

Article

Some Estimators and their Properties Following Kabirian-

based Optinalysis

Kabir Bindawa Abdullahi

Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, P.M.B.,

2218 Katsina, Katsina State, Nigeria; kabir.abdullahi@umyu.edu.ng or kabirnamallam@gmail.com

Abstract: Good estimators are characterized as robust, unbiased, efficient, and consistent. However,

the commonly used estimators are weak or lack one or more of these properties. In this article, eight

(8) estimators for statistical and geometrical estimations of symmetry/asymmetry,

similarity/dissimilarity, identity/unidentity, and feature transformation were proposed following

Kabirian-based optinalysis and other operations. The proposed estimators are characterized as

invariant (robust) under scaling, location shift, and rotation or reflection. A computing code was

written in python language for each of the proposed estimators so that peers can have working

codes for application and performance evaluation.

Keywords: Kabirian-based optinalysis; estimators; properties; computing codes

1. Introduction

Good estimators are characterized as robust (invariant), unbiased, efficient, and

consistent [1], [2]. However, the commonly used estimators of symmetry/asymmetry,

similarity/dissimilarity/distance, and identity/unidentity estimation lack one or more of

these properties. Methods of symmetry/asymmetry detection of shapes and distributions

and those of similarity/dissimilarity/deviation/distance measures between objects,

shapes, and distributions have been developed since earlier times. However, these

methods can either or not be characterized as scale-invariant, location-invariant, and

scale-and-location-invariant [3], [4], [5], [6], [7]

Symmetry or asymmetry detectors are good candidates for shape analysis and are

very useful tools in object detection and recognition in many situations. Symmetry is

characterized as the invariance of objects or properties under a set of operations.

Moreover, fast and effective symmetry recognition is still a difficult problem in computer

vision [3], [8]. In image analysis, most of the symmetry detectors are invariant to scaling

and rotation but not to the contrast and brightness of images, but some asymmetry

detectors are invariant to image contrast [6].

Similarity, distance, or deviation measures are the core components used by distance-

based clustering algorithms that placed dissimilar data points into different clusters, while

similar data points are placed in the same clusters [5]. Similarly, deviation measures of an

independent and identically distributed random variable(s) are underpinned by the

measures of statistical dispersion. Some of the major disadvantages of commonly used

similarity, distance or deviation measures include outlier sensitivity, lack of invariance to

linear transformation, and Low accuracy for high-dimensional datasets [5], [7].

The estimators of symmetry/asymmetry, similarity/dissimilarity/distance, and

identity/unidentity have one common mathematical feature of automorphism or

isomorphism [3]. Therefore, a conceptually and theoretically good estimator of

symmetry/asymmetry, similarity/dissimilarity/distance, and identity/unidentity should

be proven as a bijection function. Almost all the estimators have failed to meet this

important operation. Recently, the emergence of Kabirian-based optinalysis could be

utilized for the development of alternative estimators [3]. Kabirian-based optinalysis is a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202210.0464.v1
http://creativecommons.org/licenses/by/4.0/

function that isoreflectively or autoreflectively compares the similarity, symmetry, and

identity between two mathematical structures as an optic-like (mirror-like) reflection of

each other about a mid-point or symmetrical line [8].

In this paper, Kabirian-based optinalysis, coupled with other operations were used.

About eight (8) estimators for statistical and geometrical symmetry/asymmetry,

similarity/dissimilarity/distance, identity/unidentity estimations, and feature

transformation were proposed.

2. Methods

2.1. Proposal 1: Statistical Symmetry

2.1.1. Definition

Statistical symmetry is a mirror reflection of statistically defined data points to itself.

Under Kabirian-based optinalysis, it is the autoreflectivity of data points to itself.

Statistical symmetry refers to the theoretical ordering, with or without centering the data

and optinalysing the established autoreflective pair for a given variable.

2.1.2. Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��) . Let the order of

algorithmic transformations �� and �� as centering and ordering of the data �

respectively. The optinalysis-based statistical symmetry implies the following steps:

First step 1: Centering the data � (i.e., location removal). This is optional, depending

on the task. By centering the variable, two distinct sets of positive and negative integers

were obtained.

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a theoretical order and the autoreflective pair of symmetry

(shape) for the ��(�) variable. Note that numerical values are theoretically arranged in

ascending or descending order. The two distinct separations of the integers into a positive

and negative form the basis for the establishment of the autoreflective pair. For the

efficiency of the result, absolute estimates of the centered data are used.

���,�(�)���,�(�′)� = (�� ≤, �� ≤, �� … ≤ ����
�

, �����
�

, �′���
�

… ≥ ��
�, ≥ ��

�, ≥ ��
�)

���,�(�)���,�(�′)� = (�� ≥, �� ≥, �� … ≥ ����
�

, �����
�

, �′���
�

… ≤ ��
���, ≤ ��

���, ≤ ��
�)

Third step 3: Optinalyse (by Kabirian-based optinalysis [3]) the autoreflective pair of

���,�(�)���,�(�′)�.

�: ��,�(�)
�
⇻

��,�(�′) ↠ �

�:

⎣
⎢
⎢
⎢
⎡��,�(�) = ���, ��, ��, . … . , ����

�
� � = ������

�
�

⇻
��,�(�′) = ��′���

�
, . … . , �′�, �′�, �′��

↡ ↡ ↡
� = (��, ��, ��, . … . , ����

�
, ����

�
, ����

�
, . … . , ����, ����, ��) ⎦

⎥
⎥
⎥
⎤

Such that ��,�(�), ��,�(�′), � & � ∈ ℝ ; �� ≠ 0 , � ∈ ℕ ; ��,�(�) & ��,�(�′) ∈ � and

��,�(�) & ��,�(�′) are autoreflective pairs about a central point �.

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.)

and its derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.

��1����.(�, �′)
…

��2����.(�′, �)
⇌ �����.(�, �′) = �����.(�′, �) ⇌ ������.(�, �′) = ������.(�′, �)

where �, �′ ∈ ℝ.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two

different, but inverse optinalytic scales.

2.1.3. Scale and scaloc-invariant statistical symmetry

Statistical symmetry is called scale invariance if the efficient location parameter is not

removed from the variable, while it is called scaloc-invariant if the efficient location

parameter is removed from the variable.

2.1.4. General properties of statistical symmetry

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers.

iii. Statistical symmetry is scale-invariant (i.e., robust to scale, and unitless)

estimator.

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��).

������.(�) = ������.(��) = ������.(−��)

�����.(�) = �����.(��) = �����.(−��)

������.(�) = ������.(��) = ������.(−��)

where �, � ∈ ℝ; � ≠ 0.

Statistical symmetry is a location-invariant estimator, only if, the efficient location

parameter is removed from the variable. For instance, taking the absolute distances from

the mean.

iv. Supposed we have a variable � = (��, ��, ��, . … . , ��), then it is shifted by a

� location and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The

location-invariance implies:

������.(�) = ������.(�� − �) ≠ ������.(��)

�����.(�) = �����.(�� − �) ≠ �����.(��)

������..(�) = ������.(�� − �) ≠ ������.(��)

where �, ��, � ∈ ℝ; � is the mean estimate of ��.

v. Where location and scale properties are combined (i.e., scaloc-transform

distribution), statistical symmetry is its scaloc-invariant and/or scale-

invariant estimator.

Supposed we have an � scaling and � location shift of a variable � =

(��, ��, ��, . … . , ��).

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

statistical symmetry is an efficient estimator.

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �}

�����.(�) = �����.{(�� + �) − �} = �����.{(�� − �) − �}

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �}

where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant effect

is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant statistical symmetries are efficient estimators.

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �}

�����.(�) = �����.{�(� + �) − �} = �����.{−�(� + �) − �}

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �}

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �); and the resultant ef-

fect is a scale property.

vi. Statistical symmetry is invariant to sample size or multiple repeats of a

univariate dataset. But the univariate sample size invariance is effective to

�����. and ������., and not to ������..

Supposed we have a � duplicate of a variable � = (��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.(�) ≠ ������.([�] ∗ �)

�����.(�) = �����.([�] ∗ �)

������.(�) = ������.([�] ∗ �)

where � ∈ ℝ; � ∈ ℕ.

vii. Statistical symmetry is invariant to sample size or multiple repeats of multi-

variate datasets. But the multivariate sample size invariance is effective to

�����. and ������., and not to ������..

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��), � = (��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.��[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ ��

�����.��[�], [�], [�]�� = �����.��[�], [�], [�]� ∗ ��

������.��[�], [�], [�]�� = ������.��[�], [�], [�]� ∗ ��

where �, �, � ∈ ℝ; � ∈ ℕ.

2.1.5. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/sym-

metry_estimators.ipynb

Input guide: symmetry([data, centering, ordering, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for centering: "allow", or "never".

 for ordering: "ascend", "descend", or "never".

 for print: "kc", "psym", "pasym", "kcalt1", "kcalt2", or "kcalt".

Examples:

print("Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:allow", "or-

dering:never", "print:kc"]))

print("Probability of symmetry =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:allow",

"ordering:never", "print:psym"]))

print("Probability of asymmetry =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:pasym"]))

print("Alt1. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt"]))

2.1.6. Drawbacks and limitations of statistical symmetry

The following are some of the identified drawbacks and limitations of statistical sym-

metry:

i. The given random ordering of elements of the list of the variable(s) is not

preserved, thus an efficient theoretical ordering (i.e., ascend or descend sort-

ing) has to be adopted or used.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

ii. The two possible Kabirian bi-coefficients do not function on the same opti-

nalytic scale. For comparison of results, estimates with the mixed Kabirian

coefficients should either be translated forward or otherwise uniformed by

backward alternate translation.

2.2. Proposal 2: Geometrical Symmetry

2.2.1. Definition

Geometrical symmetry is a mirror reflection of a geometrically defined data point to

itself. Under optinalysis, it is the autoreflectivity of data points to itself. Geometrical sym-

metry refers to the conceptual ordering, with or without centering the data and optinalys-

ing the established autoreflective pair for a given variable.

2.2.2. Computational steps and algorithmic procedure

Suppose we have a sequence of variable � = (��, ��, ��, . … . , ��). Let the order of al-

gorithmic transformations �� and �� as centering and ordering of the data � respec-

tively. The optinalysis-based geometrical symmetry implies the following steps:

First step 1: Center the data � (i.e., location removal). This is optional, depending on

the task.

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a conceptual order and the autoreflective pair of symmetry

(shape) for the ��(�) variable.

���,�(�)���,�(�′)� = (��, ��, ��, . … . ����
�

, �����
�

, ��
���

�
. … . , ��

�
, ��

�
, ��

�
))

Third step 3: Optinalyse (by Kabirian-based optinalysis [3]) the autoreflective pair of

���,�(�)���,�(�′)�.

�: ��,�(�)
�
⇻

��,�(�′) ↠ �

�:

⎣
⎢
⎢
⎢
⎡��,�(�) = ���, ��, ��, . … . , ����

�
� � = ������

�
�

⇻
��,�(�′) = ��′���

�
, . … . , �′�, �′�, �′��

↡ ↡ ↡
� = (��, ��, ��, . … . , ����

�
, ����

�
, ����

�
, . … . , ����, ����, ��) ⎦

⎥
⎥
⎥
⎤

Such that ��,�(�), ��,�(�′), � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; ��,�(�) & ��,�(�′) ∈ � and

��,�(�) & ��,�(�′) are autoreflective pairs about a central point �.

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.)

and its derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.

��1����.(�, �′)
…

��2����.(�′, �)
⇌ �����.(�, �′) = �����.(�′, �) ⇌ ������.(�, �′) = ������.(�′, �)

where �, �′ ∈ ℝ.

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.

2.2.3. Scale and scaloc-invariant geometrical symmetry

Geometrical symmetry is called scale invariance if the efficient location parameter is

not removed from the variable, while it is called scaloc-invariant if the efficient location

parameter is removed from the variable.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.2.4. General properties of geometrical symmetry

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers.

iii. Geometrical symmetry is scale-invariant (i.e., robust to scale, and unitless)

estimator.

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��).

������.(�) = ������.(��) = ������.(−��)

�����.(�) = �����.(��) = �����.(−��)

������.(�) = ������.(��) = ������.(−��)

where �, � ∈ ℝ; � ≠ 0.

iv. Geometrical symmetry is a location-invariant estimator, only if, the efficient

location parameter is removed from the variable. For instance, taking the

absolute distances from the mean.

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it is shifted by a � location

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �). The location-invariance implies:

������.(�) = ������.(�� − �) ≠ ������.(��)

�����.(�) = �����.(�� − �) ≠ �����.(��)

������..(�) = ������.(�� − �) ≠ ������.(��)

where �, ��, � ∈ ℝ; � is the mean estimate of ��.

v. Where location and scale properties are combined (i.e., scaloc-transform dis-

tribution), geometrical symmetry is its invariant scaloc-invariant and/or

scale-invariant estimator.

Supposed we have an � scaling and � location shift of a variable � =

(��, ��, ��, . … . , ��).

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

geometrical symmetry is an efficient estimator.

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �}

�����.(�) = �����.{(�� + �) − �} = �����.{(�� − �) − �}

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �}

where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �).

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant geometrical symmetries are efficient estimators.

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �}

�����.(�) = �����.{�(� + �) − �} = �����.{−�(� + �) − �}

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �}

where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �).

vi. Geometrical symmetry is population-independent and variant to sample size

or multiple repeats of a univariate dataset.

Supposed we have a � duplicate of a variable � = (��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.(�) ≠ ������.([�] ∗ �)

�����.(�) ≠ �����.([�] ∗ �)

������.(�) ≠ ������.([�] ∗ �)

where � ∈ ℝ; � ∈ ℕ.

vii. Geometrical symmetry is a variant to sample size or multiple repeats of mul-

tivariate datasets.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��), � = (��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.��[�], [�], [�]�� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ���

�����.��[�], [�], [�]�� ≠ �����.��[�] ∗ �, [�] ∗ �, [�] ∗ ���

������.��[�], [�], [�]�� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ���

where �, �, � ∈ ℝ; � ∈ ℕ.

2.2.5. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/sym-

metry_estimators.ipynb

Input guide: symmetry([data, centering, ordering, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for centering: "allow", or "never".

 for ordering: "ascend", "descend", or "never".

 for print: "kc", "psym", "pasym", "kcalt1", "kcalt2", or "kcalt".

Examples:

print("Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "order-

ing:never", "print:kc"]))

print("Probability of symmetry =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:psym"]))

print("Probability of asymmetry =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:pasym"]))

print("Alt1. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt"]))

2.2.6. Drawbacks and limitations of geometrical symmetry

The following are some of the identified drawbacks and limitations of geometrical

symmetry:

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.

ii. The two possible Kabirian bi-coefficients do not function on the same opti-

nalytic scale. For comparison of results, estimates with the mixed Kabirian

coefficients should either be translated forward or otherwise uniformed by

backward alternate translation.

2.3. Proposal 3: Statistical Mirroring

2.3.1. Definition

Statistical mirroring is the measure of deviation or proximity of data points from a

defined location of a given distribution. Under Kabirian-based optinalysis, statistical mir-

roring is the isoreflectivity of data points to a defined statistical mirror (i.e., a defined and

amplified location estimate of the distribution through a defined length). Statistical mir-

roring refers to the theoretical ordering, with or without centering the data and optinalys-

ing the established isoreflective pair for a given variable.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.3.2. Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��). Let the order of algorith-

mic transformations �� and �� as centering and ordering of the data � respectively. The

optinalysis-based statistical mirroring implies the following steps:

First step 1: Centering the data � (i.e., location removal). This is optional, depending

on the task.

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a theoretical order for the ��(�) variable. Note that numerical

values are theoretically arranged in ascending or descending order.

��,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

or alternatively

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

Second step 3: Design an efficient statistical mirror. A statistical mirror refers to a de-

fined and amplified location estimate (e.g., mean, median, maximum, range, etc) of the

distribution through a defined length. Different types of statistical mirrors can be de-

signed, but the choice depends on the task to be performed.

� = (��, ��, ��, . … . , ��)

Third step 4: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) onto � about �. For instance,

Head-to-head pairing or reflection is given as:

���,�(�⃖)���⃗ � = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��, �, ��, . … . , ��, ��, ��)

���,�(�⃖)���⃗ � = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��, �, ��, . … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

���,�(�⃗)��⃖�� = (��, . … . ≤, ��, ≤ ��, ≤ ��, �, ��, ��, ��, . … . , ��)

���,�(�⃗)��⃖�� = (��, . … . ≥, ��, ≥ ��, ≥ ��, �, ��, ��, ��, . … . , ��)

Fifth step 5: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of

���,�(�⃗)��⃖�� or ���,�(�⃗)��⃖�� about a mid-point �.

�: ��,�(�)
�
⇻

� ↠ �

�: �
��,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Or in an alternative way,

�: �
��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that �, � & � ∈ ℝ; �� ≠ 0; � ∈ ℕ; and ��,�(�) & � are isoreflective pairs. � = 0

is by default operation, except under optinalytic normalization. � could be the average

(mean), median, mode, maximum, minimum, etc of the distribution.

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity

(�������.) and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinaly-

sis.

��1�����.(�, �)
…

��2�����.(�, �)
⇌ ������.(�, �) = ������.(�, �) ⇌ �����.(�, �) = �����.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.) function on two

different, but inverse optinalytic scales.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.3.3. Different approaches to statistical mirroring

Suppose that �: �
�
⇻

� ↠ �, where � is the observations, � is the statistical mir-

ror, � is the optiscale. It is called:

a. A statistical meanic mirroring, if � = �� (i.e., the mean of the distribution of

�). It is the measure of proximity or deviation (how close or far) the data

points are from its estimate of the mean.

b. A statistical medianic mirroring, if � = �� (i.e., the median of the distribution

of �). It is the measure of proximity or deviation (how close or far) the data

points are from its median estimate.

c. A statistical modalic mirroring, if � = �� (i.e., the mode of the distribution of

�). It is the measure of proximity or deviation (how close or far) the data

points are from its mode estimate.

d. A statistical maximalic mirroring, if � = �� (i.e., the maximum of the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their maximum estimate.

e. A statistical minimalic mirroring, if � = �� (i.e., the minimum of the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their minimum estimate.

f. A statistical rangic mirroring, if � = ���� (i.e., the range of the distribution

of �). It is the measure of proximity or deviation (how close or far) the data

points are from their range estimate.

g. A statistical reference mirroring, if � = �� (i.e., a reference value outside the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their reference estimate value.

h. An endo-statistical mirroring, if � = ��, ��, ��, ��, ��, ���� (of a location

estimate).

i. An exo-statistical mirroring, if � ≠ ��, ��, ��, ��, ��, ���� (of a location

estimate).

2.3.4. Scale and scaloc-invariant statistical mirroring

Statistical mirroring is called scale invariance if the efficient location parameter is not

removed from the variable, while it is called scaloc-invariant if the efficient location pa-

rameter is removed from the variable.

2.3.5. General properties of statistical mirroring

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers (such as discrete or

continuous variables containing either or both negative and positive

values).

iii. It involves a measure of spread around a defined location estimate (such as

mean, median, maximum, minimum, and range) and other attributes.

iv. Statistical mirroring is scale-invariant (i.e., robust to scale, and unitless)

estimator.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��) and its statisti-

cal mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the

associated dataset.

�������.(�, �) = �������.(��, �) = �������.(−��, �)

������.(�, �) = ������.(��, �) = ������.(−��, �)

�����.(�, �) = �����.(��, �) = �����.(−��, �)

where �, �, � ∈ ℝ; � ≠ 0.

i. Statistical mirroring is a location-invariant estimator, only if, the efficient lo-

cation parameter is removed from the variable. For instance, taking the ab-

solute distances from the mean.

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it shifted by a � location

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �), and its statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset. The location-invariance implies:

������.(�, �) = ������.(�� − �, �) ≠ ������.(��, �)

�����.(�, �) = �����.(�� − �, �) ≠ �����.(��, �)

������..(�, �) = ������.(�� − �, �) ≠ ������.(��, �)

where �, ��, �, � ∈ ℝ; � is the mean estimate of ��.

ii. Where location and scale properties are combined (i.e., scaloc-transform

distribution), statistical mirroring is its invariant scaloc-invariant and/or

scale-invariant estimator.

Supposed we have an � scaling and � location shift of a variable � =

(��, ��, ��, . … . , ��) and its statistical mirror as � = (��, ��, ��, . … . , ��), where � is the am-

plified estimate or reference of the associated dataset.

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

statistical mirroring is an efficient estimator.

�������.(�, �) = �������.{(�� + �) − �, �} = �������.{(�� − �) − �, �}

������.(�, �) = ������.{(�� + �) − �, �} = ������.{(�� − �) − �, �}

�����.(�, �) = �����.{(�� + �) − �, �} = �����.{(�� − �) − �, �}

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant ef-

fect is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant statistical mirroring are efficient estimators.

�������.(�, �) = �������.{�(� + �) − �, �} = �������.{−�(� + �) − �, �}

������.(�, �) = ������.{�(� + �) − �, �} = ������.{−�(� + �) − �, �}

�����.(�, �) = �����.{�(� + �) − �, �} = �����.{−�(� + �) − �, �}

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �); and the resultant

effect is a scale property.

iii. Statistical mirroring is a variant of pericentral rotation (alternate reflection),

except for meanic statistical mirroring.

Supposed we have a statistically ordered variable � = (��, ��, ��, . … . , ��) and its sta-

tistical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of

the associated dataset.

�������.(�⃖)|�⃗) ≠ �������.(�⃗|�⃖)

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖)

An exception is the case of meanic statistical mirroring

���������.(�⃖)|�⃗) = ���������.(�⃗|�⃖)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

��������.(�⃖)|�⃗) = ��������.(�⃗|�⃖)

�������.(�⃖)|�⃗) = �������.(�⃗|�⃖)

where �, � ∈ ℝ.

iv. Statistical mirroring is invariant to sample size or multiple repeats of a

univariate dataset. But the univariate sample size invariance is effective to

������. and �����., and not to �������..

Supposed we have a � duplicate of variable � = (��, ��, ��, . … . , ��) and its statistical

mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the

associated dataset.

By Kabirian-based optinalysis [3], it shows that

�������.(�, �) ≠ �������.([�] ∗ �, �)

������.(�, �) = ������.([�] ∗ �, �)

�����.(�, �) = �����.([�] ∗ �, �)

where �, � ∈ ℝ; � ∈ ℕ

v. Statistical mirroring is variant to sample size or multiple repeats of

multivariate datasets, except for meanic statistical mirroring, and is

effective to ��������. and �������., and not to ���������..

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��) , � = (��, ��, ��, . … . , ��) , and their statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified mean estimate of the associated dataset.

By Kabirian-based optinalysis [3], it shows that

�������.��[�], [�], [�]�, �� ≠ �������.��[�], [�], [�]� ∗ �, ��

������.��[�], [�], [�]�, �� ≠ ������.��[�], [�], [�]� ∗ �, ��

�����.��[�], [�], [�]�, �� ≠ �����.��[�], [�], [�]� ∗ �, ��

An exception is the case of meanic statistical mirroring

���������.��[�], [�], [�]�, �� ≠ ���������.��[�], [�], [�]� ∗ �, ��

��������.��[�], [�], [�]�, �� = ��������.��[�], [�], [�]� ∗ �, ��

�������.��[�], [�], [�]�, �� = �������.��[�], [�], [�]� ∗ �, ��

where �, �, �, � ∈ ℝ; � ∈ ℕ.

2.3.6. Python code

Get the python code at;

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/mirror-

ing_estimators.ipynb

Input guide: mirroring([data, principal_value, centering, ordering, pairing, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for principal_value: "mean", "median", "mode", "max", "min", "range", or nu-

merical_value,

 for centering: "allow", or "never".

 for ordering: "ascend", "descend", or "never".

 for pairing: "H_H", or "T_T".

 for print: "kc", "pprox", "pdev", "kcalt1", "kcalt2", or "kcalt".

Example 1:

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

print("Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:allow",

"ordering:ascend", "pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pprox"]))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

print("Probability of deviation =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:ascend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:ascend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt"]))

Example 2:

print("Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:allow",

"ordering:ascend", "pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pprox"]))

print("Probability of deviation =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt"]))

Example 3:

print("Kabirian coefficient =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:pprox"]))

print("Probability of deviation =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt"]))

2.3.7. Drawbacks and limitations of statistical mirroring

The following are some of the identified drawbacks and limitations of statistical mir-

roring:

i. The given random ordering of elements of the list of the variable(s) is not

preserved, thus an efficient theoretical ordering (i.e., ascend or descend sort-

ing) has to be adopted or used.

ii. A suitable and efficient pairing style or alternate reflection has to be chosen

and adopted for repeatability and comparison of results. This excludes only

statistical meanic mirroring.

iii. The two possible Kabirian bi-coefficients do not function on the same

optinalytic scale. For comparison of results, estimates with the mixed

Kabirian coefficients should either be translated forward or otherwise

uniformed by backward alternate translation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.4. Proposal 4: Geometrical Mirroring

2.4.1. Definition

Geometrical mirroring is the measure of deviation or proximity of geometrical data

points from a defined location of a given sequence. Under Kabirian-based optinalysis, ge-

ometrical mirroring is the isoreflectivity of data points to a defined geometrical mirror

(i.e., a defined and amplified location estimate of the sequence through a defined length).

Geometrical mirroring refers to the conceptual ordering, with or without centering the

data and optinalysing the established isoreflective pair for a given variable. Geometrical

mirroring is a method of shape and sequence analysis

2.4.2. Computational steps and algorithmic procedure

Suppose we have a sequence of variable � = (��, ��, ��, . … . , ��). Let the order of al-

gorithmic transformations �� and �� as centering and ordering of the data � respec-

tively. The optinalysis-based geometrical mirroring implies the following steps:

First step 1: Centering the data � (i.e., location removal). This is optional, depending

on the task.

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a conceptual order of sequence for the ��(�) variable.

��,�(�) = (��, ��, ��, . … . , ��)

Third step 3: Design an efficient geometrical mirror. A geometrical mirror refers to a

defined and amplified estimate (e.g., mean, median, maximum, range, etc) of the distri-

bution or others through a defined length. Different types of geometrical mirrors can be

designed, but the choice depends on the task to be performed.

� = (��, ��, ��, . … . , ��)

Third step 4: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) and � about �. For instance,

Head-to-head pairing or reflection is given as:

���,�(�⃖�)���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

���,�(��⃗)��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��)

Fifth step 5: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of

���,�(�⃖�)���⃗ � or ���,�(��⃗)��⃖�� about a mid-point �.

�: ��,�(�)
�
⇻

� ↠ �

�: �
��,�(�) = (��, . … . , ��, ��, ��)

�
⇻

� = (��, ��, ��, . … . ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that �, � & � ∈ ℝ; �� ≠ 0; � ∈ ℕ; and ��,�(�) & � are isoreflective pairs. � = 0

is by default operation, except under optinalytic normalization. � could be the average

(mean), median, mode, maximum, minimum, etc of the distribution.

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity

(�������.) and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinaly-

sis.

��1�����.(�, �)
…

��2�����.(�, �)
⇌ ������.(�, �) = ������.(�, �) ⇌ �����.(�, �) = �����.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.) function on two

different, but inverse optinalytic scales.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.4.3. Different approaches to geometrical mirroring

Suppose that �: �
�
⇻

� ↠ �, where � is the observations, � is the geometrical

mirror, � is the optiscale. It is called:

a. A geometrical meanic mirroring, if � = �� (i.e., the mean of the distribution of

�). It is the measure of proximity or deviation (how close or far) the data

points are from its mean estimate.

b. A geometrical medianic mirroring, if � = �� (i.e., the median of the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from its median estimate.

c. A geometrical modalic mirroring, if � = �� (i.e., the mode of the distribution

of �). It is the measure of proximity or deviation (how close or far) the data

points are from its mode estimate.

d. A geometrical maximalic mirroring, if � = �� (i.e., the maximum of the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their maximum estimate.

e. A geometrical minimalic mirroring, if � = �� (i.e., the minimum of the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their minimum estimate.

f. A geometrical rangic mirroring, if � = ���� (i.e., the range of the distribution

of �). It is the measure of proximity or deviation (how close or far) the data

points are from their range estimate.

g. A geometrical reference mirroring, if � = �� (i.e., a reference value outside the

distribution of �). It is the measure of proximity or deviation (how close or

far) the data points are from their reference estimate value.

h. An endo-geometrical mirroring, if � = ��, ��, ��, ��, ��, ���� (of a location

estimate).

i. An exo-geometrical mirroring, if � ≠ ��, ��, ��, ��, ��, ���� (of a location

estimate).

2.4.4. Scale and scaloc-invariant geometrical mirroring

Geometrical mirroring is called scale invariance if the efficient location parameter is

not removed from the variable, while it is called scaloc-invariant if the efficient location

parameter is removed from the variable.

2.4.5. General properties of geometrical mirroring

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers (such as discrete or

continuous variables containing either or both negative and positive

values),

iii. It involves a measure of spread around a defined location estimate (such as

mean, median, maximum, minimum, and range) and other attributes.

iv. Geometrical mirroring is scale-invariant (i.e., robust to scale, and unitless)

estimator.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��) and its geomet-

rical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of

the associated dataset.

�������.(�, �) = �������.(��, �) = �������.(−��, �)

������.(�, �) = ������.(��, �) = ������.(−��, �)

�����.(�, �) = �����.(��, �) = �����.(−��, �)

where �, �, � ∈ ℝ; � ≠ 0.

i. Geometrical mirroring is a location-invariant estimator, only if, the efficient

location parameter is removed from the variable. For instance, taking the ab-

solute distances from the mean.

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it shifted by a � location

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �), and its statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset. The location-invariance implies:

������.(�, �) = ������.(�� − �, �) ≠ ������.(��, �)

�����.(�, �) = �����.(�� − �, �) ≠ �����.(��, �)

������..(�, �) = ������.(�� − �, �) ≠ ������.(��, �)

where �, ��, �, � ∈ ℝ; � is the mean estimate of ��.

ii. Where location and scale properties are combined (i.e., scaloc-transform

distribution), geometrical mirroring is its invariant scaloc-invariant and/or

scale-invariant estimator.

Supposed we have an � scaling and � location shift of a variable � =

(��, ��, ��, . … . , ��) and its geometrical mirror as � = (��, ��, ��, . … . , ��), where � is the

amplified estimate or reference of the associated dataset.

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

geometrical mirroring is an efficient estimator.

�������.(�, �) = �������.{(�� + �) − �, �} = �������.{(�� − �) − �, �}

������.(�, �) = ������.{(�� + �) − �, �} = ������.{(�� − �) − �, �}

�����.(�, �) = �����.{(�� + �) − �, �} = �����.{(�� − �) − �, �}

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant ef-

fect is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant geometrical mirroring are efficient estimators.

�������.(�, �) = �������.{�(� + �) − �, �} = �������.{−�(� + �) − �, �}

������.(�, �) = ������.{�(� + �) − �, �} = ������.{−�(� + �) − �, �}

�����.(�, �) = �����.{�(� + �) − �, �} = �����.{−�(� + �) − �, �}

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �); and the resultant

effect is a scale property.

iii. Geometrical mirroring is variant to pericentral rotation (alternate reflection)

except for meanic geometrical mirroring.

Supposed we have a geometrically ordered variable � = (��, ��, ��, . … . , ��) and its

statistical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference

of the associated dataset.

�������.(�⃖)|�⃗) ≠ �������.(�⃗|�⃖)

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖)

An exception is the case of meanic statistical mirroring

���������.(�⃖)|�⃗) = ���������.(�⃗|�⃖)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

��������.(�⃖)|�⃗) = ��������.(�⃗|�⃖)

�������.(�⃖)|�⃗) = �������.(�⃗|�⃖)

where �, � ∈ ℝ.

iv. Geometrical mirroring is population-independent and variant to sample

size or multiple repeats of a univariate dataset.

Supposed we have a � duplicate of variable � = (��, ��, ��, . … . , ��) and its geomet-

rical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of

the associated dataset.

By Kabirian-based optinalysis [3], it shows that

�������.(�, �) ≠ �������.([�] ∗ �, �)

������.(�, �) ≠ ������.([�] ∗ �, �)

�����.(�, �) ≠ �����.([�] ∗ �, �)

where �, � ∈ ℝ; � ∈ ℕ.

v. Geometrical mirroring is variant to sample size or multiple repeats of

multivariate datasets.

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��) , � = (��, ��, ��, . … . , ��) , and their geometrical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset.

By Kabirian-based optinalysis [3], it shows that

�������.��[�], [�], [�]�, �� ≠ �������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, ��

������.��[�], [�], [�]�, �� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, ��

�����.��[�], [�], [�]�, �� ≠ �����.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, ��

where �, �, �, � ∈ ℝ; � ∈ ℕ.

2.4.6. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/mirror-

ing_estimators.ipynb

Input guide: mirroring([data, principal_value, centering, ordering, pairing, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for principal_value: "mean", "median", "mode", "max", "min", "range", or nu-

merical_value,

 for centering: "allow", "never".

 for ordering: "ascend", "descend", or "never".

 for pairing: "H_H", or "T_T".

 for print: "kc", "pprox", "pdev", "kcalt1", "kcalt2", or "kcalt".

Example 1:

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

print("Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:allow",

"ordering:never", "pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pprox"]))

print("Probability of deviation =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:never", "pairing:H_H", "print:kcalt2"]))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt"]))

Example 2:

print("Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:allow",

"ordering:never", "pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pprox"]))

print("Probability of deviation =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt"]))

Example 3:

print("Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "ordering:never",

"pairing:H_H", "print:kc"]))

print("Probability of proximity =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:pprox"]))

print("Probability of deviation =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:pdev"]))

print("Alt1. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt"]))

2.4.7. Drawbacks and limitations of geometrical mirroring

The following are some of the identified drawbacks and limitations of geometrical

mirroring:

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.

ii. A suitable and efficient pairing style or alternate reflection has to be chosen

and adopted for repeatability and comparison of results. This excludes only

statistical meanic mirroring.

iii. The two possible Kabirian bi-coefficients do not function on the same

optinalytic scale. For comparison of results, estimates with the mixed

Kabirian coefficients should either be translated forward or otherwise

uniformed by backward alternate translation.

2.5. Proposal 5: Statistical Pairwise Comparison

2.5.1. Definition

A statistical pairwise comparison between two variables, under Kabirian-based opti-

nalysis, is their isoreflectivity in a statistical order. The statistical pairwise comparison re-

fers to the theoretical ordering, with or without centering and descaling the data and opti-

nalysing the established isoreflective pair for the given variables.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.5.2. Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations ��, �� and �� as center-

ing, ordering, and descaling of the data � respectively. The optinalysis-based statistical

pairwise comparison implies the following steps:

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.

��(�) = (��, ��, ��, . … . , ��)

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a theoretical order for the ��(�) and ��(�) variables. Note

that numerical values are theoretically arranged in ascending or descending order.

��,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

��,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

or alternatively

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

Second step 2: Descaling the theoretically ordered sequence of ��,�(�) and ��,�(�)

variables.

��,�,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

��,�,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

or alternatively

��,�,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

��,�,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

Second step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�,�(�) and ��,�,�(�) about �. For instance,

Head-to-head pairing or reflection is given as:

���,�,�(�⃖)���,�,�(��⃗)� = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��, �, �� ≤. … . , ≤ ��, ≤ ��, ≤ ��)

���,�,�(�⃖)���,�,�(��⃗)� = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��, �, �� ≥. … . , ≥ ��, ≥ ��, ≥ ��)

Tail-to-tail pairing or reflection is given as:

���,�,�(�⃗)���,�,�(�⃖�)� = (��, . … . ≤, ��, ≤ ��, ≤ ��, �, �� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

���,�,�(�⃗)���,�,�(�⃖�)� = (��, . … . ≥, ��, ≥ ��, ≥ ��, �, �� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

Third step 4: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair

���,�,�(�⃖)���,�,�(��⃗)� or any other suitable isoreflective pair about a mid-point �.

�: ��,�,�(�⃖)
�
⇻

��,�,�(��⃗) ↠ �

�: �
��,�,�(�⃖) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

�
⇻

��,�,�(��⃗) = (�� ≤. … . , ≤ ��, ≤ ��, ≤ ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.) and

its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis.

��1����.(�, �)
…

��2����.(�, �)
⇌ �����.(�, �) = �����.(�, �) ⇌ ������.(�, �) = ������.(�, �)

where �, � ∈ ℝ.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.

2.5.3. Scale and scaloc-invariant statistical pairwise comparison

Statistical pairwise comparison is called scale invariance if the efficient location pa-

rameter is not removed from the variable, while it is called scaloc-invariant if the efficient

location parameter is removed from the variable.

2.5.4. General properties of statistical pairwise comparison

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers (such as discrete or

continuous variables containing either or both negative and positive

values),

iii. Statistical pairwise comparison is a scale-invariant (i.e., robust to scale,

unitless, and dimensionless) estimator.

Supposed we have an � scaling of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

������.(�, �) = ������.(��, ��) = ������.(−��, −��)

�����.(�, �) = �����.(��, ��) = �����.(−��, −��)

������.(�, �) = ������.(��, ��) = ������.(−��, −��)

where �, �, � ∈ ℝ; � ≠ 0.

Because the variables for statistical pairwise comparison can be descaled, two varia-

bles with different scales can be compared.

������.(�, �) = ������.(�, ��) = ������.(−�, −��)

������.(�, �) = ������.(��, �) = ������.(−��, −�)

�����.(�, �) = �����.(�, ��) = �����.(−�, −��)

�����.(�, �) = �����.(��, �) = �����.(−��, −�)

������.(�, �) = ������.(�, ��) = ������.(−�, −��)

������.(�, �) = ������.(��, �) = ������.(−��, −�)

where �, �, � ∈ ℝ; � ≠ 0.

iv. Statistical pairwise comparison is a location-invariant estimator, only if, the

efficient location parameter is removed from the variable. For instance,

taking the absolute distances from the mean.

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��) , then both were shifted by a � location and returned as �� = (�� +

�, �� + �, �� + �, . … . , �� + �), and �� = (�� + �, �� + �, �� + �, . … . , �� + �). The location-in-

variance implies:

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��)

�����.(�, �) = �����.(�� − �, �� − �) = �����.(��, ��)

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��)

where �, �, ��, ��, � ∈ ℝ; � and � are the mean estimates of �� and �� respectively.

v. Where location and scale properties are combined (i.e., scaloc-transform

distribution), statistical pairwise is its invariant scaloc-invariant and/or

scale-invariant estimator.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Supposed we have an � scaling and � location shift of variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

statistical pairwise comparison is an efficient estimator.

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �}

�����.(�, �) = �����.{(�� + �) − �, (�� + �) − �} = �����.{(�� − �) − �, (�� − �) − �}

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of (�� ± �) and
(�� ± �) respectively; and the resultant effect is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant statistical pairwise comparison are efficient estimators.

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �}

�����.(�, �) = �����.{�(� + �) − �, �(� + �) − �} = �����.{−�(� + �) − �, −�(� + �) − �}

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of ±�(� + �) and

±�(� + �) respectively; and the resultant effect is a scale property.

vi. Statistical pairwise comparison is a variant of pericentral rotation (alternate

reflection).

Supposed we have a statistically ordered variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖)

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

where �, �, ∈ ℝ.

vii. Statistical pairwise comparison is population-independent and variant to

sample size or multiple repeats of a univariate dataset.

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �)

�����.(�, �) ≠ �����.([�] ∗ �, [�] ∗ �)

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �)

where �, � ∈ ℝ; � ∈ ℕ.

viii. Statistical pairwise comparison is a variant to sample size or multiple

repeats of multivariate datasets.

Supposed we have a � duplicate of variables � = �[�], [�], [�]� and � =

�[�], [�], [�]�.

By Kabirian-based optinalysis [3], it shows that

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

�����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ �����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ.

2.5.5. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/pair-

wise_similarity_estimators.ipynb

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Input guide: pairwise_similarity([data_x, data_y, centering, ordering, pairing,

print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for centering: "allow", or "never".

 for ordering: "ascend", "descend", or "never".

 for pairing: "H_H", or "T_T".

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt".

Example 1:

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24]

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never",

"ordering:descend", "pairing:T_T", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt"]))

Example 2:

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:allow",

"ordering:descend", "pairing:H_H", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:pdsim"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt"]))

Example 3:

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never",

"ordering:ascend", "pairing:H_H", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:pdsim"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt"]))

2.5.6. Drawback and limitations of statistical pairwise comparison

The following are some of the identified drawbacks and limitations of statistical pair-

wise comparison:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

i. The given random ordering of elements of the list of variables is not pre-

served, thus an efficient theoretical ordering (i.e., ascend or descend sorting)

has to be adopted or used.

ii. Variables lengths must be the same, otherwise, a suitable method needs to

be used to align them.

iii. A suitable and efficient pairing style or alternate reflection has to be chosen

and adopted for repeatability and comparison of results.

iv. The two possible Kabirian bi-coefficients do not function on the same

optinalytic scale. For comparison of results, estimates with the mixed

Kabirian coefficients should either be translated forward or otherwise

uniformed by backward alternate translation.

2.6. Proposal 6: Geometrical Pairwise Comparison

2.6.1. Definition

A geometrical pairwise comparison between two variables (i.e., two sequences), un-

der Kabirian-based optinalysis, is their isoreflectivity in geometrical order. The geomet-

rical pairwise comparison refers to the conceptual ordering, with or without centering and

descaling the data and optinalysing the established isoreflective pair for the given varia-

bles.

2.6.2. Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations ��, �� and �� as center-

ing, ordering, and descaling of the data � respectively. The optinalysis-based geometrical

pairwise comparison implies the following steps:

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.

��(�) = (��, ��, ��, . … . , ��)

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a conceptual order of sequence for the ��(�) and ��(�)varia-

bles.

��,�(�) = (��, ��, ��, . … . , ��)

��,�(�) = (��, ��, ��, . … . , ��)

Second step 2: Descaling the conceptually ordered sequence of ��,�(�) and ��,�(�)

variables.

��,�,�(�) = (��, ��, ��, . … . , ��)

��,�,�(�) = (��, ��, ��, . … . , ��)

Third step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�,�(�) and ��,�,�(�) about �. For instance,

Head-to-head pairing or reflection is given as:

���,�,�(�⃖)���,�,�(��⃗)� = (��, ��, ��, . … . ��, �, ��. … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

���,�,�(�⃗)���,�,�(�⃖�)� = (��. … . , ��, ��, ��, �, ��, ��, ��, . … . ��)

Fourth step 4: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of

���,�,�(�⃖)���,�,�(��⃗)� or ���,�,�(�⃖)���,�,�(��⃗)� about a mid-point �.

�: ��,�,�(�)
�
⇻

��,�,�(�) ↠ �

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

�: �
��,�,�(�) = (��, ��, ��, . … . ��)

�
⇻

��,�,�(�) = (��. … . , ��, ��, ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.)

and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis.

��1����.(�, �)
…

��2����.(�, �)
⇌ �����.(�, �) = �����.(�, �) ⇌ ������.(�, �) = ������.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.

2.6.3. Scale and scaloc-invariant geometrical pairwise comparison

Geometrical pairwise comparison is called scale invariance if the efficient location

parameter is not removed from the variable, while it is called scaloc-invariant if the effi-

cient location parameter is removed from the variable.

2.6.4. General properties of geometrical pairwise comparison

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers (such as discrete or

continuous variables containing either or both negative and positive

values),

iii. Geometrical pairwise comparison is a scale-invariant (i.e., robust to scale,

unitless, and dimensionless) estimator.

Supposed we have an � scaling of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

������.(�, �) = ������.(��, ��) = ������.(−��, −��)

�����.(�, �) = �����.(��, ��) = �����.(−��, −��)

������.(�, �) = ������.(��, ��) = ������.(−��, −��)

where �, �, � ∈ ℝ; � ≠ 0.

i. Geometrical pairwise comparison is a location-invariant estimator, only if,

the efficient location parameter is removed from the variable. For instance,

taking the absolute distances from the mean.

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��), then both were shifted by � location and returned as �� = (�� + �, �� +

�, �� + �, . … . , �� + �) , and �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The location-invari-

ance implies:

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��)

�����.(�, �) = �����.(�� − �, �� − �) = �����.(��, ��)

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��)

where �, �, ��, ��, � ∈ ℝ; � and � are the mean estimates of �� and �� respectively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

ii. Where location and scale properties are combined (i.e., scaloc-transform

distribution), geometrical pairwise is its invariant scaloc-invariant and/or

scale-invariant estimator.

Supposed we have an � scaling and � location shift of variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

geometrical pairwise comparison is an efficient estimator.

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �}

�����.(�, �) = �����.{(�� + �) − �, (�� + �) − �} = �����.{(�� − �) − �, (�� − �) − �}

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of (�� ± �) and

(�� ± �) respectively; and the resultant effect is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant geometrical pairwise comparison are efficient estimators.

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �}

�����.(�, �) = �����.{�(� + �) − �, �(� + �) − �} = �����.{−�(� + �) − �, −�(� + �) − �}

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of ±�(� + �) and

±�(� + �) respectively; and the resultant effect is a scale property.

iii. Geometrical pairwise comparison is variant to pericentral rotation

(alternate reflection).

Supposed we have a geometrically ordered variables � = (��, ��, ��, . … . , ��) and

� = (��, ��, ��, . … . , ��).

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖)

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖)

where �, �, ∈ ℝ.

iv. Geometrical pairwise comparison is a variant to sample size or multiple

repeats of a univariate dataset.

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �)

�����.(�, �) ≠ �����.([�] ∗ �, [�] ∗ �)

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �)

where �, � ∈ ℝ; � ∈ ℕ.

v. Geometrical pairwise comparison is variant to sample size or multiple

repeats of multivariate datasets.

Supposed we have a � duplicate of variables � = �[�], [�], [�]� and � =

�[�], [�], [�]�.

By Kabirian-based optinalysis [3], it shows that

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

�����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ �����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.6.5. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/pair-

wise_similarity_estimators.ipynb

Input guide: pairwise_similarity([data_x, data_y, centering, descaling , ordering,

pairing, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for centering: "allow", or "never".

 for descaling: "descaling:allow", or "descaling:never".

 for ordering: "ascend", "descend", or "never".

 for pairing: "H_H", or "T_T".

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt".

Example 1:

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24]

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never",

"descaling:never", "ordering:never", "pairing:T_T", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:pdsim"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt"]))

Example 2:

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:allow",

"descaling:never", "ordering:never", "pairing:H_H", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:pdsim"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt"]))

Example 3:

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never",

"descaling:never", "ordering:never", "pairing:H_H", "print:kc"]))

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:psim"]))

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:pdsim"]))

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt"]))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

2.6.6. Drawback and limitations of geometrical pairwise comparison

The following are some of the identified drawbacks and limitations of geometrical

pairwise comparison:

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.

ii. Variables lengths must be the same, otherwise, a suitable method needs to

be used to align them.

iii. A suitable and efficient pairing style or alternate reflection has to be chosen

and adopted for repeatability and comparison of results.

iv. The two possible Kabirian bi-coefficients do not function on the same

optinalytic scale. For comparison of results, estimates with the mixed

Kabirian coefficients should either be translated forward or otherwise

equalized by backward alternate translation.

2.7. Proposal 7: Identity Estimation

2.7.1. Definition

Identity simply refers to the measure of the degree of exactness between a pair of

variables. The identity estimation between pair of isoreflective or autoreflective varia-

ble(s) under Kabirian-based optinalysis, is the isoreflectivity of its id-strand onto a unified

optinalytic mirror (i.e., a mirror with a principal value of 1.00 through a defined length).

The id-strand is a pairwise match (score by 1), mismatch (score by 0), and/or gab (score

by -1) scoring between the items of isoreflective or autoreflective points of isoreflective or

autoreflective pair of variable(s).

The optinalysis-based identity estimation is an extension of symmetry and similarity

concepts and is a subject of many combined assumptions such as those that hold the es-

tablishment of an order for the variable(s), the isoreflective or autoreflective pair, the id-

strand formation, and their optinalytic mirroring.

Identity and similarity or symmetry are related but the former proceeds the latter by

the concept. All identical variables are completely similar or symmetrical, but not all com-

pletely similar or symmetrical variables are identical. Pericentral rotation invariance must

be satisfied for identical variables. Therefore, it can be used to isolate completely identical

variables, but that does not account for the degree of the incomplete identity.

2.7.2. Iso-identity (pairwise identity) estimation

Iso-identity (pairwise identity) measures the degree of exactness between a pair of

isoreflective variables.

Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations �� and �� as centering

and ordering of the data � respectively. The optinalysis-based identity comparison be-

tween � and � implies the following steps:

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.

��(�) = (��, ��, ��, . … . , ��)

��(�) = (��, ��, ��, . … . , ��)

Second step 2: Establish a theoretical or conceptual order for the ��(�) and ��(�) var-

iables.

��,�(�) = (��, ��, ��, . … . , ��)

��,�(�) = (��, ��, ��, . … . , ��)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Third step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) and ��,�(�) about a mid-point �. For instance,

Head-to-head pairing or reflection is given as:

���,�(�⃖)���,�(��⃗)� = (��, ��, ��, . … . ��, �, ��. … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

���,�(�⃗)���,�(�⃖�)� = (��. … . , ��, ��, ��, �, ��, ��, ��, . … . ��)

Fourth step 4: Generate the id-strand � = (��, ��, ��, . … . , ��) from the established

isoreflective pair ���,�(�⃖)���,�(��⃗)� or ���,�(�⃗)���,�(�⃖�)�. Note that the id-strand is not an

isoreflective with any variable. Here is the rule for an id-strand generation.

If ��,�(�⃖) ≡ ��,�(��⃗); then score it as 1; and the 1 ∈ �.

If ��,�(�⃖) ≢ ��,�(��⃗); then score it as 0; and the 0 ∈ �.

If ��,�(�⃖) ∅ ��,�(��⃗); then score it as −1; and the −1 ∈ �.

Fifth step 5: Design a unified optinalytic mirror. A unified optinalytic mirror � is a

mirror with a principal value of 1.00 through a defined length).

� = (��, ��, ��, . … . , ��)

Sixth step 6: Choose an efficient pairing style (reflection) and establish the isoreflective

pair between the id-strand � and optinalytic mirror � about a mid-point �. For instance,

Head-to-head pairing or reflection is given as:

��⃖���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

��⃗��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��)

Seventh step 7: Geometrically Optinalyse (by Kabirian-based optinalysis [3]) the isore-

flective pair ��⃖���⃗ � or ��⃗��⃖�� about a mid-point �. Note, the geometrical optinalysis here

does not define the estimation nomenclature, but it relies on the assumption that estab-

lished the order (theoretical order implies statistical, and conceptual order implies geo-

metrical) for the variable(s).

�: �
�
⇻

� ↠ �

�: �
� = (��, . … . , ��, ��, ��)

�
⇻

� = (��, ��, �� … ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.

By Kabirian-based optinalysis [3], the Kabirian coefficient of identity (����.) and its

derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis.

��1��.(�, �)
…

��2��.(�, �)
⇌ ���.(�, �) = ���.(�, �) ⇌ ����.(�, �) = ����.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1��. & ��2��.) function on two differ-

ent, but inverse optinalytic scales.

2.7.3. Auto-identity (self-identity) estimation

Auto-identity (self-identity) measures the degree of exactness between a pair of au-

toreflective variables.

Computational steps and algorithmic procedure

Suppose we have a set of variables � = (��, ��, ��, . … . , ��). Let the order of algorith-

mic transformations �� and �� as centering and ordering of the data � respectively. The

optinalysis-based identity comparison of the shape within � implies the following steps:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

First step 1: Centering the data (i.e., location removal). This is optional, depending on

the task. By centering the variable, two distinct sets of positive and negative integers were

obtained.

���(��)���(���)� = (��, ��, ��, . … . , ��)

Second step 2: Establish a theoretical or conceptual order and the autoreflective pair

of symmetry (shape) for the � variable. The two distinct separations of the integers into

a positive and negative form the basis for the establishment of the autoreflective pair. For

the efficiency of the result, absolute estimates of the centered data are used.

���,�(��)���,�(���)� = (��, ��, ��, . … . , ����
�

, �����
�

, ��
���

�
, . … . , ��

�, ��
�, ��

�)

Third step 3: Generate the id-strand � = (��, ��, ��, . … . , ��) from the established au-

toreflective pair ���,�(��)���,�(���)�. Note that the id-strand is not an autoreflective with any

variable. Here is the rule for an id-strand generation.

If ��,�(��) ≡ ��,�(��′); then score it as 1; and the 1 ∈ �.

If ��,�(��) ≢ ��,�(��′); then score it as 0; and the 0 ∈ �.

If ��,�(��) ∅ ��,�(��′); then score it as −1; and the −1 ∈ �.

Fourth step 4: Design a unified optinalytic mirror. A unified optinalytic mirror � is a

mirror with a principal value of 1.00 through a defined length).

� = (��, ��, ��, . … . , ��)

Fifth step 5: Choose an efficient pairing style (reflection) and establish the isoreflective

pair between the id-strand � and the optinalytic mirror � about a mid-point �. For in-

stance,

Head-to-head pairing or reflection is given as:

��⃖���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��)

Tail-to-tail pairing or reflection is given as:

��⃗��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��)

Sixth step 6: Geometrically Optinalyse (by Kabirian-based optinalysis [3]) the isore-

flective pair ��⃖���⃗ � or ��⃗��⃖�� about mid-point �. Note, the geometrical optinalysis here

does not define the estimation nomenclature, but it relies on the assumption that estab-

lished the order (theoretical order implies statistical, and conceptual order implies geo-

metrical) for the variable(s).

�: �
�
⇻

� ↠ �

�: �
� = (��, ��, ��, . … . ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� = (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

�

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and

� & � are autoreflective pairs. � = 0 is by default operation, except under optinalytic

normalization.

By Kabirian-based optinalysis [3], the Kabirian coefficient of identity (����.) and its

derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.

��1��.(�, �)
…

��2��.(�, �)
⇌ ���.(�, �) = ���.(�, �) ⇌ ����.(�, �) = ����.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1��. & ��2��.) function on two differ-

ent, but inverse optinalytic scales.

Optimally, the required sample size to translate the two possible Kabirian bi-efficient

is not, in this particular case of identity measure, determined by the variable’s sample size

or length. A sample size � = 1 is generally used in the translation process because both

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

the id-strand and the id-mirror are on a binary numerical expression (i.e., 0 and 1), and

this gives an efficient result.

2.7.4. General properties of identity estimation

These properties applied to both the iso-identity and auto-identity. For consistency

in the explanation, iso-identity is always preferred here.

i. It is based on the entire observations of variables, unlike percentile-based or

decile-based statistics. Therefore, extreme maximum and minimum values

are not discarded or trimmed.

ii. It applies to variable(s) from the set of real numbers (such as discrete or

continuous variables containing either or both negative and positive

values).

iii. The identity estimation is a scale-invariant (i.e., robust to scale, unitless,

and dimensionless) estimator.

Supposed we have an � scaling of variables � = (��, ��, ��, . … . , ��) and � =
(��, ��, ��, . … . , ��).

����.(�, �) = ����.(��, ��) = ����.(−��, −��)

���.(�, �) = ���.(��, ��) = ���.(−��, −��)

����.(�, �) = ����.(��, ��) = ����.(−��, −��)

where �, �, � ∈ ℝ; � ≠ 0.

iv. The identity estimation is a location-invariant estimator, only if, the

efficient location parameter is removed from the variable. For instance,

taking the absolute distances from the mean.

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��), then both were shifted by � location and returned as �� = (�� + �, �� +

�, �� + �, . … . , �� + �) , and �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The location-invari-

ance implies:

����.(�, �) = ����.(�� − �, �� − �) = ����.(��, ��)

���.(�, �) = ���.(�� − �, �� − �) = ���.(��, ��)

����.(�, �) = ����.(�� − �, �� − �) = ����.(��, ��)

where �, �, ��, ��, � ∈ ℝ; � and � are the mean estimates of �� and �� respectively.

v. Where location and scale properties are combined (i.e., scaloc-transform

distribution), the identity estimation is its invariant scaloc-invariant and/or

scale-invariant estimator.

Supposed we have an � scaling and � location shift of variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant

identity estimator is efficient.

����.(�, �) = ����.{(�� + �) − �, (�� + �) − �} = ����.{(�� − �) − �, (�� − �) − �}

���.(�, �) = ���.{(�� + �) − �, (�� + �) − �} = ���.{(�� − �) − �, (�� − �) − �}

����.(�, �) = ����.{(�� + �) − �, (�� + �) − �} = ����.{(�� − �) − �, (�� − �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of (�� ± �) and

(�� ± �) respectively; and the resultant effect is a location property.

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant

and scale-invariant identity estimators are efficient.

����.(�, �) = ����.{�(� + �) − �, �(� + �) − �} = ����.{−�(� + �) − �, −�(� + �) − �}

���.(�, �) = ���.{�(� + �) − �, �(� + �) − �} = ���.{−�(� + �) − �, −�(� + �) − �}

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

����.(�, �) = ����.{�(� + �) − �, �(� + �) − �} = ����.{−�(� + �) − �, −�(� + �) − �}

where �, �, �, � ∈ ℝ ; � ≠ 0 ; � and � are the mean estimates of ±�(� + �) and

±�(� + �) respectively; and the resultant effect is a scale property.

vi. The identity estimation is invariant to pericentral rotation (alternate

reflection).

Supposed we have suitably ordered variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

����.(�⃖)|�⃗) = ����.(�⃗|�⃖)

���.(�⃖)|�⃗) = ���.(�⃗|�⃖)

����.(�⃖)|�⃗) = ����.(�⃗|�⃖)

where �, �, ∈ ℝ.

vii. The identity estimation is population-independent and variant to sample

size or multiple repeats of a univariate dataset.

Supposed we have a � duplicate of variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).

By Kabirian-based optinalysis [3], it shows that

����.(�, �) ≠ ����.([�] ∗ �, [�] ∗ �)

���.(�, �) ≠ ���.([�] ∗ �, [�] ∗ �)

����.(�, �) ≠ ����.([�] ∗ �, [�] ∗ �)

where �, � ∈ ℝ; � ∈ ℕ.

viii. The identity estimation is variant to sample size or multiple repeats of

multivariate datasets.

Supposed we have a � duplicate of variables � = �[�], [�], [�]� and � =

�[�], [�], [�]�.

By Kabirian-based optinalysis [3], it shows that

����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

���.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ���.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ ��

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ.

2.7.5. Python codes

Get the python codes at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/auto-iden-

tity_estimators.ipynb

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/iso-iden-

tity_estimators.ipynb

Input guide: iso_identity([data_x, data_y, centering, ordering, pairing, print])

 auto_identity([data, centering, ordering, pairing, print])

Input options:

 for data: list of numerical values from a set of real numbers.

 for centering: "allow", or "never".

 for ordering: "ascend", "descend", or "never".

 for pairing: "H_H", or "T_T".

 for print: "kc", "pid", "puid", "kcalt1", "kcalt2", or "kcalt".

Example 1:

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24]

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:ascend", "pairing:T_T", "print:kc"]))

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:ascend", "pairing:T_T", "print:pid"]))

print("Probability of unidentity =", iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:puid"]))

print("Alt1. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt"]))

Example 2:

print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:descend", "pairing:H_H", "print:kc"]))

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:descend", "pairing:H_H", "print:pid"]))

print("Probability of unidentity =", iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:puid"]))

print("Alt1. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt"]))

Example 3:

print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:kc"]))

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:pid"]))

print("Probability of unidentity =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:puid"]))

print("Alt1. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt"]))

Example 4:

print("Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "order-

ing:never", "pairing:H_H", "print:kc"]))

print("Probability of identity =", auto_identity([sorted(data_x), "centering:allow", "order-

ing:never", "pairing:H_H", "print:pid"]))

print("Probability of unidentity =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:puid"]))

print("Alt1. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt"]))

Example 5:

print("Kabirian coefficient =", auto_identity([data_y, "centering:never", "ordering:never",

"pairing:T_T", "print:kc"]))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

print("Probability of identity =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:pid"]))

print("Probability of unidentity =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:puid"]))

print("Alt1. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt1"]))

print("Alt2. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt2"]))

print("Alt. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt"]))

2.7.6. Drawbacks and limitations of identity estimation

The following are some of the identified drawbacks and limitations of identity esti-

mation:

i. For geometrical auto-identity or iso-identity, the given random ordering (se-

quence) of elements of the list of the variable(s) should be preserved, other-

wise, a conceptual ordering has to be established.

ii. For statistical auto-identity or iso-identity, the given random ordering of

elements of the list of the variable(s) is not preserved, thus an efficient

theoretical ordering (i.e., ascend or descend sorting) has to be adopted or

used.

iii. For geometrical or statistical iso-identity, variable lengths must be the

same, otherwise, a suitable method needs to be used to align them.

iv. For geometrical or statistical iso-identity, a suitable and efficient pairing

style or alternate reflection has to be chosen and adopted for repeatability

and comparison of results.

v. The two possible Kabirian bi-coefficients do not function on the same

optinalytic scale. For comparison of results, estimates with the mixed

Kabirian coefficients should either be translated forward or otherwise

homogenized by backward alternate translation.

2.8. Proposal 8: Feature Transformation

2.8.1. Definition

Based on optinalysis, feature transformation of a given dataset is the isoreflectivity

of every item of that dataset to a defined estimate (e.g., an estimate of location, scale, or

other efficient parameters) of itself.

2.8.2. Assumption of feature transformation

Suppose we have a variable � = (��, ��, ��, . … . , ��) and its efficiently defined pa-

rameter �, then their optinalytic construction with an assigned optiscale � = (��, ��, ��) is

expressed as follows:

�: �
�
⇻

� ↠ � = (��, ��, ��)

�: �
�

� = 0
⇻

�

↡ ↡ ↡
� = (��, ��, ��)

�

Or the optinalytic construction is inversely expressed as:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

�: �
�

� = 0
⇻

�

↡ ↡ ↡
� = (��, ��, ��)

�

Such that (��, ��, ��, . … . , ��) ∈ � ; � can be an estimate of � ; (��, ��, ��) ∈ � ;

�, � & � ∈ ℝ; �� ≠ 0; and � & � are isoreflective pairs. � = 0 is by default operation,

except under optinalytic normalization. � could be the average (mean), median, mode,

maximum, range, standard deviation, variance, or others, of variable �.

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity

(��1�����./��2�����.) and its derivatives satisfied the Y-rule of Kabirian-based isomor-

phic optinalysis.

��1�����.(�, �)
…

��2�����.(�, �)
⇌ �������.(�, �) = �������.(�, �) ⇌ �������.(�, �) = �������.(�, �)

where �, � ∈ ℝ.

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.) function on two dif-

ferent, but inverse optinalytic scales.

2.8.3. Different methods of optinalytic feature transformation

Let � = (��, ��, ��, . … . , ��) be a given random variable and � = (��, ��, ��, . … . , ��)

is an estimate of the � variable.

If �������.(�, �) = �
�
⇻

� ↠ � expresses the optinalytic function, then we have

the following methods:

Scaloc-invariant transformer

Scaler method 1: � = � − ����(�), and � = ���(�).

Scaler method 2: � = � − ����(�), and � = ����������_��������(�)

Scaler method 3: � = � − ����(�), and � = ���������_��������(�)

Scaler method 4: � = � − ����(�), and � = ���(�) − min (�)

Scaler method 5: � = � − ����(�), and � = ���(���(�))

Scaler method 6: � = � − ����(�), and � = ����(���(�))

Scale-invariance transformer

Scaler method 7: � =
�

���(�)
, and � = ���(�) − min(�)

Scaler method 8: � =
�

���(�)
, and � = ���(�)

Scaler method 9: � = � and � = ���(�)

2.8.4. Python code

Get the python code at:

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/fea-

ture_transformation_estimators.ipynb

Input guide: feature_transformation([data, method, print, guide])

Input options:

 for data: list of numerical values from a set of real numbers.

 for method: "std", "min_max", "maxbyabsmndiff", "mnbyabsmndiff",

"scalocSMM", "scaleSMM", or "max".

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt".

 for guide: "view", or "never".

Examples:

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33]

Examples: 1 print("Transformed_data =", feature_transformation ([data,

"method:std", "print:psim", "guide:never"]))

Examples: 2 print("Transformed_data =", feature_transformation ([data,

"method:min_max", "print:psim", "guide:never"]))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Examples: 3 print("Transformed_data =", feature_transformation ([data,

"method:maxbyabsmndiff", "print:psim", "guide:never"]))

Examples: 4 print("Transformed_data =", feature_transformation ([data,

"method:mnbyabsmndiff", "print:psim", "guide:never"]))

Examples: 5 print("Transformed_data =", feature_transformation ([data,

"method:scalocSMM", "print:psim", "guide:never"]))

Examples: 6 print("Transformed_data =", feature_transformation ([data,

"method:scaleSMM", "print:psim", "guide:never"]))

Examples: 7 print("Transformed_data =", feature_transformation ([data,

"method:max", "print:psim", "guide:never"]))

3. Discussion

The estimates produced by Kabirian-based optinalysis [3] can be estimated as scale-

invariant, location-invariant, and scale-and-location-invariant. These invariance proper-

ties of these proposed estimators are good pieces of evidence to prove goodness and ro-

bustness for symmetry/asymmetry, similarity/dissimilarity, and identity/unidentity esti-

mations. The commonly used estimators of symmetry/asymmetry, similarity/dissimilar-

ity, and identity/unidentity are either scale-invariant or location-invariant [1], but rarely

have combined the scale-and-location-invariant property. These properties have solved a

very important problem of data analytics that relates to dealing with the issues of scaling

and location shift. Comparison of multiple sets of variables (datasets) can be compared

irrespective of the effect of scaling or location shift. Invariances and robustness are very

important and desirable properties supposed to be found with estimators of dispersion,

symmetry, cluster analysis using pairwise comparison approaches, etc.; that are essen-

tially and routinely used in data analytics [1], [2]. Some of the feature transformation al-

ternatives of this proposal are not at zero mean and restricted boundary, which is unlike

the commonly used methods of feature standardization and normalization.

The proposed statistical and geometrical symmetry is complementary and matching

alternatives to skewness measure (e.g., Pearson’s first and second coefficients of skewness,

standardized third central moment, etc) and object symmetry analysis (e.g., Riemannian

distance, centroid distances, etc) respectively. Symmetric pairs of structures are exact au-

tomorphisms of their pair points. The commonly used estimators of symmetry cannot be

proven by the concept of automorphism but automorphism is always assumed. The pro-

posed statistical and geometrical pairwise similarity and identity estimators are alterna-

tives to similarity or distance measures (e.g., cosine similarity, Euclidean distance, etc),

and the pairwise sequence similarity or identity estimation respectively. The proposed

statistical and geometrical mirroring are alternatives to the repeated approach of pairwise

matrix comparisons clustering and also the dispersion estimators around a centre (e.g.,

standard deviation and coefficient of variation). Similarly, alternatives to the methods of

feature transformation were also provided in this proposal to eliminate the possibilities of

zero mean and restricted boundary after feature standardization and normalization.

The main drawbacks and limitations of these proposed estimators include: the vari-

ables' lengths must be the same (for the case of pairwise comparison), and pairing style or

alternate reflection has to be chosen and adopted. All these limitations cannot be consid-

ered problematic but can be carefully treated by optimized and standardized alignment

approaches and as well as common adoption of a chosen pairing style.

4. Conclusion

Based on the paradigm of Kabirian-based optinalysis, some statistical and geomet-

rical estimators of symmetry/asymmetry, similarity/dissimilarity/distance, and iden-

tity/unidentity were proposed. Other estimators for feature transformation are also pro-

posed. These estimators are characterized as invariant (robust) to either or both the scale

and location parameters.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

Supplementary Materials: The supplementary files are python codes. All the python codes are

available at: https://github.com/Abdullahi-KB/Kabirian-based_optinalysis

Funding: This research did not receive any specific grant from funding agencies in the public, com-

mercial, or not-for-profit sectors.

Conflicts of Interest: The author has no conflict of interest to declare.

References

[1] K. Takeuchi, “Some Theorems on Invariant Estimators of location. In: Contribution on Theory of Mathematical Statistics”,

Springer, Tokyo, 2020. https://doi.org/10.1007/978-4-431-55239-0_3

[2] V. Hogg Robert, W. McKean Joseph, & T. Craig Allen, “Introduction to Mathematical Statistics”, Eighth Edition, Pearson

Education, USA, 2019.

[3] Z. Xiao, J. Wu, “Analysis on Image Symmetry Detection Algorithms”, Proceedings - Fourth International Conference on Fuzzy

Systems and Knowledge Discovery, FSKD 2007. 4. 745-750. https://doi.org/10.1109/FSKD.2007.173

[4] A.D. Costea, R. Varga, S. Nedevschi, “Fast boosting based detection using scale invariant multimodal multiresolution filtered

features. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR”, Honolulu, HI, USA, pp. 993–1002,

2017. https://doi.org/10.1109/CVPR.2017.112

[5] A. S. Shirkhorshidi, S. Aghabozorgi, & T. Wah, “A Comparison Study on Similarity and Dissimilarity Measures in Clustering

Continuous Data”, PLOS ONE, 10.e0144059, 2015. https://doi.org/10.1371/journal.pone.0144059

[6] X. Fu, S. Shao, “Symmetry and Asymmetry Features for Human Detection. In: Li, B., Yang, M., Yuan, H., Yan, Z. (eds) IoT as a

Service. IoTaaS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering”, Cham. Vol 271, 2019, Springer. https://doi.org/10.1007/978-3-030-14657-3_30

[7] K. Wada, ”Outliers in official statistics”, Japanese Journal of Statistics and Data Science, 3:669-691, 2020.

https://doi.org/10.1007/s42081-020-00091-y

[8] K. Bindawa Abdullahi, “Kabirian-based Optinalysis: Its Paradigm, Theorems, and Properties”, Preprints, 2020080072, 2022.

https://doi.org/10.20944/preprints202008.0072.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1

