant 226

during its life cycle. 227

4. Dataset 228

Development and public dissemination of datasets are critical for advancing research, 229

particularly in emerging areas like image-based plant phenotyping analysis. In order to 230

foster the development of novel algorithms and their uniform evaluation, a benchmark 231

dataset is indispensable. Its availability in the public domain provides the broad computer 232

vision community with a common basis for comparative performance evaluations of 233

different algorithms. Thus, we introduce a benchmark dataset called FlowerPheno with an 234

aim to facilitate the development of algorithms for the detection and counting of flowers to 235

compute flower-based phenotypes. The imaging setup used to acquire the images and the 236

description of the dataset is given below. 237
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4.1. Imaging Setup 238

The plants used to create the FlowerPheno dataset were grown in the greenhouse 239

equipped with the Lemnatec 3D Scanalyzer of the high throughput plant phenotyping core 240

facilities located at the University of Nebraska-Lincoln (UNL), USA. The system has the 241

capacity to host 672 plants with heights up to 2.5 meters. It has three watering stations, 242

each with a balance that can add water to a target weight or specific volume, and records 243

the specific quantity of water added daily. The plants are placed on metallic and composite 244

containers on a movable conveyor belt that transfers the plants from the greenhouse to the 245

imaging chambers in succession to capture images of the plants in multiple modalities by 246

proximal sensing. The cameras installed in the four imaging chambers from left to right are 247

(a) chamber 1- visible light side view and visible light top view, (b) chamber 2- infrared 248

side view and infrared top view, (c) chamber 3- fluorescent side view and fluorescent top 249

view, and (d) chamber 4- hyperspectral side view and near-infrared top view. Each imaging 250

chamber has a rotating lifter for up to 360 side view images. The specifications of the 251

different types of cameras and detailed descriptions of the time required to capture images 252

using those cameras can be found in Das Choudhury et al. (2018, 2019). 253

4.2. Dataset Description 254

The dataset consists of 60 folders containing RGB image sequences of three flowering 255

plant species, i.e., sunflower (Helianthus annuus), canna (Canna generalis) and coleus (Plec- 256

tranthus scutellarioides). There are 20 plants for each species. The images are captured from 257

a top view, and nine side views, i.e., 0◦, 36◦, 72◦, 108◦, 144◦, 216◦, 252◦, 288◦, 324◦. The 258

images are captured in the LemnaTec Scanalyzer 3D high throughput plant phenotyping 259

facility located at the University of Nebraska-Lincoln, USA for 24 to 35 days, starting five 260

days after germination. The total number of images in the dataset is 17,022. The resolution 261

of the original images is 4384 × 6576. In the released version, the images are downsampled 262

to 420 × 420. The dataset can be freely downloaded from here. 263

5. Experimental Design and Analysis 264

The performance of FlowerPhenoNet is evaluated based on experimental analysis of 265

the FlowerPheno dataset for (a) flower detection and (b) phenotype computation. 266

5.1. Flower Detection 267

Figure 5 and Figure 6 show the image sequences of a sunflower plant (Plant-ID 268

D2) captured from a side view and the top view, respectively, along with the detected 269

sunflowers. The figures show that multiple flowers with different sizes and orientations 270

are efficiently detected. 271

Figure 7 shows the precision/recall curve for the sunflower test sequence shown in 272

Figure 5. The average precision for all images of this sequence is 0.93. Canna and coleus 273

plants are considered to be characterized by the presence of a single flower in an image. 274

FlowerPhenoNet was able to detect all of them for all image sequences of FlowerPheno 275

dataset. Hence, for canna and coleus, we show the IoUs against days for different view 276

angles. Figure 8 and Figure 9 show the IoUs against different days for a canna and a coleus 277

image sequence, respectively. The figures show that the IoU values lie in the range of [0.6 278

0.95], where majority of them are above 0.75. 279

Figure 10 shows the average precision and mean IoU for all 20 sunflower plants from 280

the FlowerPheno dataset. Mean IoU is computed by taking the mean of IoUs of all flowers 281

in a given image. The figure shows that average precision lies in the range [0.89 0.94], 282

whereas a slightly lower range of values is reported by mean IoU, i.e., [0.816 0.835]. 283

Figure 11 and Figure 12 show the image sequences of a canna plant (Plant-ID D1) 284

captured from the side view 0◦ and the top view, respectively, along with the detected 285

canna flower in each image. The confidence score is shown on the top of the bounding 286

rectangle enclosing each detected flower. For the side view 0◦, the confidence score lies 287
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Figure 5. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for a side view 0◦ starting from Day 10 (top-left) to Day 24 (bottom-right).

Figure 6. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).
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Figure 7. The precision/recall curve for a sunflower test sequence.

Figure 8. Performance analysis using IoU for a canna image sequence for multiple views (Plant-ID:
Canna-C1).

Figure 9. Performance analysis using IoU for a coleus image sequence for multiple views (Plant-ID:
Coleus-D1).
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Figure 10. Flower detection performance of sunflower plants from FlowerPheno dataset using
average precision and mean IoU.

Figure 11. Illustration of flower emergence timing detection and its growth over time using a sample
canna image sequence (D1) for the side view 0◦ starting from Day 28 (top-left) to Day 35 (bottom-
right).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2022                   doi:10.20944/preprints202210.0477.v1

https://doi.org/10.20944/preprints202210.0477.v1


Version October 27, 2022 submitted to Journal Not Specified 12 of 17

Figure 12. Illustration of flower emergence timing detection and its growth over time using a sample
canna image sequence (D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).

in the range of [0.980 0.999] (Figure 11), while in the case of the top view (Figure 12), the 288

confidence score lies in the range of [0.621 0.988]. 289

Similarly, Figure 13 and Figure 14 show the image sequences of a coleus plant (Plant-ID 290

D1) captured from the side view 0◦ and the top view, respectively, along with the detected 291

flowers in each image. The figures show a very high range of confidence scores for both 292

the side view and the top view, in the range of [0.911 0.999]. In summary, the results 293

demonstrate the efficacy of FlowerPhenoNet in detecting flowers in three diverse species, 294

where the flowers are detected even at very early stages of appearance. 295

5.2. Phenotype Computation 296

The flower emergence day of a plant is defined as the day on which the flower is first 297

detected in the image sequence. It is clear from Figure 5 that the day of the first appearance 298

of the flower as detected by the FlowerPhenoNet is Day 15. However, Figure 6 reports that 299

Day 17 is the day on which the flower is first detected in this plant. 300

The 3D bar graphs in Figure 15(a) and (b) represent the flower status graphs for two 301

sample sunflower plants (plant-IDs D5 and D6, respectively). The flower status graph 302

provides important information including (a) the emergence day of the flower in each view; 303

(b) the total number of flowers present in the plant for a given view on any day; and (3) 304

the highest number of flowers bloomed in the plant. The 3D bars in the graph represent 305

the number of flowers present in the plant image sequence in all views. It is clear from 306

Figure 15(b) that Day 13 is the earliest when flowers are first detected in the image sequence 307

(reported by side view 144◦ and the top view). Hence, Day 13 is denoted as the flower 308

emergence day for this plant. Note that, all views report the existence of at least one flower 309

for this plant on Day 16. The flower status graph reports the number of flowers present in 310

all views and helps us determine the highest number of flowers in the plant on a given day. 311

For example, the highest number of flowers on Day 19 is 4. The highest number of flowers 312

blooming in the plant is 5, and that first appeared on Day 20 in several views. For plant-ID 313

D5 (see 15(a)), the top-view first shows a detected flower on Day 12, and hence, Day 12 is 314

noted as the flower emergence day for this plant. Again, all views report the existence of at 315

least one flower for this plant on Day 15. The highest number of flowers blooming in this 316

plant is 7, and they first appeared on Day 20 in the top view. 317

The size of the flower is measured by the area of the bounding box enclosing the 318

detected flower in the image. The flower size as a function of time is represented as the 319

flower growth trajectory. Note that drooping of petals, frequent change in orientation 320

of flowers, and partial occlusions of flowers by leaves pose challenges in the accurate 321

estimation of flower size based on area measurement from a 2D image. The computation of 322

flower growth trajectory is not applicable for the flowers which change their orientation 323

frequently (e.g., sunflower). Because, for those cases, the area of the bounding rectangle 324
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Figure 13. Illustration of flower emergence timing detection and its growth over time using a sample
Coleus image sequence (D2) for the side view 0◦ starting from Day 16 (top-left) to Day 27 (bottom-
right).

Figure 14. Illustration of flower emergence timing detection and its growth over time using a sample
Coleus image sequence (D2) for the top view starting from Day 16 (top-left) to Day 27 (bottom-right).
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Figure 15. The flower status graphs for two sample sunflower plants: (a) Plant-ID D5; and (b) Plant-ID
D6.

Figure 16. Illustration of the growth trajectory of a canna flower in multiple views (Plant-ID: Canna-
D1).

Figure 17. Illustration of the growth trajectory of a coleus flower in multiple views (Plant-ID: Coleus-
D1).
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enclosing a detected flower in the time series image data changes in accordance to the 325

change of orientation of the flower, and hence, is not a representation of the growth of the 326

flower. Thus, this paper uses coleus and canna to demonstrate the flower growth trajectory. 327

Figure 16 and Figure 17 show the growth trajectories of coleus and canna flowers for each 328

of the nine side views and the top view, respectively. The figures show an overall increasing 329

trend of flower size for both canna and coleus flowers for most views. 330

6. Discussion 331

Flowering plants (angiosperms) emerged on our planet approximately 140 to 160 332

million years ago and currently, they represent about 90% of the more than 350,000 known 333

plant species Paton et al. (2008). Flowers are the reproductive organs of a plant and play 334

a critical role in the production of fruits and seeds. The transition timing of vegetative 335

meristems to the formation of flowers and their morphological development manifested in 336

shape, size, and color provide crucial information about a plant’s vigor. Hence, the study 337

of flower-based phenotyping is important in the understanding of plant growth processes. 338

Furthermore, the timing of flowering is critical for reproductive success in many plant 339

species. For example, flowering must occur early enough in the growing season to enable 340

proper seed development, but premature flowering when a plant is small will limit the 341

amount of seed that can be produced Amasino et al. (2017). 342

In this paper, we focus on three different flowering plant species, i.e., sunflower, 343

canna, and coleus, which pose different computer vision challenges due to their variations 344

in architecture, and thus, enable us to establish the robustness of the proposed system. 345

Sunflower is an economically important crop primarily used as a source of edible oil, and 346

sunflower seeds are used for food as well. One of the fastest growing plants, sunflowers are 347

often used by farmers to feed livestock. A sunflower plant is characterized by the presence 348

of multiple flowers that rotate to align with the direction of incident sunlight. Canna is a 349

tropical plant with gladiolus-like flower spikes that bloom atop erected stems. It is one 350

of the most popular garden plants, however, in some parts of the world, its rhizomes are 351

consumed as a source of starch. Canna seeds are also used as beads in jewellery. Coleus 352

is a plant that has been used since ancient times to treat heart disorders such as high 353

blood pressure and chest pain (angina), and respiratory disorders such as asthma. In the 354

FlowerPheno dataset, both canna and coleus plant images are considered to have single 355

composite flowers. 356

This paper introduces a novel deep learning based framework called FlowerPhenoNet 357

to detect flowers in an image sequence and generate a flower status report consisting of a 358

set of novel temporal flower phenotypes. The paper also introduces a benchmark dataset 359

to allow further development of new methods and provide a common basis for uniform 360

comparison of the state-of-the-art methods. The dataset consists of three representative 361

flowering plant species, i.e., sunflower, canna, and coleus. These three different species of 362

plants have different architectures and flowering patterns. The shapes and textures of their 363

flowers are also different. The demonstrated high performance of FlowerPhenoNet on this 364

dataset shows its potential applicability to a wide variety of flower species with different 365

shapes and topologies. 366

Plants are not static but living organisms that change in shape and topology over time. 367

The occlusions of flowers by the leaves, drooping of petals, and change in orientation of 368

flowers in accordance with the incident sunlight pose challenges to the accurate compu- 369

tation of flower size from 2D images. Note that it is not feasible to compute the growth 370

trajectory of a sunflower from any single view image based on estimating the area of its 371

enclosed bounding rectangle, as the sunflower changes its orientation based on incident 372

sunlight at different times of the day, resulting in the change in the area of the bounding 373

rectangle in accordance to flower rotation but not its growth. However, our proposed 374

system shows a consistent overall increasing trend of flower growth for coleus and canna. 375

The highest number of flowers blooming in the plant is estimated by the maximum 376

number of flowers visible in any view in any image of the sequence. Although this 377

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2022                   doi:10.20944/preprints202210.0477.v1

https://doi.org/10.20944/preprints202210.0477.v1


Version October 27, 2022 submitted to Journal Not Specified 16 of 17

assumption holds true for all sunflower plants in the FlowerPheno dataset, however, there 378

might be cases where the image view with the maximum number of flowers excludes a few 379

flowers that are visible in other views. Thus future work will consider view registration to 380

ensure all flowers are counted accurately to report the highest number of flowers blooming 381

in the plant. 382

7. Conclusions 383

The transition timing of vegetative meristems to the formation of flowers and their 384

morphological development over time plays a significant role in yield estimation and breed- 385

ing. The paper introduces a novel deep learning based system called FlowerPhenoNet 386

for monitoring flower based phenotypes using time-series images captured in an HTP3. 387

FlowerPhenoNet uses the YOLO-v3 Redmon and Farhadi (2017) deep learning based object 388

detector to locate flowers in the multiview image sequence for application in temporal 389

plant phenotyping. A benchmark dataset is indispensable for new algorithm development, 390

performance evaluation, and uniform comparisons among the existing algorithms. To 391

support this goal, we publicly introduce a benchmark dataset called FlowerPheno com- 392

prising visible light image sequences of sunflower, canna, and coleus plants captured from 393

multiple viewing angles in the LemnaTec Scanalyzer 3D HTP3. Following flower detection, 394

a set of novel phenotypes are computed, e.g., the day of emergence of the first flower in 395

a plant’s life cycle, the total number of flowers present in the plant at a given time, the 396

highest number of flowers bloomed in the plant, flower growth trajectory, and blooming 397

trajectory. Finally, the efficacy of FlowerPhenoNet is demonstrated based on experimental 398

analysis of the FlowerPheno dataset. 399
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