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Abstract: Good estimators are characterized as robust, unbiased, efficient, and consistent. However, 

the commonly used estimators are weak or lack one or more of these properties. In this article, eight 

(8) estimators for statistical and geometrical estimations of symmetry/asymmetry, 

similarity/dissimilarity, identity/unidentity, and feature transformation were proposed following 

Kabirian-based optinalysis and other operations. The proposed estimators are characterized as 

invariant (robust) under scaling, location shift, and rotation or reflection. A computing code was 

written in python language for each of the proposed estimators so that peers can have working 

codes for application and performance evaluation. 
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1. Introduction 

Good estimators are characterized as robust (invariant), unbiased, efficient, and 

consistent [1], [2]. However, the commonly used estimators of symmetry/asymmetry, 

similarity/dissimilarity/distance, and identity/unidentity estimation lack one or more of 

these properties. Methods of symmetry/asymmetry detection of shapes and distributions 

and those of similarity/dissimilarity/deviation/distance measures between objects, 

shapes, and distributions have been developed since earlier times. However, these 

methods can either or not be characterized as scale-invariant, location-invariant, and 

scale-and-location-invariant [3], [4], [5], [6], [7] 

Symmetry or asymmetry detectors are good candidates for shape analysis and are 

very useful tools in object detection and recognition in many situations. Symmetry is 

characterized as the invariance of objects or properties under a set of operations. 

Moreover, fast and effective symmetry recognition is still a difficult problem in computer 

vision [3], [8]. In image analysis, most of the symmetry detectors are invariant to scaling 

and rotation but not to the contrast and brightness of images, but some asymmetry 

detectors are invariant to image contrast [6]. 

Similarity, distance, or deviation measures are the core components used by distance-

based clustering algorithms that placed dissimilar data points into different clusters, while 

similar data points are placed in the same clusters [5]. Similarly, deviation measures of an 

independent and identically distributed random variable(s) are underpinned by the 

measures of statistical dispersion. Some of the major disadvantages of commonly used 

similarity, distance or deviation measures include outlier sensitivity, lack of invariance to 

linear transformation, and Low accuracy for high-dimensional datasets [5], [7]. 

The estimators of symmetry/asymmetry, similarity/dissimilarity/distance, and 

identity/unidentity have one common mathematical feature of automorphism or 

isomorphism [3]. Therefore, a conceptually and theoretically good estimator of 

symmetry/asymmetry, similarity/dissimilarity/distance, and identity/unidentity should 

be proven as a bijection function. Almost all the estimators have failed to meet this 

important operation. Recently, the emergence of Kabirian-based optinalysis could be 

utilized for the development of alternative estimators [3]. Kabirian-based optinalysis is a 
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function that isoreflectively or autoreflectively compares the similarity, symmetry, and 

identity between two mathematical structures as an optic-like (mirror-like) reflection of 

each other about a mid-point or symmetrical line [8].  

In this paper, Kabirian-based optinalysis, coupled with other operations were used. 

About eight (8) estimators for statistical and geometrical symmetry/asymmetry, 

similarity/dissimilarity/distance, identity/unidentity estimations, and feature 

transformation were proposed.  

2. Methods 

2.1. Proposal 1: Statistical Symmetry 

2.1.1. Definition  

Statistical symmetry is a mirror reflection of statistically defined data points to itself. 

Under Kabirian-based optinalysis, it is the autoreflectivity of data points to itself. 

Statistical symmetry refers to the theoretical ordering, with or without centering the data 

and optinalysing the established autoreflective pair for a given variable.  

2.1.2. Computational steps and algorithmic procedure 

Suppose we have a set of variables � = (��, ��, ��, . … . , ��) . Let the order of 

algorithmic transformations ��  and ��  as centering and ordering of the data � 

respectively. The optinalysis-based statistical symmetry implies the following steps:  

First step 1: Centering the data � (i.e., location removal). This is optional, depending 

on the task. By centering the variable, two distinct sets of positive and negative integers 

were obtained.  

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a theoretical order and the autoreflective pair of symmetry 

(shape) for the ��(�) variable. Note that numerical values are theoretically arranged in 

ascending or descending order. The two distinct separations of the integers into a positive 

and negative form the basis for the establishment of the autoreflective pair. For the 

efficiency of the result, absolute estimates of the centered data are used.  

���,�(�)���,�(�′)� = (�� ≤, �� ≤, �� … ≤ ����
�

, �����
�

, �′���
�

… ≥ ��
�, ≥ ��

�, ≥ ��
�) 

���,�(�)���,�(�′)� = (�� ≥, �� ≥, �� … ≥ ����
�

, �����
�

, �′���
�

… ≤ ��
���, ≤ ��

���, ≤ ��
�) 

Third step 3: Optinalyse (by Kabirian-based optinalysis [3]) the autoreflective pair of 

���,�(�)���,�(�′)�.  

�:  ��,�(�)
�
⇻

��,�(�′)  ↠  � 

�:

⎣
⎢
⎢
⎢
⎡��,�(�) = ���, ��, ��, . … . , ����

�
� � = ������

�
�

⇻
��,�(�′) = ��′���

�
, . … . , �′�, �′�, �′��

↡ ↡ ↡
� = (��, ��, ��, . … . , ����

�
, ����

�
, ����

�
, . … . , ����, ����, ��) ⎦

⎥
⎥
⎥
⎤

 

Such that ��,�(�), ��,�(�′), � & � ∈ ℝ ; �� ≠ 0 , � ∈ ℕ ; ��,�(�) & ��,�(�′) ∈ �  and 

��,�(�) & ��,�(�′) are autoreflective pairs about a central point �.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.) 

and its derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.   

��1����.(�, �′)
…

��2����.(�′, �)
⇌ �����.(�, �′) = �����.(�′, �) ⇌ ������.(�, �′) = ������.(�′, �) 

where �, �′ ∈ ℝ. 
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The two possible Kabirian bi-coefficients (��1����. & ��2����.)  function on two 

different, but inverse optinalytic scales.     

2.1.3. Scale and scaloc-invariant statistical symmetry 

Statistical symmetry is called scale invariance if the efficient location parameter is not 

removed from the variable, while it is called scaloc-invariant if the efficient location 

parameter is removed from the variable.  

2.1.4. General properties of statistical symmetry  

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers.  

iii. Statistical symmetry is scale-invariant (i.e., robust to scale, and unitless) 

estimator.  

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��).  

������.(�) = ������.(��) = ������.(−��) 

�����.(�) = �����.(��) = �����.(−��) 

������.(�) = ������.(��) = ������.(−��) 

where �, � ∈ ℝ; � ≠ 0. 

Statistical symmetry is a location-invariant estimator, only if, the efficient location 

parameter is removed from the variable. For instance, taking the absolute distances from 

the mean. 

iv. Supposed we have a variable � = (��, ��, ��, . … . , ��), then it is shifted by a 

�  location and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The 

location-invariance implies: 

������.(�) = ������.(�� − �) ≠ ������.(��) 

�����.(�) = �����.(�� − �) ≠ �����.(��) 

������..(�) = ������.(�� − �) ≠ ������.(��) 

where �, ��, � ∈ ℝ; �  is the mean estimate of ��. 

v. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), statistical symmetry is its scaloc-invariant and/or scale-

invariant estimator.    

Supposed we have an �  scaling and �  location shift of a variable � =

(��, ��, ��, . … . , ��). 

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

statistical symmetry is an efficient estimator. 

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �} 

�����.(�) = �����.{(�� + �) − �} = �����.{(�� − �) − �} 

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �} 

where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant effect 

is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant statistical symmetries are efficient estimators. 

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �} 

�����.(�) = �����.{�(� + �) − �} = �����.{−�(� + �) − �} 

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �} 
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where �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �); and the resultant ef-

fect is a scale property.  

vi. Statistical symmetry is invariant to sample size or multiple repeats of a 

univariate dataset. But the univariate sample size invariance is effective to 

�����. and ������., and not to ������.. 

Supposed we have a � duplicate of a variable � = (��, ��, ��, . … . , ��). 

By Kabirian-based optinalysis [3], it shows that 

������.(�) ≠ ������.([�] ∗ �) 

�����.(�) = �����.([�] ∗ �) 

������.(�) = ������.([�] ∗ �) 

where � ∈ ℝ; � ∈ ℕ. 

vii. Statistical symmetry is invariant to sample size or multiple repeats of multi-

variate datasets. But the multivariate sample size invariance is effective to 

�����. and ������., and not to ������..   

Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��),  � = (��, ��, ��, . … . , ��).  

By Kabirian-based optinalysis [3], it shows that 

������.��[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �� 

�����.��[�], [�], [�]�� = �����.��[�], [�], [�]� ∗ �� 

������.��[�], [�], [�]�� = ������.��[�], [�], [�]� ∗ �� 

where �, �, � ∈ ℝ; � ∈ ℕ.   

2.1.5. Python code 

Get the python code at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/sym-

metry_estimators.ipynb  

Input guide: symmetry([data, centering, ordering, print])  

Input options:  

 for data: list of numerical values from a set of real numbers. 

 for centering: "allow", or "never".   

 for ordering: "ascend", "descend", or "never". 

 for print: "kc", "psym", "pasym", "kcalt1", "kcalt2", or "kcalt".   

Examples:  

print("Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:allow", "or-

dering:never", "print:kc"])) 

print("Probability of symmetry =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:allow", 

"ordering:never", "print:psym"])) 

print("Probability of asymmetry =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:pasym"])) 

print("Alt1. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", symmetry([sorted([2,4,6,8,4,2,4,5,6]), "centering:al-

low", "ordering:never", "print:kcalt"])) 

2.1.6. Drawbacks and limitations of statistical symmetry 

The following are some of the identified drawbacks and limitations of statistical sym-

metry:   

i. The given random ordering of elements of the list of the variable(s) is not 

preserved, thus an efficient theoretical ordering (i.e., ascend or descend sort-

ing) has to be adopted or used.  
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ii. The two possible Kabirian bi-coefficients do not function on the same opti-

nalytic scale. For comparison of results, estimates with the mixed Kabirian 

coefficients should either be translated forward or otherwise uniformed by 

backward alternate translation. 

2.2. Proposal 2: Geometrical Symmetry  

2.2.1. Definition  

Geometrical symmetry is a mirror reflection of a geometrically defined data point to 

itself. Under optinalysis, it is the autoreflectivity of data points to itself. Geometrical sym-

metry refers to the conceptual ordering, with or without centering the data and optinalys-

ing the established autoreflective pair for a given variable.  

2.2.2. Computational steps and algorithmic procedure 

Suppose we have a sequence of variable � = (��, ��, ��, . … . , ��). Let the order of al-

gorithmic transformations ��  and ��  as centering and ordering of the data �  respec-

tively. The optinalysis-based geometrical symmetry implies the following steps:  

First step 1: Center the data � (i.e., location removal). This is optional, depending on 

the task.  

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a conceptual order and the autoreflective pair of symmetry 

(shape) for the ��(�) variable.  

���,�(�)���,�(�′)� = (��, ��, ��, . … . ����
�

, �����
�

, ��
���

�
. … . , ��

�
, ��

�
, ��

�
)) 

Third step 3: Optinalyse (by Kabirian-based optinalysis [3]) the autoreflective pair of 

���,�(�)���,�(�′)�.  

�:  ��,�(�)
�
⇻

��,�(�′)  ↠  � 

�:

⎣
⎢
⎢
⎢
⎡��,�(�) = ���, ��, ��, . … . , ����

�
� � = ������

�
�

⇻
��,�(�′) = ��′���

�
, . … . , �′�, �′�, �′��

↡ ↡ ↡
� = (��, ��, ��, . … . , ����

�
, ����

�
, ����

�
, . … . , ����, ����, ��) ⎦

⎥
⎥
⎥
⎤

 

Such that ��,�(�), ��,�(�′), � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; ��,�(�) & ��,�(�′) ∈ �  and 

��,�(�) & ��,�(�′) are autoreflective pairs about a central point �.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.) 

and its derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.  

��1����.(�, �′)
…

��2����.(�′, �)
⇌ �����.(�, �′) = �����.(�′, �) ⇌ ������.(�, �′) = ������.(�′, �) 

where �, �′ ∈ ℝ. 

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.   

2.2.3. Scale and scaloc-invariant geometrical symmetry 

Geometrical symmetry is called scale invariance if the efficient location parameter is 

not removed from the variable, while it is called scaloc-invariant if the efficient location 

parameter is removed from the variable.  
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2.2.4. General properties of geometrical symmetry  

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed. 

ii. It applies to variable(s) from the set of real numbers.  

iii. Geometrical symmetry is scale-invariant (i.e., robust to scale, and unitless) 

estimator.  

Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��).  

������.(�) = ������.(��) = ������.(−��) 

�����.(�) = �����.(��) = �����.(−��) 

������.(�) = ������.(��) = ������.(−��) 

where �, � ∈ ℝ; � ≠ 0.  

iv. Geometrical symmetry is a location-invariant estimator, only if, the efficient 

location parameter is removed from the variable. For instance, taking the 

absolute distances from the mean. 

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it is shifted by a � location 

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �). The location-invariance implies: 

������.(�) = ������.(�� − �) ≠ ������.(��) 

�����.(�) = �����.(�� − �) ≠ �����.(��) 

������..(�) = ������.(�� − �) ≠ ������.(��) 

where �, ��, � ∈ ℝ; �  is the mean estimate of ��.  

v. Where location and scale properties are combined (i.e., scaloc-transform dis-

tribution), geometrical symmetry is its invariant scaloc-invariant and/or 

scale-invariant estimator.   

Supposed we have an �  scaling and �  location shift of a variable � =

(��, ��, ��, . … . , ��).  

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

geometrical symmetry is an efficient estimator.   

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �} 

�����.(�) = �����.{(�� + �) − �} = �����.{(�� − �) − �} 

������.(�) = ������.{(�� + �) − �} = ������.{(�� − �) − �} 

where �, �, � ∈ ℝ; � ≠ 0; �  is the mean estimate of (�� ± �). 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant geometrical symmetries are efficient estimators. 

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �} 

�����.(�) = �����.{�(� + �) − �} = �����.{−�(� + �) − �} 

������.(�) = ������.{�(� + �) − �} = ������.{−�(� + �) − �} 

where �, �, � ∈ ℝ; � ≠ 0; �  is the mean estimate of ±�(� + �).  

vi. Geometrical symmetry is population-independent and variant to sample size 

or multiple repeats of a univariate dataset.  

Supposed we have a � duplicate of a variable � = (��, ��, ��, . … . , ��). 

By Kabirian-based optinalysis [3], it shows that 

������.(�) ≠ ������.([�] ∗ �) 

�����.(�) ≠ �����.([�] ∗ �) 

������.(�) ≠ ������.([�] ∗ �) 

where � ∈ ℝ; � ∈ ℕ. 

vii. Geometrical symmetry is a variant to sample size or multiple repeats of mul-

tivariate datasets.   
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Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��),  � = (��, ��, ��, . … . , ��).  

By Kabirian-based optinalysis [3], it shows that 

������.��[�], [�], [�]�� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��� 

�����.��[�], [�], [�]�� ≠ �����.��[�] ∗ �, [�] ∗ �, [�] ∗ ��� 

������.��[�], [�], [�]�� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��� 

where �, �, � ∈ ℝ; � ∈ ℕ.  

2.2.5. Python code 

Get the python code at: 

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/sym-

metry_estimators.ipynb  

Input guide: symmetry([data, centering, ordering, print])  

Input options:  

 for data: list of numerical values from a set of real numbers. 

 for centering: "allow", or "never".   

 for ordering: "ascend", "descend", or "never". 

 for print: "kc", "psym", "pasym", "kcalt1", "kcalt2", or "kcalt".   

Examples:  

print("Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "order-

ing:never", "print:kc"])) 

print("Probability of symmetry =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:psym"])) 

print("Probability of asymmetry =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:pasym"])) 

print("Alt1. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", symmetry([[2,4,6,8,4,2,4,5,6], "centering:allow", "or-

dering:never", "print:kcalt"])) 

2.2.6. Drawbacks and limitations of geometrical symmetry  

The following are some of the identified drawbacks and limitations of geometrical 

symmetry:   

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.    

ii. The two possible Kabirian bi-coefficients do not function on the same opti-

nalytic scale. For comparison of results, estimates with the mixed Kabirian 

coefficients should either be translated forward or otherwise uniformed by 

backward alternate translation.     

2.3. Proposal 3: Statistical Mirroring 

2.3.1. Definition 

Statistical mirroring is the measure of deviation or proximity of data points from a 

defined location of a given distribution. Under Kabirian-based optinalysis, statistical mir-

roring is the isoreflectivity of data points to a defined statistical mirror (i.e., a defined and 

amplified location estimate of the distribution through a defined length). Statistical mir-

roring refers to the theoretical ordering, with or without centering the data and optinalys-

ing the established isoreflective pair for a given variable.  
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2.3.2. Computational steps and algorithmic procedure 

Suppose we have a set of variables � = (��, ��, ��, . … . , ��). Let the order of algorith-

mic transformations �� and �� as centering and ordering of the data � respectively. The 

optinalysis-based statistical mirroring implies the following steps:  

First step 1: Centering the data � (i.e., location removal). This is optional, depending 

on the task.  

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a theoretical order for the ��(�) variable. Note that numerical 

values are theoretically arranged in ascending or descending order. 

��,�(�) = (�� ≤, ��, ≤  ��, ≤. … . , ≤ ��) 

or alternatively 

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

Second step 3: Design an efficient statistical mirror. A statistical mirror refers to a de-

fined and amplified location estimate (e.g., mean, median, maximum, range, etc) of the 

distribution through a defined length. Different types of statistical mirrors can be de-

signed, but the choice depends on the task to be performed.  

� = (��, ��, ��, . … . , ��) 

Third step 4: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) onto � about �. For instance,  

Head-to-head pairing or reflection is given as: 

���,�(�⃖)���⃗ � = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��, �, ��, . … . , ��, ��, ��) 

���,�(�⃖)���⃗ � = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��, �, ��, . … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

���,�(�⃗)��⃖�� = (��, . … . ≤, ��, ≤ ��, ≤ ��, �, ��, ��, ��, . … . , ��) 

���,�(�⃗)��⃖�� = (��, . … . ≥, ��, ≥ ��, ≥ ��, �, ��, ��, ��, . … . , ��) 

Fifth step 5: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of 

���,�(�⃗)��⃖�� or ���,�(�⃗)��⃖�� about a mid-point �.  

�:  ��,�(�)
�
⇻

� ↠  � 

�: �
��,�(�) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Or in an alternative way, 

�: �
��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that �, � & � ∈ ℝ; �� ≠ 0; � ∈ ℕ; and ��,�(�) & � are isoreflective pairs. � = 0 

is by default operation, except under optinalytic normalization. � could be the average 

(mean), median, mode, maximum, minimum, etc of the distribution.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity 

(�������.) and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinaly-

sis.   

��1�����.(�, �)
…

��2�����.(�, �)
⇌ ������.(�, �) = ������.(�, �) ⇌ �����.(�, �) = �����.(�, �) 

where �, � ∈ ℝ. 

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.)  function on two 

different, but inverse optinalytic scales.  
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2.3.3. Different approaches to statistical mirroring 

Suppose that �:  �
�
⇻

� ↠ �, where � is the observations, � is the statistical mir-

ror, � is the optiscale. It is called: 

a. A statistical meanic mirroring, if � = �� (i.e., the mean of the distribution of 

�). It is the measure of proximity or deviation (how close or far) the data 

points are from its estimate of the mean.  

b. A statistical medianic mirroring, if � = �� (i.e., the median of the distribution 

of �). It is the measure of proximity or deviation (how close or far) the data 

points are from its median estimate.  

c. A statistical modalic mirroring, if � = �� (i.e., the mode of the distribution of 

�). It is the measure of proximity or deviation (how close or far) the data 

points are from its mode estimate.  

d. A statistical maximalic mirroring, if � = �� (i.e., the maximum of the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their maximum estimate.  

e. A statistical minimalic mirroring, if � = �� (i.e., the minimum of the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their minimum estimate.  

f. A statistical rangic mirroring, if � = ���� (i.e., the range of the distribution 

of �). It is the measure of proximity or deviation (how close or far) the data 

points are from their range estimate. 

g. A statistical reference mirroring, if � = �� (i.e., a reference value outside the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their reference estimate value.  

h. An endo-statistical mirroring, if � = ��, ��, ��, ��, ��, ���� (of a location 

estimate). 

i. An exo-statistical mirroring, if � ≠ ��, ��, ��, ��, ��, ���� (of a location 

estimate).   

2.3.4. Scale and scaloc-invariant statistical mirroring  

Statistical mirroring is called scale invariance if the efficient location parameter is not 

removed from the variable, while it is called scaloc-invariant if the efficient location pa-

rameter is removed from the variable.  

2.3.5. General properties of statistical mirroring 

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers (such as discrete or 

continuous variables containing either or both negative and positive 

values). 

iii. It involves a measure of spread around a defined location estimate (such as 

mean, median, maximum, minimum, and range) and other attributes. 

iv. Statistical mirroring is scale-invariant (i.e., robust to scale, and unitless) 

estimator.  
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Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��) and its statisti-

cal mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the 

associated dataset.  

�������.(�, �) = �������.(��, �) = �������.(−��, �) 

������.(�, �) = ������.(��, �) = ������.(−��, �) 

�����.(�, �) = �����.(��, �) = �����.(−��, �) 

where �, �, � ∈ ℝ; � ≠ 0. 

i. Statistical mirroring is a location-invariant estimator, only if, the efficient lo-

cation parameter is removed from the variable. For instance, taking the ab-

solute distances from the mean. 

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it shifted by a � location 

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �), and its statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset. The location-invariance implies: 

������.(�, �) = ������.(�� − �, �) ≠ ������.(��, �) 

�����.(�, �) = �����.(�� − �, �) ≠ �����.(��, �) 

������..(�, �) = ������.(�� − �, �) ≠ ������.(��, �) 

where �, ��, �, � ∈ ℝ; �  is the mean estimate of ��. 

ii. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), statistical mirroring is its invariant scaloc-invariant and/or 

scale-invariant estimator.    

Supposed we have an �  scaling and �  location shift of a variable � =

(��, ��, ��, . … . , ��) and its statistical mirror as � = (��, ��, ��, . … . , ��), where � is the am-

plified estimate or reference of the associated dataset.   

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

statistical mirroring is an efficient estimator.  

�������.(�, �) = �������.{(�� + �) − �, �} = �������.{(�� − �) − �, �} 

������.(�, �) = ������.{(�� + �) − �, �} = ������.{(�� − �) − �, �} 

�����.(�, �) = �����.{(�� + �) − �, �} = �����.{(�� − �) − �, �} 

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant ef-

fect is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant statistical mirroring are efficient estimators. 

�������.(�, �) = �������.{�(� + �) − �, �} = �������.{−�(� + �) − �, �} 

������.(�, �) = ������.{�(� + �) − �, �} = ������.{−�(� + �) − �, �} 

�����.(�, �) = �����.{�(� + �) − �, �} = �����.{−�(� + �) − �, �} 

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of ±�(� + �); and the resultant 

effect is a scale property.  

iii. Statistical mirroring is a variant of pericentral rotation (alternate reflection), 

except for meanic statistical mirroring.  

Supposed we have a statistically ordered variable � = (��, ��, ��, . … . , ��) and its sta-

tistical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of 

the associated dataset.   

�������.(�⃖)|�⃗) ≠ �������.(�⃗|�⃖) 

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖) 

An exception is the case of meanic statistical mirroring 

���������.(�⃖)|�⃗) = ���������.(�⃗|�⃖) 
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��������.(�⃖)|�⃗) = ��������.(�⃗|�⃖) 

�������.(�⃖)|�⃗) = �������.(�⃗|�⃖) 

where �, � ∈ ℝ. 

iv. Statistical mirroring is invariant to sample size or multiple repeats of a 

univariate dataset. But the univariate sample size invariance is effective to 

������. and �����., and not to �������.. 

Supposed we have a � duplicate of variable � = (��, ��, ��, . … . , ��) and its statistical 

mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the 

associated dataset. 

By Kabirian-based optinalysis [3], it shows that 

�������.(�, �) ≠ �������.([�] ∗ �, �) 

������.(�, �) = ������.([�] ∗ �, �) 

�����.(�, �) = �����.([�] ∗ �, �) 

where �, � ∈ ℝ; � ∈ ℕ 

v. Statistical mirroring is variant to sample size or multiple repeats of 

multivariate datasets, except for meanic statistical mirroring, and is 

effective to ��������. and �������., and not to ���������..   

Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��) ,  � = (��, ��, ��, . … . , ��) , and their statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified mean estimate of the associated dataset. 

By Kabirian-based optinalysis [3], it shows that 

�������.��[�], [�], [�]�, �� ≠ �������.��[�], [�], [�]� ∗ �, �� 

������.��[�], [�], [�]�, �� ≠ ������.��[�], [�], [�]� ∗ �, �� 

�����.��[�], [�], [�]�, �� ≠ �����.��[�], [�], [�]� ∗ �, �� 

An exception is the case of meanic statistical mirroring 

���������.��[�], [�], [�]�, �� ≠ ���������.��[�], [�], [�]� ∗ �, �� 

��������.��[�], [�], [�]�, �� = ��������.��[�], [�], [�]� ∗ �, �� 

�������.��[�], [�], [�]�, �� = �������.��[�], [�], [�]� ∗ �, �� 

where �, �, �, � ∈ ℝ; � ∈ ℕ.  

2.3.6. Python code 

Get the python code at;  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/mirror-

ing_estimators.ipynb 

Input guide: mirroring([data, principal_value, centering, ordering, pairing, print])  

Input options:  

 for data: list of numerical values from a set of real numbers.  

 for principal_value: "mean", "median", "mode", "max", "min", "range", or nu-

merical_value,   

 for centering: "allow", or "never".  

 for ordering: "ascend", "descend", or "never".  

 for pairing: "H_H", or "T_T".  

 for print: "kc", "pprox", "pdev", "kcalt1", "kcalt2", or "kcalt".  

Example 1:  

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

print("Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:allow", 

"ordering:ascend", "pairing:H_H", "print:kc"])) 

print("Probability of proximity =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pprox"])) 
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print("Probability of deviation =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pdev"])) 

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:ascend", "pairing:H_H", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:ascend", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt"])) 

Example 2: 

print("Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:allow", 

"ordering:ascend", "pairing:H_H", "print:kc"])) 

print("Probability of proximity =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pprox"])) 

print("Probability of deviation =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:pdev"])) 

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:ascend", "pairing:H_H", "print:kcalt"])) 

Example 3: 

print("Kabirian coefficient =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:kc"])) 

print("Probability of proximity =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:pprox"])) 

print("Probability of deviation =", mirroring([data, 5.123, "centering:allow", "ordering:as-

cend", "pairing:H_H", "print:pdev"])) 

print("Alt1. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", mirroring ([data, 5.123, "centering:allow", "order-

ing:ascend", "pairing:H_H", "print:kcalt"])) 

2.3.7. Drawbacks and limitations of statistical mirroring 

The following are some of the identified drawbacks and limitations of statistical mir-

roring:   

i. The given random ordering of elements of the list of the variable(s) is not 

preserved, thus an efficient theoretical ordering (i.e., ascend or descend sort-

ing) has to be adopted or used.  

ii. A suitable and efficient pairing style or alternate reflection has to be chosen 

and adopted for repeatability and comparison of results. This excludes only 

statistical meanic mirroring.  

iii. The two possible Kabirian bi-coefficients do not function on the same 

optinalytic scale. For comparison of results, estimates with the mixed 

Kabirian coefficients should either be translated forward or otherwise 

uniformed by backward alternate translation.  
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2.4. Proposal 4: Geometrical Mirroring 

2.4.1. Definition 

Geometrical mirroring is the measure of deviation or proximity of geometrical data 

points from a defined location of a given sequence. Under Kabirian-based optinalysis, ge-

ometrical mirroring is the isoreflectivity of data points to a defined geometrical mirror 

(i.e., a defined and amplified location estimate of the sequence through a defined length). 

Geometrical mirroring refers to the conceptual ordering, with or without centering the 

data and optinalysing the established isoreflective pair for a given variable. Geometrical 

mirroring is a method of shape and sequence analysis 

2.4.2. Computational steps and algorithmic procedure  

Suppose we have a sequence of variable � = (��, ��, ��, . … . , ��). Let the order of al-

gorithmic transformations ��  and ��  as centering and ordering of the data �  respec-

tively. The optinalysis-based geometrical mirroring implies the following steps:  

First step 1: Centering the data � (i.e., location removal). This is optional, depending 

on the task.  

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a conceptual order of sequence for the ��(�) variable.  

��,�(�) = (��, ��, ��, . … . , ��) 

Third step 3: Design an efficient geometrical mirror. A geometrical mirror refers to a 

defined and amplified estimate (e.g., mean, median, maximum, range, etc) of the distri-

bution or others through a defined length. Different types of geometrical mirrors can be 

designed, but the choice depends on the task to be performed.  

� = (��, ��, ��, . … . , ��) 

Third step 4: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) and � about �. For instance,  

Head-to-head pairing or reflection is given as: 

���,�(�⃖�)���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

���,�(��⃗ )��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��) 

Fifth step 5: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of 

���,�(�⃖�)���⃗ � or ���,�(��⃗ )��⃖�� about a mid-point �. 

�:  ��,�(�)
�
⇻

� ↠  � 

�: �
��,�(�) = (��, . … . , ��, ��, ��)

�
⇻

� = (��, ��, ��, . … . ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that �, � & � ∈ ℝ; �� ≠ 0; � ∈ ℕ; and ��,�(�) & � are isoreflective pairs. � = 0 

is by default operation, except under optinalytic normalization. � could be the average 

(mean), median, mode, maximum, minimum, etc of the distribution.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity 

(�������.) and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinaly-

sis. 

��1�����.(�, �)
…

��2�����.(�, �)
⇌ ������.(�, �) = ������.(�, �) ⇌ �����.(�, �) = �����.(�, �) 

where �, � ∈ ℝ. 

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.) function on two 

different, but inverse optinalytic scales.   
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2.4.3. Different approaches to geometrical mirroring 

Suppose that �:  �
�
⇻

� ↠ �, where � is the observations, � is the geometrical 

mirror, � is the optiscale. It is called: 

a. A geometrical meanic mirroring, if � = �� (i.e., the mean of the distribution of 

�). It is the measure of proximity or deviation (how close or far) the data 

points are from its mean estimate.  

b. A geometrical medianic mirroring, if � = �� (i.e., the median of the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from its median estimate.  

c. A geometrical modalic mirroring, if � = �� (i.e., the mode of the distribution 

of �). It is the measure of proximity or deviation (how close or far) the data 

points are from its mode estimate.  

d. A geometrical maximalic mirroring, if � = �� (i.e., the maximum of the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their maximum estimate.  

e. A geometrical minimalic mirroring, if � = �� (i.e., the minimum of the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their minimum estimate.  

f. A geometrical rangic mirroring, if � = ���� (i.e., the range of the distribution 

of �). It is the measure of proximity or deviation (how close or far) the data 

points are from their range estimate. 

g. A geometrical reference mirroring, if � = �� (i.e., a reference value outside the 

distribution of �). It is the measure of proximity or deviation (how close or 

far) the data points are from their reference estimate value.  

h. An endo-geometrical mirroring, if � = ��, ��, ��, ��, ��, ���� (of a location 

estimate). 

i. An exo-geometrical mirroring, if � ≠ ��, ��, ��, ��, ��, ���� (of a location 

estimate).   

2.4.4. Scale and scaloc-invariant geometrical mirroring  

Geometrical mirroring is called scale invariance if the efficient location parameter is 

not removed from the variable, while it is called scaloc-invariant if the efficient location 

parameter is removed from the variable.  

2.4.5. General properties of geometrical mirroring 

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers (such as discrete or 

continuous variables containing either or both negative and positive 

values),   

iii. It involves a measure of spread around a defined location estimate (such as 

mean, median, maximum, minimum, and range) and other attributes. 

iv. Geometrical mirroring is scale-invariant (i.e., robust to scale, and unitless) 

estimator.  
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Supposed we have an � scaling of a variable � = (��, ��, ��, . … . , ��) and its geomet-

rical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of 

the associated dataset.   

�������.(�, �) = �������.(��, �) = �������.(−��, �) 

������.(�, �) = ������.(��, �) = ������.(−��, �) 

�����.(�, �) = �����.(��, �) = �����.(−��, �) 

where �, �, � ∈ ℝ; � ≠ 0. 

i. Geometrical mirroring is a location-invariant estimator, only if, the efficient 

location parameter is removed from the variable. For instance, taking the ab-

solute distances from the mean. 

Supposed we have a variable � = (��, ��, ��, . … . , ��), then it shifted by a � location 

and returned as �� = (�� + �, �� + �, �� + �, . … . , �� + �), and its statistical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset. The location-invariance implies: 

������.(�, �) = ������.(�� − �, �) ≠ ������.(��, �) 

�����.(�, �) = �����.(�� − �, �) ≠ �����.(��, �) 

������..(�, �) = ������.(�� − �, �) ≠ ������.(��, �) 

where �, ��, �, � ∈ ℝ; �  is the mean estimate of ��. 

ii. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), geometrical mirroring is its invariant scaloc-invariant and/or 

scale-invariant estimator.    

Supposed we have an �  scaling and �  location shift of a variable � =

(��, ��, ��, . … . , ��) and its geometrical mirror as � = (��, ��, ��, . … . , ��), where � is the 

amplified estimate or reference of the associated dataset. 

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

geometrical mirroring is an efficient estimator.   

�������.(�, �) = �������.{(�� + �) − �, �} = �������.{(�� − �) − �, �} 

������.(�, �) = ������.{(�� + �) − �, �} = ������.{(�� − �) − �, �} 

�����.(�, �) = �����.{(�� + �) − �, �} = �����.{(�� − �) − �, �} 

where �, �, �, � ∈ ℝ; � ≠ 0; � is the mean estimate of (�� ± �); and the resultant ef-

fect is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant geometrical mirroring are efficient estimators. 

�������.(�, �) = �������.{�(� + �) − �, �} = �������.{−�(� + �) − �, �} 

������.(�, �) = ������.{�(� + �) − �, �} = ������.{−�(� + �) − �, �} 

�����.(�, �) = �����.{�(� + �) − �, �} = �����.{−�(� + �) − �, �} 

where �, �, �, � ∈ ℝ; � ≠ 0; �  is the mean estimate of ±�(� + �); and the resultant 

effect is a scale property.  

iii. Geometrical mirroring is variant to pericentral rotation (alternate reflection) 

except for meanic geometrical mirroring. 

Supposed we have a geometrically ordered variable � = (��, ��, ��, . … . , ��) and its 

statistical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference 

of the associated dataset.   

�������.(�⃖)|�⃗) ≠ �������.(�⃗|�⃖) 

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖) 

An exception is the case of meanic statistical mirroring 

���������.(�⃖)|�⃗) = ���������.(�⃗|�⃖) 
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��������.(�⃖)|�⃗) = ��������.(�⃗|�⃖) 

�������.(�⃖)|�⃗) = �������.(�⃗|�⃖) 

where �, � ∈ ℝ.  

iv. Geometrical mirroring is population-independent and variant to sample 

size or multiple repeats of a univariate dataset.  

Supposed we have a � duplicate of variable � = (��, ��, ��, . … . , ��) and its geomet-

rical mirror as � = (��, ��, ��, . … . , ��), where � is the amplified estimate or reference of 

the associated dataset. 

By Kabirian-based optinalysis [3], it shows that 

�������.(�, �) ≠ �������.([�] ∗ �, �) 

������.(�, �) ≠ ������.([�] ∗ �, �) 

�����.(�, �) ≠ �����.([�] ∗ �, �) 

where �, � ∈ ℝ; � ∈ ℕ. 

v. Geometrical mirroring is variant to sample size or multiple repeats of 

multivariate datasets.   

Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��) , � =

(��, ��, ��, . … . , ��) ,  � = (��, ��, ��, . … . , ��) ,  and their geometrical mirror as � =

(��, ��, ��, . … . , ��), where � is the amplified estimate or reference of the associated da-

taset. 

By Kabirian-based optinalysis [3], it shows that 

�������.��[�], [�], [�]�, �� ≠ �������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, �� 

������.��[�], [�], [�]�, �� ≠ ������.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, �� 

�����.��[�], [�], [�]�, �� ≠ �����.��[�] ∗ �, [�] ∗ �, [�] ∗ ��, �� 

where �, �, �, � ∈ ℝ; � ∈ ℕ.  

2.4.6. Python code 

Get the python code at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/mirror-

ing_estimators.ipynb 

Input guide: mirroring([data, principal_value, centering, ordering, pairing, print])  

Input options:  

 for data: list of numerical values from a set of real numbers. 

 for principal_value: "mean", "median", "mode", "max", "min", "range", or nu-

merical_value,   

 for centering: "allow", "never".  

 for ordering: "ascend", "descend", or "never".  

 for pairing: "H_H", or "T_T".  

 for print: "kc", "pprox", "pdev", "kcalt1", "kcalt2", or "kcalt". 

Example 1: 

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

print("Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:allow", 

"ordering:never", "pairing:H_H", "print:kc"]))  

print("Probability of proximity =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pprox"]))  

print("Probability of deviation =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pdev"]))  

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:never", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:mean", "center-

ing:allow", "ordering:never", "pairing:H_H", "print:kcalt2"]))  
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print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:mean", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt"]))  

Example 2: 

print("Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:allow", 

"ordering:never", "pairing:H_H", "print:kc"]))   

print("Probability of proximity =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pprox"]))  

print("Probability of deviation =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:pdev"]))  

print("Alt1. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", mirroring([data, "principal_value:max", "centering:al-

low", "ordering:never", "pairing:H_H", "print:kcalt"]))  

Example 3: 

print("Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "ordering:never", 

"pairing:H_H", "print:kc"]))  

print("Probability of proximity =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:pprox"])) 

print("Probability of deviation =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:pdev"]))  

print("Alt1. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", mirroring([data, 0.123, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt"]))  

2.4.7. Drawbacks and limitations of geometrical mirroring 

The following are some of the identified drawbacks and limitations of geometrical 

mirroring:   

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.  

ii. A suitable and efficient pairing style or alternate reflection has to be chosen 

and adopted for repeatability and comparison of results. This excludes only 

statistical meanic mirroring.  

iii. The two possible Kabirian bi-coefficients do not function on the same 

optinalytic scale. For comparison of results, estimates with the mixed 

Kabirian coefficients should either be translated forward or otherwise 

uniformed by backward alternate translation.   

2.5. Proposal 5: Statistical Pairwise Comparison 

2.5.1. Definition 

A statistical pairwise comparison between two variables, under Kabirian-based opti-

nalysis, is their isoreflectivity in a statistical order. The statistical pairwise comparison re-

fers to the theoretical ordering, with or without centering and descaling the data and opti-

nalysing the established isoreflective pair for the given variables.  
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2.5.2. Computational steps and algorithmic procedure  

Suppose we have a set of  variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations ��, �� and �� as center-

ing, ordering, and descaling of the data � respectively. The optinalysis-based statistical 

pairwise comparison implies the following steps:  

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.  

��(�) = (��, ��, ��, . … . , ��) 

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a theoretical order for the ��(�) and ��(�) variables. Note 

that numerical values are theoretically arranged in ascending or descending order.   

��,�(�) = (�� ≤, ��, ≤  ��, ≤. … . , ≤ ��) 

��,�(�) = (�� ≤, ��, ≤  ��, ≤. … . , ≤ ��) 

or alternatively 

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

��,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

Second step 2: Descaling the theoretically ordered sequence of ��,�(�) and ��,�(�) 

variables.   

��,�,�(�) = (�� ≤, ��, ≤  ��, ≤. … . , ≤ ��) 

��,�,�(�) = (�� ≤, ��, ≤  ��, ≤. … . , ≤ ��) 

or alternatively 

��,�,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

��,�,�(�) = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

Second step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�,�(�) and ��,�,�(�) about �. For instance,   

Head-to-head pairing or reflection is given as: 

���,�,�(�⃖)���,�,�(��⃗ )� = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��, �, �� ≤. … . , ≤ ��, ≤ ��, ≤ ��) 

���,�,�(�⃖)���,�,�(��⃗ )� = (�� ≥, ��, ≥ ��, ≥. … . , ≥ ��, �, �� ≥. … . , ≥ ��, ≥ ��, ≥ ��) 

Tail-to-tail pairing or reflection is given as: 

���,�,�(�⃗)���,�,�(�⃖�)� = (��, . … . ≤, ��, ≤ ��, ≤ ��, �, �� ≤, ��, ≤ ��, ≤. … . , ≤ ��) 

���,�,�(�⃗)���,�,�(�⃖�)� = (��, . … . ≥, ��, ≥ ��, ≥ ��, �, �� ≥, ��, ≥ ��, ≥. … . , ≥ ��) 

Third step 4: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair 

���,�,�(�⃖)���,�,�(��⃗ )� or any other suitable isoreflective pair about a mid-point �.   

�:  ��,�,�(�⃖)
�
⇻

��,�,�(��⃗ ) ↠ � 

�: �
��,�,�(�⃖) = (�� ≤, ��, ≤ ��, ≤. … . , ≤ ��)

�
⇻

��,�,�(��⃗ ) = (�� ≤. … . , ≤ ��, ≤ ��, ≤ ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and 

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.   

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.) and 

its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis.   

��1����.(�, �)
…

��2����.(�, �)
⇌ �����.(�, �) = �����.(�, �) ⇌ ������.(�, �) = ������.(�, �) 

where �, � ∈ ℝ. 
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The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.   

2.5.3. Scale and scaloc-invariant statistical pairwise comparison  

Statistical pairwise comparison is called scale invariance if the efficient location pa-

rameter is not removed from the variable, while it is called scaloc-invariant if the efficient 

location parameter is removed from the variable.  

2.5.4. General properties of statistical pairwise comparison  

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers (such as discrete or 

continuous variables containing either or both negative and positive 

values),   

iii. Statistical pairwise comparison is a scale-invariant (i.e., robust to scale, 

unitless, and dimensionless) estimator.  

Supposed we have an �  scaling of variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��).  

������.(�, �) = ������.(��, ��) = ������.(−��, −��) 

�����.(�, �) = �����.(��, ��) = �����.(−��, −��) 

������.(�, �) = ������.(��, ��) = ������.(−��, −��) 

where �, �, � ∈ ℝ; � ≠ 0. 

Because the variables for statistical pairwise comparison can be descaled, two varia-

bles with different scales can be compared. 

������.(�, �) = ������.(�, ��) = ������.(−�, −��) 

������.(�, �) = ������.(��, �) = ������.(−��, −�) 

 

�����.(�, �) = �����.(�, ��) = �����.(−�, −��) 

�����.(�, �) = �����.(��, �) = �����.(−��, −�) 

������.(�, �) = ������.(�, ��) = ������.(−�, −��) 

������.(�, �) = ������.(��, �) = ������.(−��, −�) 

where �, �, � ∈ ℝ; � ≠ 0. 

iv. Statistical pairwise comparison is a location-invariant estimator, only if, the 

efficient location parameter is removed from the variable. For instance, 

taking the absolute distances from the mean. 

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��) , then both were shifted by a �  location and returned as �� = (�� +

�, �� + �, �� + �, . … . , �� + �), and �� = (�� + �, �� + �, �� + �, . … . , �� + �). The location-in-

variance implies: 

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��) 

�����.(�, �) = �����.(�� − �, �� − �) = �����.(��, ��) 

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��) 

where �, �, ��, ��, � ∈ ℝ; � and �  are the mean estimates of �� and �� respectively. 

v. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), statistical pairwise is its invariant scaloc-invariant and/or 

scale-invariant estimator.  
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Supposed we have an �  scaling and �  location shift of  variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).   

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

statistical pairwise comparison is an efficient estimator.   

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �} 

�����.(�, �) = �����.{(�� + �) − �, (�� + �) − �} = �����.{(�� − �) − �, (�� − �) − �} 

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of (�� ± �)  and 
(�� ± �) respectively; and the resultant effect is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant statistical pairwise comparison are efficient estimators. 

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �} 

�����.(�, �) = �����.{�(� + �) − �, �(� + �) − �} = �����.{−�(� + �) − �, −�(� + �) − �} 

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of ±�(� + �)  and 

±�(� + �) respectively; and the resultant effect is a scale property.  

vi. Statistical pairwise comparison is a variant of pericentral rotation (alternate 

reflection). 

Supposed we have a statistically ordered variables � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��).  

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖) 

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

where �, �, ∈ ℝ. 

vii. Statistical pairwise comparison is population-independent and variant to 

sample size or multiple repeats of a univariate dataset.  

Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��).   

By Kabirian-based optinalysis [3], it shows that 

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �) 

�����.(�, �) ≠ �����.([�] ∗ �, [�] ∗ �) 

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �) 

where �, � ∈ ℝ; � ∈ ℕ. 

viii. Statistical pairwise comparison is a variant to sample size or multiple 

repeats of multivariate datasets.   

Supposed we have a �  duplicate of variables � = �[�], [�], [�]�  and � =

�[�], [�], [�]�.  

By Kabirian-based optinalysis [3], it shows that 

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

�����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ �����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ.  

2.5.5. Python code   

Get the python code at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/pair-

wise_similarity_estimators.ipynb 
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Input guide: pairwise_similarity([data_x, data_y, centering, ordering, pairing, 

print])  

Input options:  

 for data: list of numerical values from a set of real numbers. 

 for centering: "allow", or "never".  

 for ordering: "ascend", "descend", or "never".  

 for pairing: "H_H", or "T_T".  

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt". 

Example 1:  

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24]  

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never", 

"ordering:descend", "pairing:T_T", "print:kc"]))  

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:psim"]))  

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt2"]))   

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:descend", "pairing:T_T", "print:kcalt"]))    

Example 2:  

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:allow", 

"ordering:descend", "pairing:H_H", "print:kc"]))  

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:psim"])) 

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:pdsim"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "ordering:descend", "pairing:H_H", "print:kcalt"])) 

Example 3: 

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never", 

"ordering:ascend", "pairing:H_H", "print:kc"]))  

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:psim"])) 

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:pdsim"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "ordering:ascend", "pairing:H_H", "print:kcalt"])) 

2.5.6. Drawback and limitations of statistical pairwise comparison   

The following are some of the identified drawbacks and limitations of statistical pair-

wise comparison:   
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i. The given random ordering of elements of the list of variables is not pre-

served, thus an efficient theoretical ordering (i.e., ascend or descend sorting) 

has to be adopted or used.  

ii. Variables lengths must be the same, otherwise, a suitable method needs to 

be used to align them.  

iii. A suitable and efficient pairing style or alternate reflection has to be chosen 

and adopted for repeatability and comparison of results.  

iv. The two possible Kabirian bi-coefficients do not function on the same 

optinalytic scale. For comparison of results, estimates with the mixed 

Kabirian coefficients should either be translated forward or otherwise 

uniformed by backward alternate translation.  

2.6. Proposal 6: Geometrical Pairwise Comparison 

2.6.1. Definition 

A geometrical pairwise comparison between two variables (i.e., two sequences), un-

der Kabirian-based optinalysis, is their isoreflectivity in geometrical order. The geomet-

rical pairwise comparison refers to the conceptual ordering, with or without centering and 

descaling the data and optinalysing the established isoreflective pair for the given varia-

bles.  

2.6.2. Computational steps and algorithmic procedure 

Suppose we have a set of variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations ��, �� and �� as center-

ing, ordering, and descaling of the data � respectively. The optinalysis-based geometrical 

pairwise comparison implies the following steps:  

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.  

��(�) = (��, ��, ��, . … . , ��) 

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a conceptual order of sequence for the ��(�) and ��(�)varia-

bles.   

��,�(�) = (��, ��, ��, . … . , ��) 

��,�(�) = (��, ��, ��, . … . , ��) 

Second step 2: Descaling the conceptually ordered sequence of ��,�(�) and ��,�(�) 

variables.   

��,�,�(�) = (��, ��, ��, . … . , ��) 

��,�,�(�) = (��, ��, ��, . … . , ��) 

Third step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�,�(�) and ��,�,�(�) about �. For instance,   

Head-to-head pairing or reflection is given as: 

���,�,�(�⃖)���,�,�(��⃗ )� = (��, ��, ��, . … . ��, �, ��. … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

���,�,�(�⃗)���,�,�(�⃖�)� = (��. … . , ��, ��, ��, �, ��, ��, ��, . … . ��) 

Fourth step 4: Optinalyse (by Kabirian-based optinalysis [3]) the isoreflective pair of 

���,�,�(�⃖)���,�,�(��⃗ )� or ���,�,�(�⃖)���,�,�(��⃗ )� about a mid-point �.   

�:  ��,�,�(�)
�
⇻

��,�,�(�) ↠ � 
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�: �
��,�,�(�) = (��, ��, ��, . … . ��)

�
⇻

��,�,�(�) = (��. … . , ��, ��, ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and 

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.   

By Kabirian-based optinalysis [3], the Kabirian coefficient of similarity (������.) 

and its derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis.  

��1����.(�, �)
…

��2����.(�, �)
⇌ �����.(�, �) = �����.(�, �) ⇌ ������.(�, �) = ������.(�, �) 

where �, � ∈ ℝ. 

The two possible Kabirian bi-coefficients (��1����. & ��2����.) function on two dif-

ferent, but inverse optinalytic scales.   

2.6.3. Scale and scaloc-invariant geometrical pairwise comparison  

Geometrical pairwise comparison is called scale invariance if the efficient location 

parameter is not removed from the variable, while it is called scaloc-invariant if the effi-

cient location parameter is removed from the variable.  

2.6.4. General properties of geometrical pairwise comparison  

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers (such as discrete or 

continuous variables containing either or both negative and positive 

values),   

iii. Geometrical pairwise comparison is a scale-invariant (i.e., robust to scale, 

unitless, and dimensionless) estimator.  

Supposed we have an �  scaling of  variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��).  

������.(�, �) = ������.(��, ��) = ������.(−��, −��) 

�����.(�, �) = �����.(��, ��) = �����.(−��, −��) 

������.(�, �) = ������.(��, ��) = ������.(−��, −��) 

where �, �, � ∈ ℝ; � ≠ 0. 

i. Geometrical pairwise comparison is a location-invariant estimator, only if, 

the efficient location parameter is removed from the variable. For instance, 

taking the absolute distances from the mean. 

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��), then both were shifted by � location and returned as �� = (�� + �, �� +

�, �� + �, . … . , �� + �) , and �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The location-invari-

ance implies: 

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��) 

�����.(�, �) = �����.(�� − �, �� − �) = �����.(��, ��) 

������.(�, �) = ������.(�� − �, �� − �) = ������.(��, ��) 

where �, �, ��, ��, � ∈ ℝ; � and �  are the mean estimates of �� and �� respectively. 
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ii. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), geometrical pairwise is its invariant scaloc-invariant and/or 

scale-invariant estimator.  

Supposed we have an �  scaling and �  location shift of  variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).  

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

geometrical pairwise comparison is an efficient estimator.   

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �} 

�����.(�, �) = �����.{(�� + �) − �, (�� + �) − �} = �����.{(�� − �) − �, (�� − �) − �} 

������.(�, �) = ������.{(�� + �) − �, (�� + �) − �} = ������.{(�� − �) − �, (�� − �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of (�� ± �)  and 

(�� ± �) respectively; and the resultant effect is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant geometrical pairwise comparison are efficient estimators. 

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �} 

�����.(�, �) = �����.{�(� + �) − �, �(� + �) − �} = �����.{−�(� + �) − �, −�(� + �) − �} 

������.(�, �) = ������.{�(� + �) − �, �(� + �) − �} = ������.{−�(� + �) − �, −�(� + �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of ±�(� + �)  and 

±�(� + �) respectively; and the resultant effect is a scale property.  

iii. Geometrical pairwise comparison is variant to pericentral rotation 

(alternate reflection). 

Supposed we have a geometrically ordered variables � = (��, ��, ��, . … . , ��)  and 

� = (��, ��, ��, . … . , ��).  

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

�����.(�⃖)|�⃗) ≠ �����.(�⃗|�⃖) 

������.(�⃖)|�⃗) ≠ ������.(�⃗|�⃖) 

where �, �, ∈ ℝ. 

iv. Geometrical pairwise comparison is a variant to sample size or multiple 

repeats of a univariate dataset.  

Supposed we have a �  duplicate of variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��). 

By Kabirian-based optinalysis [3], it shows that 

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �) 

�����.(�, �) ≠ �����.([�] ∗ �, [�] ∗ �) 

������.(�, �) ≠ ������.([�] ∗ �, [�] ∗ �) 

where �, � ∈ ℝ; � ∈ ℕ. 

v. Geometrical pairwise comparison is variant to sample size or multiple 

repeats of multivariate datasets.   

Supposed we have a �  duplicate of variables � = �[�], [�], [�]�  and � =

�[�], [�], [�]�.  

By Kabirian-based optinalysis [3], it shows that 

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

�����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ �����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

������.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ������.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2022                   doi:10.20944/preprints202210.0464.v1

https://doi.org/10.20944/preprints202210.0464.v1


 

 

2.6.5. Python code   

Get the python code at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/pair-

wise_similarity_estimators.ipynb 

Input guide: pairwise_similarity([data_x, data_y, centering, descaling , ordering, 

pairing, print])  

Input options: 

 for data: list of numerical values from a set of real numbers. 

 for centering: "allow", or "never".  

 for descaling: "descaling:allow", or "descaling:never". 

 for ordering: "ascend", "descend", or "never".  

 for pairing: "H_H", or "T_T".  

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt".  

Example 1:  

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24] 

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never", 

"descaling:never", "ordering:never", "pairing:T_T", "print:kc"])) 

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:psim"])) 

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:pdsim"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:T_T", "print:kcalt"])) 

Example 2: 

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:allow", 

"descaling:never", "ordering:never", "pairing:H_H", "print:kc"]))  

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:psim"])) 

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:pdsim"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:al-

low", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt"])) 

Example 3: 

print("Kabirian coefficient =", pairwise_similarity([data_x, data_y, "centering:never", 

"descaling:never", "ordering:never", "pairing:H_H", "print:kc"]))  

print("Probability of similarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:psim"]))  

print("Probability of dissimilarity =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:pdsim"]))  

print("Alt1. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", pairwise_similarity([data_x, data_y, "center-

ing:never", "descaling:never", "ordering:never", "pairing:H_H", "print:kcalt"])) 
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2.6.6. Drawback and limitations of geometrical pairwise comparison   

The following are some of the identified drawbacks and limitations of geometrical 

pairwise comparison:   

i. The given random ordering (sequence) of elements of the list of the varia-

ble(s) should be preserved, otherwise, a conceptual ordering has to be estab-

lished.    

ii. Variables lengths must be the same, otherwise, a suitable method needs to 

be used to align them.  

iii. A suitable and efficient pairing style or alternate reflection has to be chosen 

and adopted for repeatability and comparison of results.  

iv. The two possible Kabirian bi-coefficients do not function on the same 

optinalytic scale. For comparison of results, estimates with the mixed 

Kabirian coefficients should either be translated forward or otherwise 

equalized by backward alternate translation.  

2.7. Proposal 7: Identity Estimation 

2.7.1. Definition 

Identity simply refers to the measure of the degree of exactness between a pair of 

variables. The identity estimation between pair of isoreflective or autoreflective varia-

ble(s) under Kabirian-based optinalysis, is the isoreflectivity of its id-strand onto a unified 

optinalytic mirror (i.e., a mirror with a principal value of 1.00 through a defined length). 

The id-strand is a pairwise match (score by 1), mismatch (score by 0), and/or gab (score 

by -1) scoring between the items of isoreflective or autoreflective points of isoreflective or 

autoreflective pair of variable(s).  

The optinalysis-based identity estimation is an extension of symmetry and similarity 

concepts and is a subject of many combined assumptions such as those that hold the es-

tablishment of an order for the variable(s), the isoreflective or autoreflective pair, the id-

strand formation, and their optinalytic mirroring.  

Identity and similarity or symmetry are related but the former proceeds the latter by 

the concept. All identical variables are completely similar or symmetrical, but not all com-

pletely similar or symmetrical variables are identical. Pericentral rotation invariance must 

be satisfied for identical variables. Therefore, it can be used to isolate completely identical 

variables, but that does not account for the degree of the incomplete identity.  

2.7.2. Iso-identity (pairwise identity) estimation  

Iso-identity (pairwise identity) measures the degree of exactness between a pair of 

isoreflective variables.  

Computational steps and algorithmic procedure 

Suppose we have a set of  variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��). Let the order of algorithmic transformations �� and �� as centering 

and ordering of the data � respectively. The optinalysis-based identity comparison be-

tween � and � implies the following steps:  

First step 1: Centering the data � and � (i.e., location removal). This is optional, de-

pending on the task.  

��(�) = (��, ��, ��, . … . , ��) 

��(�) = (��, ��, ��, . … . , ��) 

Second step 2: Establish a theoretical or conceptual order for the ��(�) and ��(�) var-

iables.  

��,�(�) = (��, ��, ��, . … . , ��) 

��,�(�) = (��, ��, ��, . … . , ��) 
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Third step 3: Choose an efficient pairing style (reflection) and establish the isoreflec-

tive pair between ��,�(�) and ��,�(�) about a mid-point �. For instance, 

Head-to-head pairing or reflection is given as: 

���,�(�⃖)���,�(��⃗ )� = (��, ��, ��, . … . ��, �, ��. … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

���,�(�⃗)���,�(�⃖�)� = (��. … . , ��, ��, ��, �, ��, ��, ��, . … . ��) 

Fourth step 4: Generate the id-strand � = ( ��, ��, ��, . … . , �� )  from the established 

isoreflective pair ���,�(�⃖)���,�(��⃗ )� or ���,�(�⃗)���,�(�⃖�)�. Note that the id-strand is not an 

isoreflective with any variable. Here is the rule for an id-strand generation.  

If ��,�(�⃖) ≡ ��,�(��⃗ ); then score it as 1;  and the 1 ∈ �. 

If ��,�(�⃖) ≢ ��,�(��⃗ ); then score it as 0; and the 0 ∈ �. 

If ��,�(�⃖) ∅ ��,�(��⃗ ); then score it as −1; and the −1 ∈ �.  

Fifth step 5: Design a unified optinalytic mirror. A unified optinalytic mirror � is a 

mirror with a principal value of 1.00 through a defined length).  

� = (��, ��, ��, . … . , ��) 

Sixth step 6: Choose an efficient pairing style (reflection) and establish the isoreflective 

pair between the id-strand � and optinalytic mirror � about a mid-point �. For instance,  

Head-to-head pairing or reflection is given as: 

��⃖���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

��⃗��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��) 

Seventh step 7: Geometrically Optinalyse (by Kabirian-based optinalysis [3]) the isore-

flective pair ��⃖���⃗ � or ��⃗��⃖�� about a mid-point �. Note, the geometrical optinalysis here 

does not define the estimation nomenclature, but it relies on the assumption that estab-

lished the order (theoretical order implies statistical, and conceptual order implies geo-

metrical) for the variable(s).  

�:  �
�
⇻

� ↠ � 

�: �
� = (��, . … . , ��, ��, ��)

�
⇻

� = (��, ��, �� … ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and 

� & � are isoreflective pairs. � = 0 is by default operation, except under optinalytic nor-

malization.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of identity (����.) and its 

derivatives satisfied the Y-rule of Kabirian-based isomorphic optinalysis. 

��1��.(�, �)
…

��2��.(�, �)
⇌ ���.(�, �) = ���.(�, �) ⇌ ����.(�, �) = ����.(�, �) 

where �, � ∈ ℝ. 

The two possible Kabirian bi-coefficients (��1��. & ��2��.) function on two differ-

ent, but inverse optinalytic scales.   

2.7.3. Auto-identity (self-identity) estimation  

Auto-identity (self-identity) measures the degree of exactness between a pair of au-

toreflective variables. 

Computational steps and algorithmic procedure  

Suppose we have a set of variables � = (��, ��, ��, . … . , ��). Let the order of algorith-

mic transformations �� and �� as centering and ordering of the data � respectively. The 

optinalysis-based identity comparison of the shape within � implies the following steps:  
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First step 1: Centering the data (i.e., location removal). This is optional, depending on 

the task. By centering the variable, two distinct sets of positive and negative integers were 

obtained. 

���(��)���(���)� = (��, ��, ��, . … . , ��) 

Second step 2: Establish a theoretical or conceptual order and the autoreflective pair 

of symmetry (shape) for the � variable. The two distinct separations of the integers into 

a positive and negative form the basis for the establishment of the autoreflective pair. For 

the efficiency of the result, absolute estimates of the centered data are used. 

���,�(��)���,�(���)� = (��, ��, ��, . … . , ����
�

, �����
�

, ��
���

�
, . … . , ��

�, ��
�, ��

�) 

Third step 3: Generate the id-strand � = ( ��, ��, ��, . … . , �� ) from the established au-

toreflective pair ���,�(��)���,�(���)�. Note that the id-strand is not an autoreflective with any 

variable. Here is the rule for an id-strand generation.  

If ��,�(��) ≡ ��,�(��′); then score it as 1; and the 1 ∈ �. 

If ��,�(��) ≢ ��,�(��′); then score it as 0; and the 0 ∈ �. 

If ��,�(��) ∅ ��,�(��′); then score it as −1; and the −1 ∈ �.  

Fourth step 4: Design a unified optinalytic mirror. A unified optinalytic mirror � is a 

mirror with a principal value of 1.00 through a defined length).  

� = (��, ��, ��, . … . , ��) 

Fifth step 5: Choose an efficient pairing style (reflection) and establish the isoreflective 

pair between the id-strand � and the optinalytic mirror � about a mid-point �. For in-

stance,  

Head-to-head pairing or reflection is given as: 

��⃖���⃗ � = (��, ��, ��, . … . , ��, �, ��, . … . , ��, ��, ��) 

Tail-to-tail pairing or reflection is given as: 

��⃗��⃖�� = (��, . … . , ��, ��, ��, �, ��, ��, ��, . … . , ��) 

Sixth step 6: Geometrically Optinalyse (by Kabirian-based optinalysis [3]) the isore-

flective pair ��⃖���⃗ � or ��⃗��⃖�� about mid-point �. Note, the geometrical optinalysis here 

does not define the estimation nomenclature, but it relies on the assumption that estab-

lished the order (theoretical order implies statistical, and conceptual order implies geo-

metrical) for the variable(s).  

�:  �
�
⇻

� ↠ � 

�: �
� = (��, ��, ��, . … . ��)

�
⇻

� = (��, . … . , ��, ��, ��)

↡ ↡ ↡
� =  (��, ��, ��, . … . , ��, ����, ����, ����, ����, . … . , �����)

� 

Such that � ∉ � & � ; (��, ��, ��, . … . , �����) ∈ � ; �, � & � ∈ ℝ ; �� ≠ 0 ; � ∈ ℕ ; and 

� & �  are autoreflective pairs. � = 0 is by default operation, except under optinalytic 

normalization.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of identity (����.) and its 

derivatives satisfied the Y-rule of Kabirian-based automorphic optinalysis.   

��1��.(�, �)
…

��2��.(�, �)
⇌ ���.(�, �) = ���.(�, �) ⇌ ����.(�, �) = ����.(�, �) 

where �, � ∈ ℝ.  

The two possible Kabirian bi-coefficients (��1��. & ��2��.) function on two differ-

ent, but inverse optinalytic scales.   

Optimally, the required sample size to translate the two possible Kabirian bi-efficient 

is not, in this particular case of identity measure, determined by the variable’s sample size 

or length. A sample size � = 1 is generally used in the translation process because both 
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the id-strand and the id-mirror are on a binary numerical expression (i.e., 0 and 1), and 

this gives an efficient result.    

2.7.4. General properties of identity estimation 

These properties applied to both the iso-identity and auto-identity. For consistency 

in the explanation, iso-identity is always preferred here.  

i. It is based on the entire observations of variables, unlike percentile-based or 

decile-based statistics. Therefore, extreme maximum and minimum values 

are not discarded or trimmed.   

ii. It applies to variable(s) from the set of real numbers (such as discrete or 

continuous variables containing either or both negative and positive 

values).  

iii. The identity estimation is a scale-invariant (i.e., robust to scale, unitless, 

and dimensionless) estimator.  

Supposed we have an �  scaling of  variables � = (��, ��, ��, . … . , ��)  and � =
(��, ��, ��, . … . , ��).  

����.(�, �) = ����.(��, ��) = ����.(−��, −��) 

���.(�, �) = ���.(��, ��) = ���.(−��, −��) 

����.(�, �) = ����.(��, ��) = ����.(−��, −��) 

where �, �, � ∈ ℝ; � ≠ 0. 

iv. The identity estimation is a location-invariant estimator, only if, the 

efficient location parameter is removed from the variable. For instance, 

taking the absolute distances from the mean. 

Supposed we have a � location shift of a variable � = (��, ��, ��, . … . , ��) and � =

(��, ��, ��, . … . , ��), then both were shifted by � location and returned as �� = (�� + �, �� +

�, �� + �, . … . , �� + �) , and �� = (�� + �, �� + �, �� + �, . … . , �� + �) . The location-invari-

ance implies: 

����.(�, �) = ����.(�� − �, �� − �) = ����.(��, ��) 

���.(�, �) = ���.(�� − �, �� − �) = ���.(��, ��) 

����.(�, �) = ����.(�� − �, �� − �) = ����.(��, ��) 

where �, �, ��, ��, � ∈ ℝ; � and �  are the mean estimates of �� and �� respectively. 

v. Where location and scale properties are combined (i.e., scaloc-transform 

distribution), the identity estimation is its invariant scaloc-invariant and/or 

scale-invariant estimator.  

Supposed we have an �  scaling and �  location shift of  variables � =

(��, ��, ��, . … . , ��) and � = (��, ��, ��, . … . , ��).  

Here is a situation (of scaloc-transform distribution) where only the scaloc-invariant 

identity estimator is efficient.   

����.(�, �) = ����.{(�� + �) − �, (�� + �) − �} = ����.{(�� − �) − �, (�� − �) − �} 

���.(�, �) = ���.{(�� + �) − �, (�� + �) − �} = ���.{(�� − �) − �, (�� − �) − �} 

����.(�, �) = ����.{(�� + �) − �, (�� + �) − �} = ����.{(�� − �) − �, (�� − �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of (�� ± �)  and 

(�� ± �) respectively; and the resultant effect is a location property. 

Here is a situation (of scaloc-transform distribution) where both the scaloc-invariant 

and scale-invariant identity estimators are efficient. 

����.(�, �) = ����.{�(� + �) − �, �(� + �) − �} = ����.{−�(� + �) − �, −�(� + �) − �} 

���.(�, �) = ���.{�(� + �) − �, �(� + �) − �} = ���.{−�(� + �) − �, −�(� + �) − �} 
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����.(�, �) = ����.{�(� + �) − �, �(� + �) − �} = ����.{−�(� + �) − �, −�(� + �) − �} 

where �, �, �, � ∈ ℝ ; � ≠ 0 ; �  and �   are the mean estimates of ±�(� + �)  and 

±�(� + �) respectively; and the resultant effect is a scale property.  

vi. The identity estimation is invariant to pericentral rotation (alternate 

reflection). 

Supposed we have suitably ordered variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��).  

����.(�⃖)|�⃗) = ����.(�⃗|�⃖) 

���.(�⃖)|�⃗) = ���.(�⃗|�⃖) 

����.(�⃖)|�⃗) = ����.(�⃗|�⃖) 

where �, �, ∈ ℝ. 

vii. The identity estimation is population-independent and variant to sample 

size or multiple repeats of a univariate dataset.  

Supposed we have a �  duplicate of  variables � = (��, ��, ��, . … . , ��)  and � =

(��, ��, ��, . … . , ��).   

By Kabirian-based optinalysis [3], it shows that 

����.(�, �) ≠ ����.([�] ∗ �, [�] ∗ �) 

���.(�, �) ≠ ���.([�] ∗ �, [�] ∗ �) 

����.(�, �) ≠ ����.([�] ∗ �, [�] ∗ �) 

where �, � ∈ ℝ; � ∈ ℕ. 

viii. The identity estimation is variant to sample size or multiple repeats of 

multivariate datasets.   

Supposed we have a �  duplicate of variables � = �[�], [�], [�]�  and � =

�[�], [�], [�]�.  

By Kabirian-based optinalysis [3], it shows that 

����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

���.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ���.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

����.��[�], [�], [�]�, �[�], [�], [�]�� ≠ ����.��[�], [�], [�]� ∗ �, �[�], [�], [�]� ∗ �� 

where �, �, �, �, �, � ∈ ℝ; � ∈ ℕ. 

2.7.5. Python codes 

Get the python codes at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/auto-iden-

tity_estimators.ipynb  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/iso-iden-

tity_estimators.ipynb 

Input guide: iso_identity([data_x, data_y, centering, ordering, pairing, print])  

  auto_identity([data, centering, ordering, pairing, print]) 

Input options:    

 for data: list of numerical values from a set of real numbers. 

 for centering: "allow", or "never".  

 for ordering: "ascend", "descend", or "never".  

 for pairing: "H_H", or "T_T".  

 for print: "kc", "pid", "puid", "kcalt1", "kcalt2", or "kcalt".  

Example 1:  

data_x = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

data_y = [12,-2,0,-3,4,-1.05,13.33,2,-4,6.12,8,4,0.2,4,5,6,24] 
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print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:ascend", "pairing:T_T", "print:kc"]))  

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:ascend", "pairing:T_T", "print:pid"]))  

print("Probability of unidentity =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:puid"]))  

print("Alt1. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:ascend", "pairing:T_T", "print:kcalt"]))  

Example 2: 

print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:descend", "pairing:H_H", "print:kc"]))  

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:descend", "pairing:H_H", "print:pid"]))  

print("Probability of unidentity =", iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:puid"]))  

print("Alt1. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =",  iso_identity([data_x, data_y, "centering:never", "or-

dering:descend", "pairing:H_H", "print:kcalt"]))  

Example 3: 

print("Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:kc"]))  

print("Probability of identity =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:pid"]))  

print("Probability of unidentity =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:puid"]))  

print("Alt1. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:kcalt1"])) 

print("Alt2. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "or-

dering:never", "pairing:H_H", "print:kcalt2"])) 

print("Alt. Kabirian coefficient =", iso_identity([data_x, data_y, "centering:never", "order-

ing:never", "pairing:H_H", "print:kcalt"])) 

Example 4: 

print("Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "order-

ing:never", "pairing:H_H", "print:kc"]))  

print("Probability of identity =", auto_identity([sorted(data_x), "centering:allow", "order-

ing:never", "pairing:H_H", "print:pid"]))  

print("Probability of unidentity =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:puid"]))   

print("Alt1. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt2"]))   

print("Alt. Kabirian coefficient =", auto_identity([sorted(data_x), "centering:allow", "or-

dering:never", "pairing:H_H", "print:kcalt"]))    

Example 5: 

print("Kabirian coefficient =", auto_identity([data_y, "centering:never", "ordering:never", 

"pairing:T_T", "print:kc"]))  
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print("Probability of identity =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:pid"]))  

print("Probability of unidentity =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:puid"]))  

print("Alt1. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt1"]))  

print("Alt2. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt2"]))  

print("Alt. Kabirian coefficient =", auto_identity([data_y, "centering:never", "order-

ing:never", "pairing:T_T", "print:kcalt"]))  

2.7.6. Drawbacks and limitations of identity estimation  

The following are some of the identified drawbacks and limitations of identity esti-

mation:   

i. For geometrical auto-identity or iso-identity, the given random ordering (se-

quence) of elements of the list of the variable(s) should be preserved, other-

wise, a conceptual ordering has to be established.    

ii. For statistical auto-identity or iso-identity, the given random ordering of 

elements of the list of the variable(s) is not preserved, thus an efficient 

theoretical ordering (i.e., ascend or descend sorting) has to be adopted or 

used.  

iii. For geometrical or statistical iso-identity, variable lengths must be the 

same, otherwise, a suitable method needs to be used to align them.  

iv. For geometrical or statistical iso-identity, a suitable and efficient pairing 

style or alternate reflection has to be chosen and adopted for repeatability 

and comparison of results.  

v. The two possible Kabirian bi-coefficients do not function on the same 

optinalytic scale. For comparison of results, estimates with the mixed 

Kabirian coefficients should either be translated forward or otherwise 

homogenized by backward alternate translation.  

2.8. Proposal 8: Feature Transformation 

2.8.1. Definition 

Based on optinalysis, feature transformation of a given dataset is the isoreflectivity 

of every item of that dataset to a defined estimate (e.g., an estimate of location, scale, or 

other efficient parameters) of itself.  

2.8.2. Assumption of feature transformation   

Suppose we have a variable � = (��, ��, ��, . … . , ��) and its efficiently defined pa-

rameter �, then their optinalytic construction with an assigned optiscale � = (��, ��, ��) is 

expressed as follows:  

�:  �
�
⇻

� ↠ � = (��, ��, ��) 

�: �
�

� = 0
⇻

�

↡ ↡ ↡
� = (��, ��, ��)

� 

Or the optinalytic construction is inversely expressed as: 
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�: �
�

� = 0
⇻

�

↡ ↡ ↡
� = (��, ��, ��)

� 

Such that (��, ��, ��, . … . , ��) ∈ � ; �  can be an estimate of � ; (��, ��, ��) ∈ � ;  

�, � & � ∈ ℝ; �� ≠ 0; and � & �  are isoreflective pairs. � = 0 is by default operation, 

except under optinalytic normalization. � could be the average (mean), median, mode, 

maximum, range, standard deviation, variance, or others, of variable �.  

By Kabirian-based optinalysis [3], the Kabirian coefficient of proximity/similarity 

(��1�����./��2�����.) and its derivatives satisfied the Y-rule of Kabirian-based isomor-

phic optinalysis. 

��1�����.(�, �)
…

��2�����.(�, �)
⇌ �������.(�, �) = �������.(�, �) ⇌ �������.(�, �) = �������.(�, �) 

where �, � ∈ ℝ.  

The two possible Kabirian bi-coefficients (��1�����. & ��2�����.) function on two dif-

ferent, but inverse optinalytic scales.  

2.8.3. Different methods of optinalytic feature transformation 

Let � = (��, ��, ��, . … . , ��) be a given random variable and � = (��, ��, ��, . … . , ��) 

is an estimate of the � variable.  

If �������.(�, �) =  �
�
⇻

� ↠ � expresses the optinalytic function, then we have 

the following methods:  

Scaloc-invariant transformer  

Scaler method 1: � = � − ����(�), and � = ���(�).  

Scaler method 2: � = � − ����(�), and � = ����������_��������(�)  

Scaler method 3: � = � − ����(�), and � = ���������_��������(�) 

Scaler method 4: � = � − ����(�), and � = ���(�) − min (�)  

Scaler method 5: � = � − ����(�), and � = ���(���(�))  

Scaler method 6: � = � − ����(�), and � = ����(���(�))  

Scale-invariance transformer 

Scaler method 7: � =
�

���(�)
, and � = ���(�) − min(�)  

Scaler method 8: � =
�

���(�)
, and � = ���(�)  

Scaler method 9: � = � and � = ���(�)  

2.8.4. Python code 

Get the python code at:  

https://github.com/Abdullahi-KB/Kabirian-based_optinalysis/blob/main/fea-

ture_transformation_estimators.ipynb 

Input guide: feature_transformation([data, method, print, guide])  

Input options:  

 for data: list of numerical values from a set of real numbers. 

 for method: "std", "min_max", "maxbyabsmndiff", "mnbyabsmndiff", 

"scalocSMM", "scaleSMM", or "max".  

 for print: "kc", "psim", "pdsim", "kcalt1", "kcalt2", or "kcalt".  

 for guide: "view", or "never".  

Examples:  

data = [2,-4,6.12,8,4,0.2,4,5,6,24,12,-2,0,-3,4,-1.05,13.33] 

Examples: 1 print("Transformed_data =", feature_transformation ([data, 

"method:std", "print:psim", "guide:never"]))  

Examples: 2 print("Transformed_data =", feature_transformation ([data, 

"method:min_max", "print:psim", "guide:never"]))  
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Examples: 3 print("Transformed_data =", feature_transformation ([data, 

"method:maxbyabsmndiff", "print:psim", "guide:never"])) 

Examples: 4 print("Transformed_data =", feature_transformation ([data, 

"method:mnbyabsmndiff", "print:psim", "guide:never"])) 

Examples: 5 print("Transformed_data =", feature_transformation ([data, 

"method:scalocSMM", "print:psim", "guide:never"]))   

Examples: 6 print("Transformed_data =", feature_transformation ([data, 

"method:scaleSMM", "print:psim", "guide:never"]))   

Examples: 7 print("Transformed_data =", feature_transformation ([data, 

"method:max", "print:psim", "guide:never"]))   

3. Discussion 

The estimates produced by Kabirian-based optinalysis [3] can be estimated as scale-

invariant, location-invariant, and scale-and-location-invariant. These invariance proper-

ties of these proposed estimators are good pieces of evidence to prove goodness and ro-

bustness for symmetry/asymmetry, similarity/dissimilarity, and identity/unidentity esti-

mations. The commonly used estimators of symmetry/asymmetry, similarity/dissimilar-

ity, and identity/unidentity are either scale-invariant or location-invariant [1], but rarely 

have combined the scale-and-location-invariant property. These properties have solved a 

very important problem of data analytics that relates to dealing with the issues of scaling 

and location shift. Comparison of multiple sets of variables (datasets) can be compared 

irrespective of the effect of scaling or location shift. Invariances and robustness are very 

important and desirable properties supposed to be found with estimators of dispersion, 

symmetry, cluster analysis using pairwise comparison approaches, etc.; that are essen-

tially and routinely used in data analytics [1], [2]. Some of the feature transformation al-

ternatives of this proposal are not at zero mean and restricted boundary, which is unlike 

the commonly used methods of feature standardization and normalization.  

The proposed statistical and geometrical symmetry is complementary and matching 

alternatives to skewness measure (e.g., Pearson’s first and second coefficients of skewness, 

standardized third central moment, etc) and object symmetry analysis (e.g., Riemannian 

distance, centroid distances, etc) respectively. Symmetric pairs of structures are exact au-

tomorphisms of their pair points. The commonly used estimators of symmetry cannot be 

proven by the concept of automorphism but automorphism is always assumed.  The pro-

posed statistical and geometrical pairwise similarity and identity estimators are alterna-

tives to similarity or distance measures (e.g., cosine similarity, Euclidean distance, etc), 

and the pairwise sequence similarity or identity estimation respectively. The proposed 

statistical and geometrical mirroring are alternatives to the repeated approach of pairwise 

matrix comparisons clustering and also the dispersion estimators around a centre (e.g., 

standard deviation and coefficient of variation). Similarly, alternatives to the methods of 

feature transformation were also provided in this proposal to eliminate the possibilities of 

zero mean and restricted boundary after feature standardization and normalization.  

The main drawbacks and limitations of these proposed estimators include: the vari-

ables' lengths must be the same (for the case of pairwise comparison), and pairing style or 

alternate reflection has to be chosen and adopted. All these limitations cannot be consid-

ered problematic but can be carefully treated by optimized and standardized alignment 

approaches and as well as common adoption of a chosen pairing style.   

4. Conclusion  

Based on the paradigm of Kabirian-based optinalysis, some statistical and geomet-

rical estimators of symmetry/asymmetry, similarity/dissimilarity/distance, and iden-

tity/unidentity were proposed. Other estimators for feature transformation are also pro-

posed. These estimators are characterized as invariant (robust) to either or both the scale 

and location parameters.  
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Supplementary Materials: The supplementary files are python codes. All the python codes are 

available at: https://github.com/Abdullahi-KB/Kabirian-based_optinalysis 
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