

Article

Newton's Like Normal S-iteration under Weak Conditions

Manoj K. Singh¹, Ioannis K. Argyros^{2,*} and Arvind K. Singh³

¹ College of Technology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut-250110, India; manoj07777@gmail.com

² Cameron University, Department of Mathematical Sciences, Lawton, OK 73505, USA; iargyros@cameron.edu

³ Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; aksingh9@gmail.com

* Correspondence: iargyros@cameron.edu

Abstract: In the present paper, we introduced a quadratically convergent Newton's like normal S-iteration method free from the second derivative for the solution of nonlinear equations permitting $f'(x) = 0$ at some points in the neighborhood of the root. Our proposed method works well when the Newton method fails. Numerically it has been verified that the Newton's like normal S-iteration method converges faster than Fang et al. method [A cubically convergent Newton-type method under weak conditions, *J. Compute. and Appl. Math.*, **220** (2008), 409-412]. We studied different aspects of normal S-iteration method. Lastly, fractal patterns support the numerical results and explain the convergence, divergence, and stability of method.

Keywords: Newton's method; normal S-iteration; weak condition; simple root; order of convergence

1. Introduction

In this work, we have proposed a Newton's like normal S-iteration method for solving nonlinear algebraic and transcendental equations of the form ([17], [18], [19])

$$f(x) = 0. \quad (1)$$

Newton's method [13] is a basic method for solving (1), which converges to the root quadratically under some conditions. Newton's method is defined as follows:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots \quad (2)$$

Some weakness of Newton's method are as follows ([1]-[25]):

(i) It is only of order two.

(ii) The initial approximation should be near to the root.

(iii) The denominator term of Newton's method must not be zero, at the root or near to the root.

To remove these weakness, Wu [25] developed a quadratic convergent method in 2000 as follows:

$$x_{n+1} = x_n - \frac{f(x_n)}{\lambda_n f(x_n) + f'(x_n)}, \quad n = 0, 1, 2, \dots, \quad (3)$$

where $|\lambda_n| \in (0, \infty)$.

Fang et al. [15] studied a method in 2008 as follows:

$$\begin{cases} y_n = x_n + \frac{f(x_n)}{\lambda_n f(x_n) + f'(x_n)}, \\ x_{n+1} = y_n - \frac{f(y_n)}{\lambda_n f(x_n) + f'(x_n)}, \end{cases} \quad n = 0, 1, 2, \dots, \quad (4)$$

18 where $|\lambda_n| \leq 1$. They claimed that their method (4) is of cubic convergence. More
19 precisely,

20 **Theorem 1.** [15] Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function and assume that

21 (L1) $x^* \in I$ is a simple zero of f ,

22 (L2) f is three times differentiable on I ,

23 (L3) $\lambda_n f(x) + f'(x) \neq 0$, for all $x \in N(x^*)$, where $N(x^*)$ is neighborhood of x^* . Then
24 the method (4) converges cubically to x^* .

25 Recently, Wang and Liu [10] identified that the Fang et al. method given by (4) is
26 only of order two. Wang and Liu [10] revised Theorem 1 as follows:

27 **Theorem 2.** Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function and assume that

28 (i) $x^* \in I$ is a simple zero of f ,

29 (ii) f is three times differentiable on I ,

30 (iii) $\lambda_n f(x) + f'(x) \neq 0$, for all $x \in N(x^*)$, where $N(x^*)$ is neighborhood of x^* . Then
31 method (4) converges quadratically to x^* .

Contemporary, Wang and Liu [10] modified method (4) for third-order convergence
as follows:

$$\begin{cases} y_n = x_n + \frac{f(x_n)}{\lambda_n f(x_n) - f'(x_n)}, \\ x_{n+1} = y_n + \frac{f(y_n)}{\lambda_n f(x_n) - f'(x_n)}, \quad n = 0, 1, 2, \dots, \end{cases} \quad (5)$$

32 where $|\lambda_n| \leq 1$ and it is equal to $-\text{sign}(f(x_n)f'(x_n))\min\{1, |f(x_n)|\}$. Under above
33 modification, Wang and Liu [10] settled third-order convergence Theorem as follows:

34 **Theorem 3.** Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function and assume that

35 (W1) $x^* \in I$ is a simple zero of f ,

36 (W2) f is three times differentiable on I ,

37 (W3) $\lambda_n f(x) - f'(x) \neq 0$, for all $x \in N(x^*)$, where $N(x^*)$ is neighborhood of x^* .

38 Then, the iterative method (5) is cubically convergent.

It is clear from condition (W2) of Theorem 3, that the sufficient condition for the convergence of method (5) to the zero of the function f is that the third derivative of f must exist. But, we often come across the situation, when the third order differential of the function does not exist, while f has a zero in the interval I . Consider the function f_1 defined by

$$f_1(x) = x^{5/2} - \exp(x) + 1.$$

39 Here $x^* = 0.0$. Note that $f_1(x^*) = 0$ and $f_1'''(x^*)$ does not exist. Hence, we observe that
40 (i) Newton's method (2) can not be used.

41 (ii) Wang and Liu method (5) doesn't satisfy the condition (W2) of Theorem 3. At
42 this stage, following natural **question** arises: Is it possible to propose an iterative method
43 for finding solution of (1), when f is not three times differentiable on I .

44 The objective of this work is to introduce Newton's like normal S-iteration method
45 for solving nonlinear equation (1). Taking into account, we describe the new method in
46 which second derivative of the function f is sufficient for the convergence and is compa-
47 rable to the third order methods. Thus, our method provides not only an affirmative
48 answer of the question, but also behaves well in comparison of third order Wang and
49 Liu method [10].

50 Rest of the paper is arranged as follows: Section 2 is Preliminary. In section 3, we
51 have proposed the new Newton's like normal S-iteration method and established its
52 convergence analysis. In section 4, numerical examples are given to check the theoretical
53 results. Lastly, dynamical analysis supports the numerical and theoretical results in
54 section 5.

55 **2. Preliminary**

Let x^* be a root of non-linear equation (1) and f be a sufficiently differentiable function and $x_n \in N(x^*)$, where $N(x^*)$ is neighborhood of x^* . Then, the numerical solution of (1) can be written as

$$f(x) = f(x_n) + \int_{x_n}^x f'(t)dt. \quad (6)$$

Approximating the integral by $(x - x_n)f'(x_n)$ with $x = x^*$ in (6), we get

$$0 \approx f(x_n) + (x^* - x_n)f'(x_n).$$

56 Therefore, a new approximation x_{n+1} to x^* can be written as (2). Newton's method (57) fails when derivative of the f becomes zero in the neighbourhood of the root. On 58 replacing $f'(x_n)$ in (2) by $f'(x_n) + \lambda_n f(x_n)$, we obtain an approximation x_{n+1} as given 59 in (3), which is quadratically convergent method given by Wu [25].

60 **3. New Newton's like method and its Convergence Analysis**

61 In this section, we introduce new Newton like normal S-iteration method and study 62 its convergence analysis.

63 In [5], Sahu introduced normal S-iteration process as follows:

Definition 1. Let D be a nonempty convex subset of a normed space X and $T : D \rightarrow D$ be an operator. Then for arbitrary $x_0 \in D$, the normal S-iteration process is defined by

$$x_{n+1} = T((1 - \beta_n)x_n + \beta_n T(x_n)), \quad n = 0, 1, 2, \dots,$$

64 where the sequence $\beta_n \in (0, 1)$.

There are many papers dealing with S-iteration process and normal S-iteration process in the literature. In [6], Sahu introduced Newton's like method based on normal S-iteration process as follows:

$$\begin{cases} x_{n+1} = y_n - \frac{f(y_n)}{f'(y_n)}, \\ y_n = (1 - \beta_n)x_n + \beta_n u_n, \\ u_n = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots, \end{cases}$$

65 where the sequence $\beta_n \in (0, 1)$ and $f'(x)$ is the derivative of f at point x .

We now introduce our new Newton's like normal S-iteration method for solving nonlinear equation (1), when f' may be zero in the neighbourhood of the root, as

$$\begin{cases} y_n = (1 - \beta_n)x_n + \beta_n G(x_n), \\ x_{n+1} = G(y_n), \quad n = 0, 1, 2, \dots, \end{cases} \quad (7)$$

where

$$G(x_n) = x_n + \frac{f(x_n)}{\lambda_n f(x_n) - f'(x_n)}, \quad (8)$$

$\beta_n \in (0, 1)$ and λ_n is a sequence in \mathbb{R} , such that $|\lambda_n| \leq 1$. The parameter λ_n is chosen in such a manner that both $\lambda_n f(x_n)$ and $-f'(x_n)$ have same sign and hence denominator is non zero in equation (8). For this purpose we use signum function as follows:

$$\text{sign}(x) = \begin{cases} 1, & \text{if } x \geq 0, \\ -1, & \text{if } x < 0. \end{cases}$$

66 We are ready to establish main result of this paper, which is as follows:

67 **Theorem 4.** Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function and assume that

68 (i) $x^* \in I$ is a simple zero of f ,

69 (ii) f is two times differentiable on I ,
 70 (iii) $\lambda_n f(x) - f'(x) \neq 0$, for all $x \in N(x^*)$, where $N(x^*)$ is neighborhood of x^* and
 71 $|\lambda_n| \leq 1$.
 72 Then, the Newton's like normal S-iteration method defined by the (7) is quadratically convergent
 73 locally to the zero of f .

Proof: Let $x^* \in I$ be a simple zero of a function f , $e_n = x_n - x^*$ and $A_k = \left(\frac{1}{k!}\right) f^{(k)}(x^*) / f'(x^*)$. Using Taylor expansion about x^* and using $f(x^*) = 0$, we get

$$f(x_n) = f'(x^*) \left[e_n + A_2 e_n^2 + A_3 e_n^3 + O(e_n^4) \right], \quad (9)$$

$$f'(x_n) = f'(x^*) \left[1 + 2A_2 e_n + 3A_3 e_n^2 + 4A_4 e_n^3 + O(e_n^4) \right]. \quad (10)$$

74 Now, from above two equations we get

$$\begin{aligned} f'(x_n) - \lambda_n f(x_n) &= f'(x^*) [1 + (2A_2 - \lambda_n)e_n + (3A_3 - \lambda_n A_2)e_n^2 + (4A_4 - \lambda_n A_3)e_n^3 \\ &\quad + O(e_n^4)] \end{aligned} \quad (11)$$

and from (9) and (11), we get

$$\frac{f(x_n)}{\lambda_n f(x_n) - f'(x_n)} = -e_n + (A_2 - \lambda_n)e_n^2 + (2A_2\lambda_n - \lambda_n^2 - 2A_2^2 + 2A_3)e_n^3 + O(e_n^4).$$

Using above in (8), we obtain,

$$G(x_n) = x^* + (A_2 - \lambda_n)e_n^2 + (2A_2\lambda_n - \lambda_n^2 - 2A_2^2 + 2A_3)e_n^3 + O(e_n^4). \quad (12)$$

75 Now, on using (12) in the first substep of (7), we get

$$y_n = x^* + (1 - \beta_n)e_n + \beta_n(A_2 - \lambda_n)e_n^2 + \beta_n(2A_2\lambda_n - \lambda_n^2 - 2A_2^2 + 2A_3)e_n^3 + O(e_n^4). \quad (13)$$

76 On expanding $f(y_n)$ and $f'(y_n)$ about x_n , we obtain

$$\begin{aligned} f(y_n) &= f'(x^*) \left[(1 - \beta_n)e_n + \left\{ A_2(1 - \beta_n)^2 + \beta_n(A_2 - \lambda_n) \right\} e_n^2 \right. \\ &\quad \left. + \beta_n \left\{ 2A_2\lambda_n - \lambda_n^2 - 2A_2^2 + 2A_3 + 2A_2(1 - \beta_n)(A_2 - \lambda_n) \right\} e_n^3 \right. \\ &\quad \left. + O(e_n^4) \right], \end{aligned} \quad (14)$$

77

$$\begin{aligned} f'(y_n) &= f'(x^*) \left[1 + 2A_2(1 - \beta_n)e_n + \left\{ 3A_3(1 - \beta_n)^2 + 2A_2\beta_n(A_2 - \lambda_n) \right\} e_n^2 \right. \\ &\quad \left. + \beta_n \left\{ 2A_2 \left(2A_2\lambda_n - \lambda_n^2 - 2A_2^2 + 2A_3 \right) + 6A_3(1 - \beta_n)(A_2 - \lambda_n) \right\} e_n^3 \right. \\ &\quad \left. + O(e_n^4) \right]. \end{aligned} \quad (15)$$

78 Now, from (14) and (15), we have

$$\begin{aligned} \lambda_n f(y_n) - f'(y_n) &= f'(x^*) [-1 + (1 - \beta_n)(\lambda_n - 2A_2)e_n \\ &\quad + \lambda_n \left\{ (1 - \beta_n)^2(A_2 - 3A_3) + \beta_n(A_2 - \lambda_n)(1 + 2A_2) \right\} e_n^2 \\ &\quad + O(e_n^3)]. \end{aligned} \quad (16)$$

79 Furthermore, from (14) and (16), we have

$$\frac{f(y_n)}{\lambda_n f(y_n) - f'(y_n)} = -(1 - \beta_n)e_n + \{\lambda_n - 3A_2 - \beta_n(\lambda_n - 5A_2) \\ + \beta_n^2(\lambda_n - 3A_2)\}e_n^2 + O(e_n^3). \quad (17)$$

With the help of (17), the second equation of (7) becomes

$$x_{n+1} = x^* + \{\lambda_n - 3A_2 - \beta_n(2\lambda_n - 6A_2) + \beta_n^2(\lambda_n - 3A_2)\}e_n^2 + O(e_n^3) \\ \Rightarrow e_{n+1} = Ce_n^2 + O(e_n^3) \quad (18)$$

80 where $C = \lambda_n - 3A_2 - \beta_n(2\lambda_n - 6A_2) + \beta_n^2(\lambda_n - 3A_2)$.

81 82 Hence, the Newton's like normal S-iteration method proposed in (7) has second
83 order convergence.

84 4. Numerical Results

85 In this section, we present some numerical tests to show the applicability of the
86 proposed method by considering two categories of functions namely (i) functions which
87 are differentiable three times and (ii) functions which are differentiable only two times.
88 Numerical computations have been carried out in MATLAB 2007 and stoping criteria
89 has been taken as (i) $|f'(x_k)| \leq \varepsilon$, (ii) $|x_k - x_{k-1}| \leq \varepsilon$, where $\varepsilon = 10^{-15}$. We have applied
90 Newton's like normal S-iteration method for the following three values of λ_n

91
92 (i) $|\lambda_n| = 0.5$
93 (ii) $|\lambda_n| = 1.0$ and
94 (iii) $\lambda_n = -\text{sign}(f(x_n)f'(x_n))\min\{1, |f(x_n)|\}$ (λ_n is taken as in Wang and Liu [10]).

95 (i) *Functions with third order differentials*

96 Here, we have considered those example which were taken by Wang and Liu [10]
97 as follows:

$$F_1(x) = x \sin x + \cos x - 0.6, \quad x^* = -2.54623173142842,$$

$$F_2(x) = x^3 - 2x^2 + x - 1, \quad x^* = 1.75487766624669,$$

$$F_3(x) = \ln x, \quad x^* = 1.0000,$$

$$F_4(x) = \arctan x, \quad x^* = 0.0000,$$

$$F_5(x) = x + 1 - \exp(\sin x), \quad x^* = 1.69681238680975,$$

$$F_6(x) = x \exp(-x^2) - (\sin x)^2 + 3 \cos x + 5, \quad x^* = -1.20764782713092,$$

$$F_7(x) = 10x \exp(-x^2) - 1. \quad x^* = 1.67963061042845.$$

98
99 100 For the two values of $\lambda_n = 0.5$ and λ_n as wang, we have considered $\beta_n = 0.5$ and 0.9
101 in Table 1. On starting with the same initial point as in Wang and Liu [10] in all test
102 problems, we observe that for the both values of λ_n our normal S-iteration method takes
103 less number of iterations than the Wang and Liu method [10] for the value of $\beta_n = 0.9$.
104 Thus in spite of being second order convergence it performs better than third order
105 Wang and Liu method [10]. Also, It may be noted that in all test problems, the classical
106 Newton's method is either fail or diverge in most of the cases. In Table 1 *F*, *D* and
107 *NC* denote failure of the method, divergence of the method and not converging to the

Table 1: Functions whose third order differentials exist

$f(x)$	x_0	Newton Method	Wang and Liu Method	Normal S-iteration method			
				$ \lambda_n = 0.5$		λ_n as Wang and Liu	
				$\beta_n = 0.5$	$\beta_n = 0.9$	$\beta_n = 0.5$	$\beta_n = 0.9$
F_1	0	F	5	7	5	5	4
	-4	6	5	5	4	6	5
F_2	1	F	7	5	5	5	4
	3	7	6	6	6	6	5
F_3	5	D	5	5	4	7	6
	2	6	4	3	3	5	4
F_4	3	D	4	5	4	5	4
	-1	5	3	4	3	4	3
F_5	4	NC	6	6	5	7	6
	2	5	4	4	4	4	4
F_6	0.73	D	8	6	4	8	4
	-3	23	15	11	9	11	9
F_7	0.7	D	5	4	4	4	4
	2	6	4	4	3	4	3

¹⁰⁷ desired root respectively.

¹⁰⁸

¹⁰⁹ (ii) **Functions which are differentiable only two times**

We have considered the following real functions from $I \subset \mathbb{R} \rightarrow \mathbb{R}$ and the results are shown in Table 2.

$$f_1(x) = x^{\frac{5}{2}} - \exp x + 1, \quad x^* = 0.0,$$

$$f_2(x) = x^4 \sin \frac{1}{x}, \quad x \neq 0, \quad x^* = 0.31830988618379 (x_0 = 1),$$

$$x^* = 0.106103295394597 (x_0 = 0.1),$$

$$f_3(x) = x^{\frac{7}{3}} \sin x, \quad x^* = 0.0,$$

$$f_4(x) = (x - 2)^{\frac{7}{3}} - x^3 + 3x^2 - 2, \quad x^* = 2.475200396019297,$$

$$f_5(x) = x^{\frac{7}{3}} \exp x, \quad x^* = 0.0,$$

$$f_6(x) = (x + 2)^{\frac{5}{2}} + \exp x - 1, \quad x^* = -1.142466838767107.$$

Table 2: Functions whose third order differential does not exist

$f(x)$	x_0	Newton Method	Fang et al. Method	λ_n as Wang and Liu		Normal S-iteration method			
				$\beta_n = 0.9$	$\beta_n = 0.5$	$\beta_n = 0.9$	$\beta_n = 0.5$	$\beta_n = 0.9$	$\beta_n = 0.5$
				$\beta_n = 0.9$	$\beta_n = 0.5$	$\beta_n = 0.9$	$\beta_n = 0.5$	$\beta_n = 0.9$	$\beta_n = 0.5$
f_1	0.5	F	7	3	4	3	4	4	5
f_2	1.0	9	9	6	7	6	7	6	8
	0.1	5	5	3	4	3	4	3	4
f_3	0.3	85	58	47	60	47	60	47	60
	1.0	88	61	49	62	49	62	49	62
f_4	2.0	F	9	4	5	5	4	4	4
f_5	1.0	89	43	33	42	33	42	33	43
f_6	-2.0	10	F	3	4	5	4	3	4

¹¹⁰ As we know from the condition (W2) of Theorem 3 that the cubically convergent
¹¹¹ Wang and Liu method will converge to the root only if the third order differential to
¹¹² the function would exist in the neighbourhood of the root. Hence, Wang's method is
¹¹³ no more applicable in this case. Therefore, we have compared the present method with
¹¹⁴ quadratically convergent same order Newton's method and Fang et al. method [15]
¹¹⁵ for the different values of λ_n and β_n ($\lambda_n = 0.5, \lambda_n = 1, \lambda$ as in Wang and Liu [10] and

¹¹⁶ $\beta_n = 0.5, \beta_n = 0.9$) in Table 2. In all test problems, for all the values of λ_n and β_n , we
¹¹⁷ can see that the present new Newton's like normal S-iteration method is always taking
¹¹⁸ less number of iterations except for the example 3 (case $\beta_n = 0.5$) in comparison to the
¹¹⁹ quadratically convergent methods. Hence, we conclude that the present method is more
¹²⁰ effective robust and stable.

¹²¹ **4.1. Behavior of normal S-iteration method for different value of λ_n and β_n**

¹²² We have considered the function F_6 to see the empirical behavior of proposed
¹²³ normal S-iteration method for different value of λ_n and β_n starting with the initial points
¹²⁴ 0.73 and -3.0. Numerical results in Table 3 shows that the proposed method is not
¹²⁵ affected much due to the variation in value of λ_n . But the value of β_n play crucial role as
¹²⁶ we take its different values in the interval (0, 1). We can see that ranging the value of
¹²⁷ β_n from 0.1 to 0.9, the optimum value of β_n comes out to be 0.9 for which the proposed
¹²⁸ method is taking the least number of iterations.

Table 3: Proposed method for different value of λ_n and β_n

$f(x)$	x_0	β_n	Normal S-iteration method		
			$ \lambda_n = 0.5$	$ \lambda_n = 1$	λ_n as Wang and Liu
F_6	0.73	0.1	13	9	9
		0.3	7	8	8
		0.5	6	8	8
		0.7	5	5	5
		0.9	4	4	4
	-3.0	0.1	14	15	14
		0.3	12	13	13
		0.5	11	11	11
		0.7	10	10	10
		0.9	8	9	9

¹²⁸

¹²⁹ **5. Normal-S iteration method with variable value of β**

¹³⁰ We consider the two sequence of β_n as $\beta_n^1 = 0.1 + 1/2(n + 2)$ and $\beta_n^2 = 1 - 1/2(n +$
¹³¹ 2) to solve following two test functions:

¹³²

¹³³ (a) $F_1(x) = x \sin x + \cos x - 0.6 x^* = -2.54623173142842$ and
¹³⁴ (b) $f_2(x) = x^4 \sin(1/x) x^* = 0.31830988618379$.

¹³⁵

¹³⁶ We observe from the Table 4, that the second sequence $\beta_n^2 = 1 - 1/2(n + 2)$ is taking
¹³⁷ less number of iterations in comparison to the first sequence $\beta_n^1 = 0.1 + 1/2(n + 2)$ in
¹³⁸ converging to the root for the both examples. Hence, we conclude that the sequence
¹³⁹ which converges near 1, ($\beta_n^2 = 1 - 1/2(n + 2)$) gives the faster convergence.

¹⁴⁰ **6. Average number of iterations in Normal-S iteration method**

¹⁴¹ Table 5 and Table 6 show the average number of iterations denoted by ANI of
¹⁴² 50 tests done for different values of β_n [7]. For this purpose, we have considered the
¹⁴³ following two test functions, which are three times differentiable:

¹⁴⁴ **Example** $F_2(x) = x^3 - 2x^2 + x - 1.0 = 0$.

¹⁴⁵ It has root $x^* = 1.75487766624669$. We have taken the initial approximations in the grid
¹⁴⁶ as follows: $x_0 = 0.25 + ih, i = 1, \dots, 50$ and $h = 0.03$ (see Table 5). Allowed error is
¹⁴⁷ 10^{-14} .

¹⁴⁸

¹⁴⁹ **Example** $F_6(x) = x \exp(-x^2) - (\sin x)^2 + 3 \cos x + 5$.

¹⁵⁰ It has root $x^* = -1.20764782713092$. We have taken the initial approximations x_0 in the

Table 4: Normal-S iteration method with variable value of β

$f(x)$	Normal S-iteration for sequence β_n^1		Normal S-iteration for sequence β_n^2	
	$ \lambda_n = 0.5$	λ_n as Wang and Liu	$ \lambda_n = 0.5$	λ_n as Wang and Liu
$f_1(x)$	-4.00000000000000	-4.00000000000000	-4.00000000000000	-4.00000000000000
	-3.019890471239318	-3.269614812666443	-2.787748595141695	-3.031336002398129
	-2.647689829523139	-2.830596759888509	-2.550732240466982	-2.602227130430227
	-2.552574309373607	-2.597269129310047	-2.546231963106547	-2.546267106449917
	-2.546259317314531	-2.547305870288047	-2.546231731428419	-2.546231731433164
	-2.546231731968219	-2.546232155885697		-2.546231731428418
	-2.546231731428418	-2.546231731428486		-2.546231731428418
$f_2(x)$	1.000000000000000	1.000000000000000	1.000000000000000	1.000000000000000
	0.690862097114279	0.713251419170333	0.588489366623379	0.613537499145787
	0.500158984920628	0.506202917231944	0.388129276855868	0.391429495638206
	0.391718592801076	0.390681052832476	0.323527870651833	0.323501217147855
	0.338547374719877	0.337061756299449	0.318314259700137	0.318313848040219
	0.320626856711258	0.320222652750527	0.318309886184780	0.318309886184561
	0.318346374736978	0.318333591884421	0.318309886183791	0.318309886183791
	0.318309895590689	0.318309889954683		
	0.318309886183791	0.318309886183791		

Table 5: Average number of iterations in Normal-S iteration method

β	Average number of iterations in Normal-S iteration method (ANI)		
	$ \lambda_n = 0.5$	$ \lambda_n = 1$	λ_n as Wang and Liu
0.1	5.340000	5.080000	5.100000
0.2	5.040000	4.920000	4.920000
0.3	4.800000	4.720000	4.600000
0.4	4.360000	4.480000	4.420000
0.5	4.240000	4.300000	4.280000
0.6	4.100000	4.080000	4.140000
0.7	3.800000	3.760000	3.640000
0.8	3.700000	3.600000	3.540000
0.9	3.620000	3.300000	3.340000

Table 6: Average number of iterations in Normal-S iteration method (ANI)

β	Average number of iterations in Normal-S iteration method		
	$ \lambda_n = 0.5$	$ \lambda_n = 1$	λ_n as Wang and Liu
0.1	5.725490	5.411765	5.333333
0.2	5.411765	5.196078	5.137255
0.3	5.176471	4.941176	4.882353
0.4	4.980392	4.823529	4.764706
0.5	4.705882	4.666667	4.607843
0.6	4.431373	4.549020	4.450980
0.7	4.254902	4.352941	4.294118
0.8	3.764706	4.137255	4.058824
0.9	3.803922	3.764706	3.666667

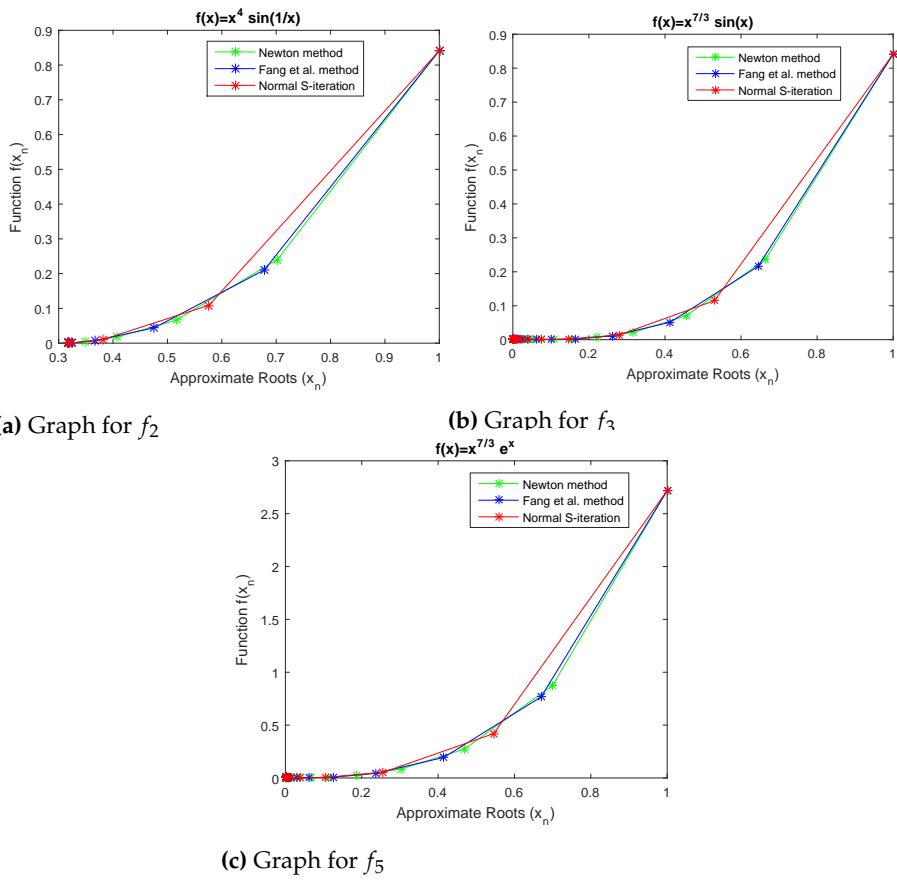


Figure 1. Graph between value of functions and roots

grid as follows: $x_0 = -2.0 + ih, i = 1, \dots, 50$ and $h = 0.03$ (see Table 6). Allowed error is 10^{-14} .

7. Convergence behaviour of Newton's, Fang et al. and present method

Convergence behaviour of Newton's method, Fang et al. method [15] and new Newton's like normal S-iteration method are shown in Fig. 1-3. To study the convergence behavior we have taken the test functions f_2, f_3 and f_5 and for each test functions, we have considered the three cases as:

Case 1: The graph between function and root for f_2, f_3, f_5 .
 Here, from the Fig. 1(a), it is clear that for $x_0 = 1.0$, we have $f_2(x_0) = 0.841470984807896$. Starting with this initial approximation x_0 , the value of x_1 for Newton's method, Fang et al. method [15] and present method are $0.702195479022049, 0.677964714450141$ and 0.576332178830878 respectively. Clearly the present method (red line) is better in its very first iteration among the all three methods. After successive iterations starting with $x_0 = 1.0$, present method converges to the root $x^* = 0.318309886183791$ in very fast manner as shown in figure. Similarly, we can see Fig. 1(b) for the function f_3 and Fig. 1(c) for function f_5 , that the present method converges to the root $x^* = 0.318309886183791$ faster than others.

Case 2: The graph between number of iterations and root for f_2, f_3, f_5 .

For the function f_3 , we have $f_3(x_0) = 0.841470984807896$ for $x_0 = 1.0$. It is clear from Fig. 2(b) that starting with the initial approximation x_0 , Newton's method, Fang et al. method [15] and present method converge to the root $x^* = 0.0$ in 88, 61 and 49 iterations respectively. Hence, new Newton's like normal S-iteration method takes less number of iterations in a very efficient manner. Similarly, we see the same pattern for f_2 and f_5 in Fig. 2(a) and Fig. 2(c) also.

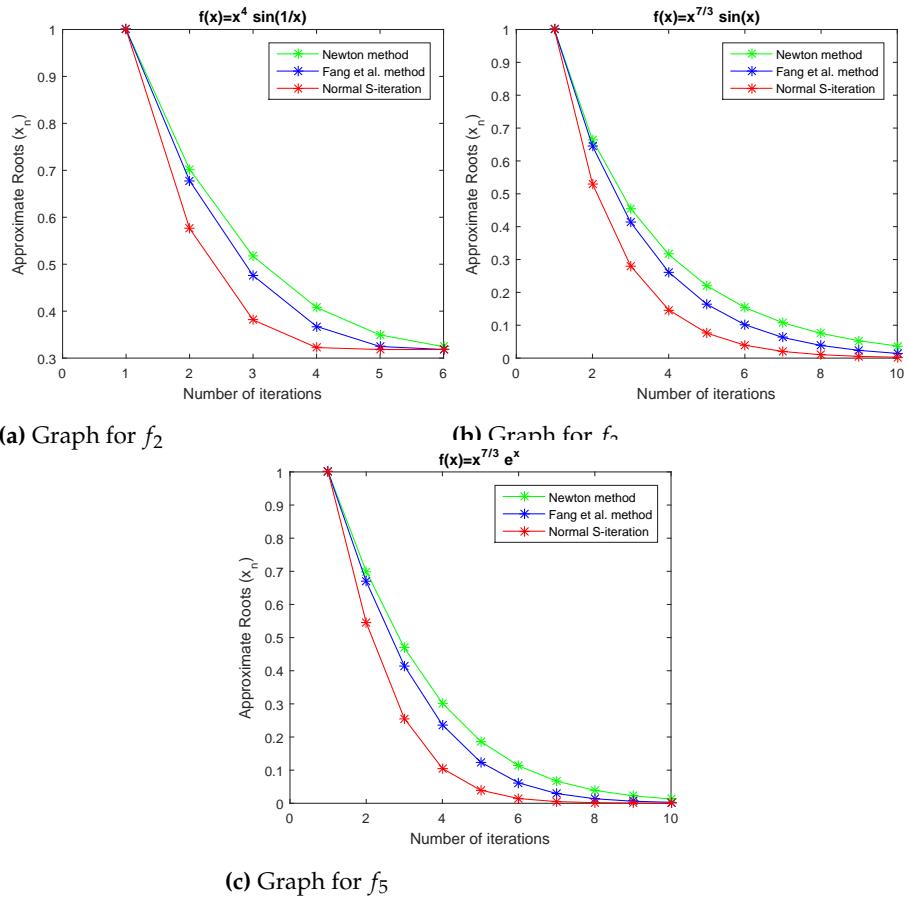


Figure 2. Graph between root and number of iterations

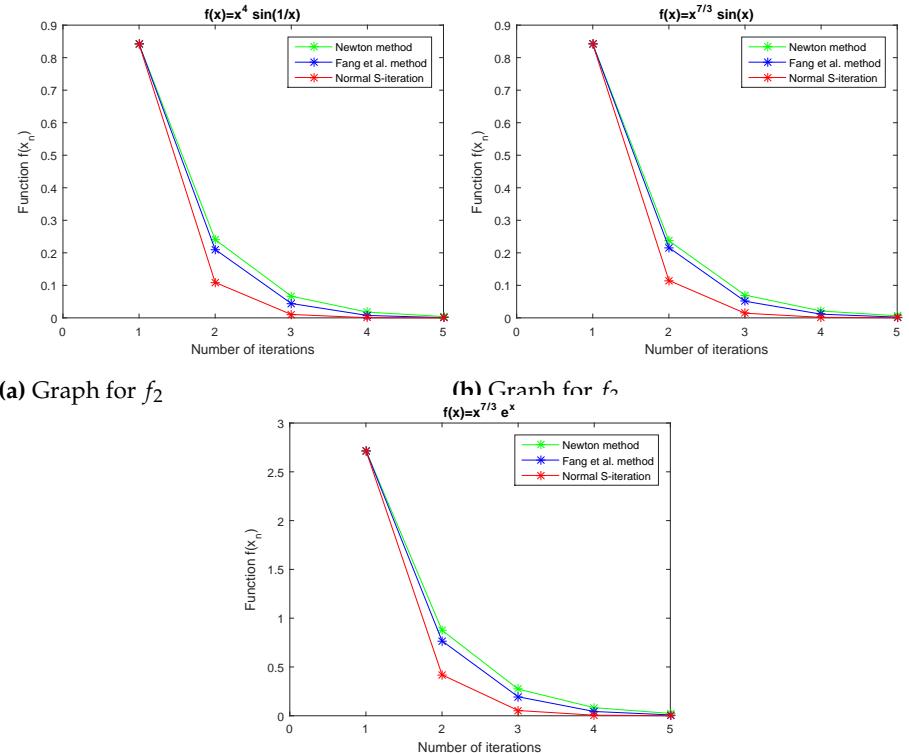


Figure 3. Graph for value of functions and number of iterations

176

177 **Case 3:** The graph between number of iterations and function for f_2, f_3, f_5 .

178 In Fig. 3(c), we have $f_5(x_0) = 2.718281828459045$ for $x_0 = 1.0$. Starting with x_0 , we
 179 can see from the graph that the value of the function f_5 in present method becomes 0 in
 180 33 iterations while the Newton's method and Fang et al. method [15] takes 89 and 43
 181 respectively, which shows that the present method converging to the root $x^* = 0.0$ faster
 182 than the Newton's method and Fang et al. method. Fig. 3(a) and Fig. 3(b) shows the
 183 same thing for the functions f_2 and f_3 respectively.

184 **8. Dynamical Results of Methods for f_1, f_2, F_1, F_2**

Now, we will define the following definitions but in the extended complex plane.

Definition 2 (see [20], [21]) Let us consider $g : I \rightarrow \mathbb{C}$ be a rational map on the Riemann sphere, where I is a subset of the complex numbers \mathbb{C} . Then a point z_0 is said to be a fixed point of g if

$$g(z_0) = z_0.$$

Again for any point $z \in \mathbb{C}$, the Orbit of the point z can be defined as the set

$$Orb(z) = \{z, g(z), g^2(z), \dots, g^n(z), \dots\}.$$

Definition 3 (see [20], [21]) A periodic point z_0 is said to be of period k if \exists a smallest positive integer k i.e. $g^k(z_0) = z_0$.

Remark If z_0 is periodic point of period k , then clearly it is a fixed point for g^k .

Definition 4 (see [20], [21]) Let z^* be a zero of the function F , then the basin of attraction of the zero z^* is defined as the set of all initial approximations z_0 such that any numerical iterative method starting with z_0 converges to z^* . It can be written as

$$B(z^*) = \{z_0 : z_{n+1} = g^n(z_0) \text{ converges} \rightarrow z^*\}. \quad (19)$$

Here g^n is any fixed point iterative method.

Remark For example in case of Newton's method

$$z_{n+1} = g(z_n),$$

$$g(z_n) = z_n - \frac{F(z_n)}{F'(z_n)}, \quad n = 0, 1, 2, \dots$$

We can write the basin of attraction of the zero z^* for the Newton's method as follows:

$$B(z^*) = \{z_0 : z_{n+1} = g^n(z_0) \text{ converges} \rightarrow z^*\}.$$

185 **Definition 5** (see [20], [21]) The Julia set of a nonlinear map $g(z)$ is denoted as $J(g)$ and is
 186 defined as a set consisting of the closure of its repelling periodic points. The complement
 187 of Julia set $J(g)$ is called as the Fatou set $f(g)$.

188 **Remark**

189 (i) Some times Julia set of a nonlinear map may also be defined as the common boundary
 190 shared by basins of the roots and the Fatou set may also be defined as the set which
 191 contains the basin of attraction.
 192 (ii) Fractals are very complicated phenomenon that may be defined as a self-similar
 193 surprising geometric object which repeated at every small scale ([4]).

194

195 We have studied the dynamical analysis of the rational functions using iterative
 196 methods. Then, we examined the theoretical and numerical results with the help of
 197 dynamical results. Dynamical study helps to understand the convergence and stability
 198 of the methods [20]. We apply our method on a square $\mathfrak{R} \times \mathfrak{R} = [-5, 5] \times [-5, 5]$ of
 199 700 \times 700 points with a tolerance- $|f(z_n)| < 5 \times 10^{-2}$ and a maximum of 30 iterations.

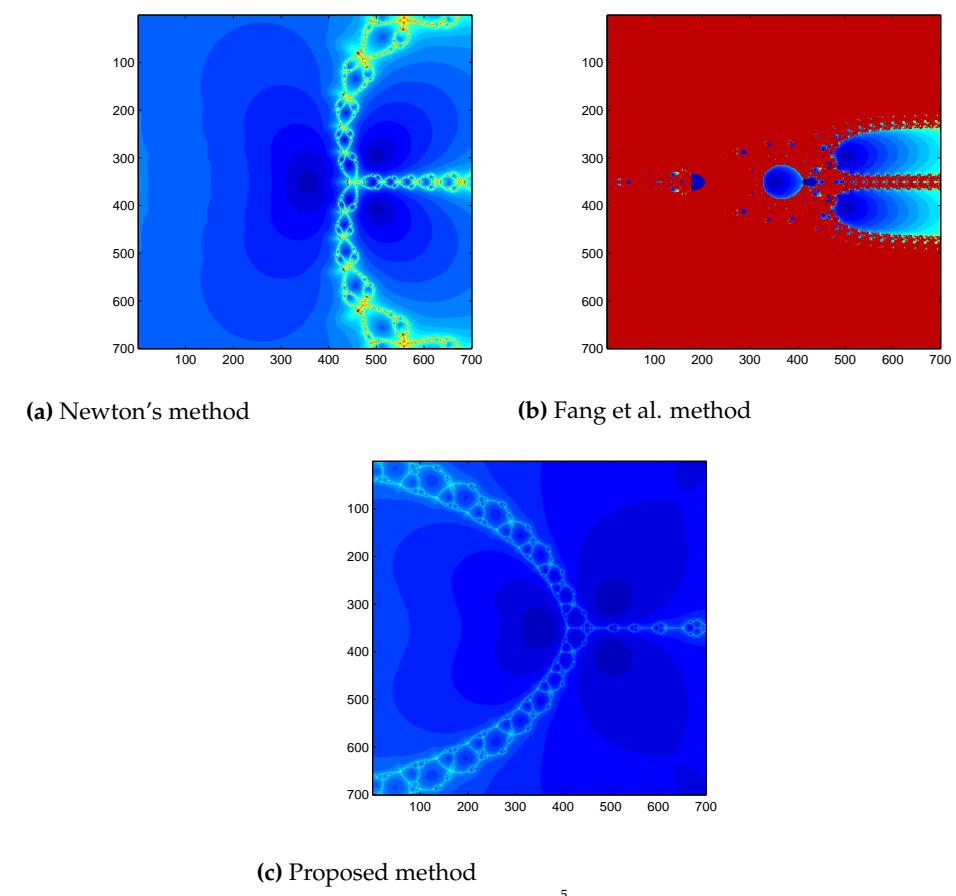


Figure 4. Dynamics of different methods for $f_1(x) = x^{\frac{5}{2}} - \exp x + 1$

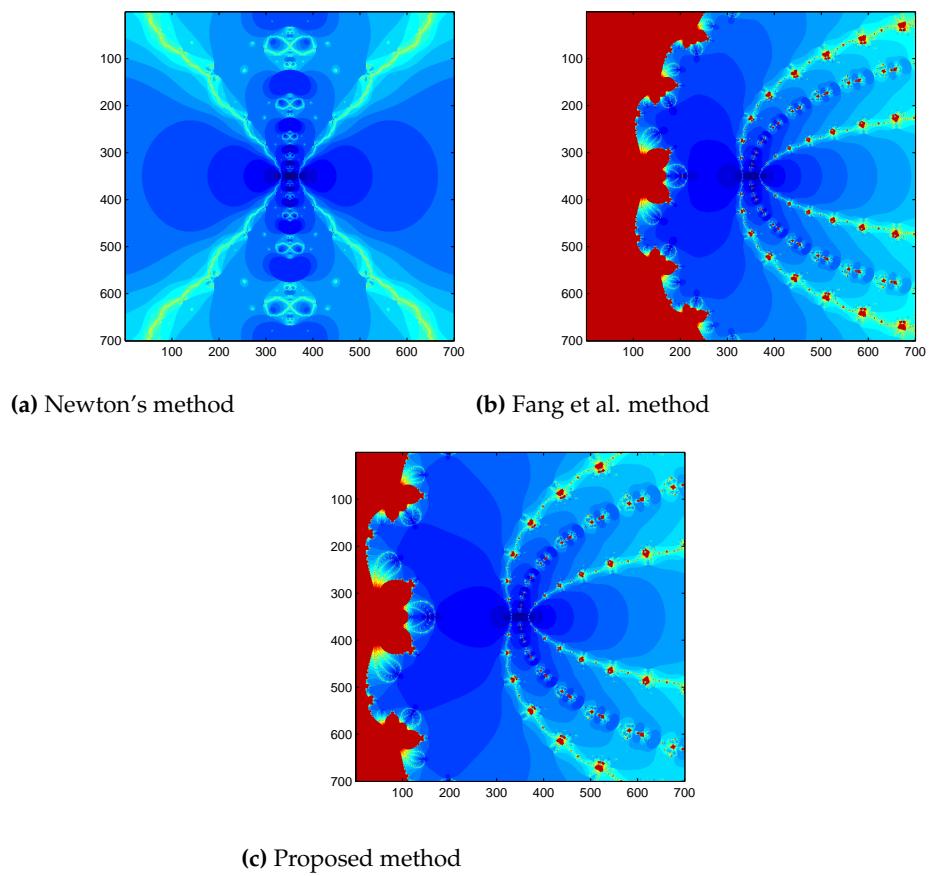


Figure 5. Dynamics of different methods for $f_2(x) = x^4 \sin(1/x)$

200 For any function, if the sequence generated by the iterative methods with any initial
 201 point z_0 converge to a zero z^* in the square, then we say that the point z_0 will lie in
 202 the basins of attraction of this zero and we assign a fixed color to this point z_0 . In the
 203 following, we have described the speed of convergence and dynamics of the considered
 204 methods under two cases for finding complex roots of functions. In first case we have
 205 plotted the speed of convergence and dynamics of Newton's method, Fang et al. method
 206 [15] and the proposed method for functions f_1, f_2 (whose third order differential does
 207 not exist). In the second case we have shown the speed of convergence and dynamics of
 208 Newton's method, Wang and Liu method [10] and the proposed method for functions
 209 F_1, F_2 (whose third order differentials exist).

210 **8.1. Functions whose third order differential does not exist**

$$f_1(x) = x^{\frac{5}{2}} - \exp x + 1, \quad x^* = 0.0,$$

$$f_2(x) = x^4 \sin(1/x), \quad x^* = 0.31830988618379.$$

211 For the function $f_1 = x^{\frac{5}{2}} - \exp x + 1, \quad x^* = 0.0$, the dynamics and speed of convergence
 212 for various methods are shown in Fig. (4a), (4b), and (4c). It is clear from Fig. 4 that the
 213 proposed method with $|\lambda_n| = 0.5$ and $\beta_n = 0.9$ generate bigger orbits and darker color
 214 having less fractal boundaries and chaotic behavior. Newton's method show some type
 215 of chaotic behavior. Dynamics of Fang et al. method [15] generate smaller orbits but
 216 bigger Julia set showing the worst method.

217 The the dynamics and speed of convergence of Newton's method, Fang et al.
 218 method and the proposed method for $f_2 = x^4 \sin(1/x)$, have been plotted in Fig. 5(a),
 219 5(b), and 5(c) respectively. Clearly, fractal patterns of Newton's method contains large

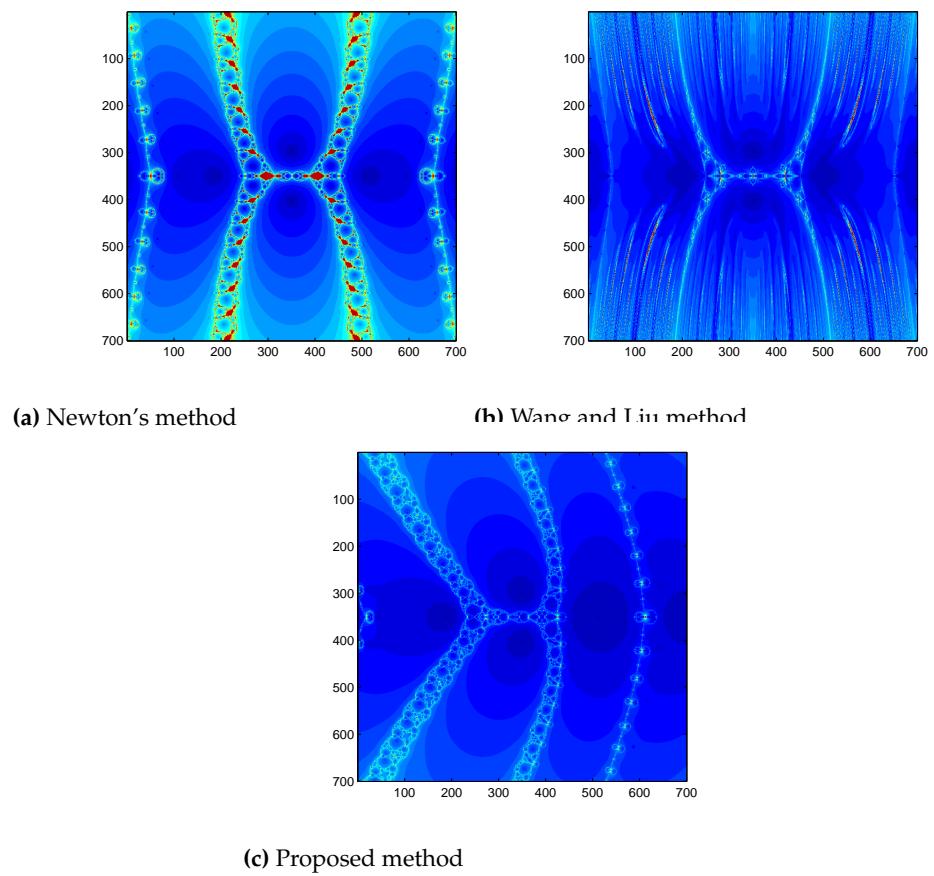


Figure 6. Dynamics of different methods for $F_1(x) = x \sin x + \cos x - 0.6$

220 size of julia set having fractal bounadries and chaotic behaviour. Whereas proposed
 221 mathod and Fang et al. method [15] contains large size of Fotou set with basins but both
 222 the method have some non converging region in the left side.

223 *8.2. Functions whose third order differentials exist*

$$F_1(x) = x \sin x + \cos x - 0.6, \quad x^* = -2.54623173142842,$$

$$F_2(x) = x^3 - 2x^2 + x - 1, \quad x^* = 1.75487766624669.$$

224
 225 For $F_1 = x \sin x + \cos x - 0.6$, the dynamics of Newton's method, Wang and Liu
 226 method [10] and the proposed method can be seen in Fig. 6(a), 6(b), 6(c) respectively.
 227 Here Fig. 6 show that the proposed method with $|\lambda_n| = 0.5$ and $\beta_n = 0.9$ is the best
 228 estimation because of bigger orbits and darker color having less fractal boundaries and
 229 chaotic behavior. Wang and Liu method [10] generate some type of chaotic behavior and
 230 Newton's method generate smaller orbits having fractal Julia set. This is the reason why
 231 Newton's method take several iterations and some times get failed.

232
 233 The dynamics of Newton's method, Wang and Liu method and the proposed
 234 method for function $F_2 = x^3 - 2x^2 + x - 1$ have been shown in Fig. 7(a), 7(b), and 7(c).
 235 Failure of Newton's method with starting point $x_0 = 1.0$, as shown in the Table 3 is
 236 proved by fractal patterns Fig. 7(a). The speed of convergence of the Newton method
 237 and Wang and Liu method [10] is slow having fractal Julia set, chaotic behavior in
 238 comparison to the proposed method.

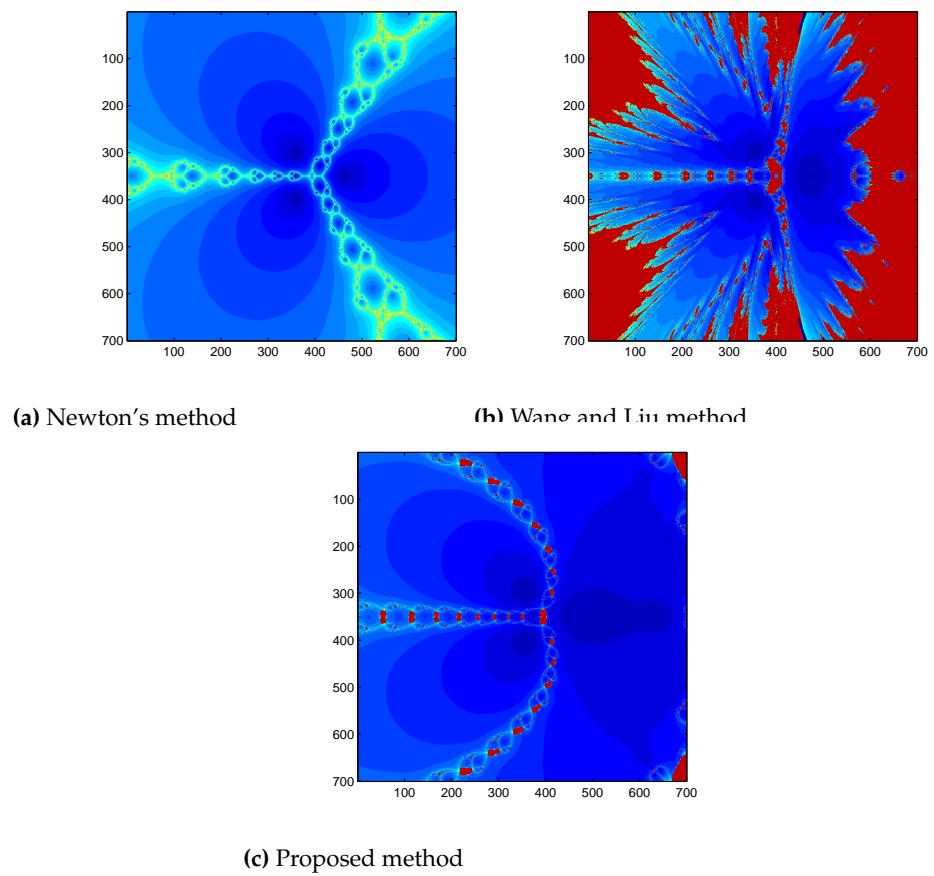


Figure 7. Dynamics of different methods for $F_2(x) = x^3 - 2x^2 + x - 1$

239 8.3. Dynamics of proposed method with variable value of β for example F_2

240 We have plotted the speed of convergence and dynamics of proposed method with
241 variable value of β for $F_2(x) = x^3 - 2x^2 + x - 1$, $x^* = 1.75487766624669$. Results
242 are shown in Fig 8. It is clear from figure that speed of convergence is increasing with
243 increase in value of β and for the value of $\beta = 0.9$, speed of convergence is optimal with
244 bigger orbits and less chaotic behavior in comparison to the other value of $\beta = 0.1, 0.3, 0.5$
245 and 0.7.

246 9. Conclusion

247 We have obtained a new Newton's like normal S-iteration method for finding the
248 root of the non-linear equation $f(x) = 0$. Theoretical results shows that it requires
249 only second-order differentiability rather than third-order differentiability just like other
250 methods. Numerical results and graphical illustration shows that the present method
251 (7) is most effective and superior when Newton's method fails as well as it performs
252 better than same order Fang et al. method [15] and third order Wang and Liu method
253 [10] as it converges to the root much faster in very efficient manner for different values
254 of λ_n with $\beta_n = 0.9$. Further, we have shown that the proposed method (7) converges
255 to the root much faster for different values of λ_n with a sequence of variable value of β ,
256 which converges to one. Dynamical analysis also support the theoretical and Numerical
257 results related to the convergence and stability behaviour of proposed method. Thus,
258 from a practical point of view, the new Newton's like normal S-iteration method has the
259 definite practical utility.

260 10. Conflict of interest

261 The authors declare that they have no conflict of interest.

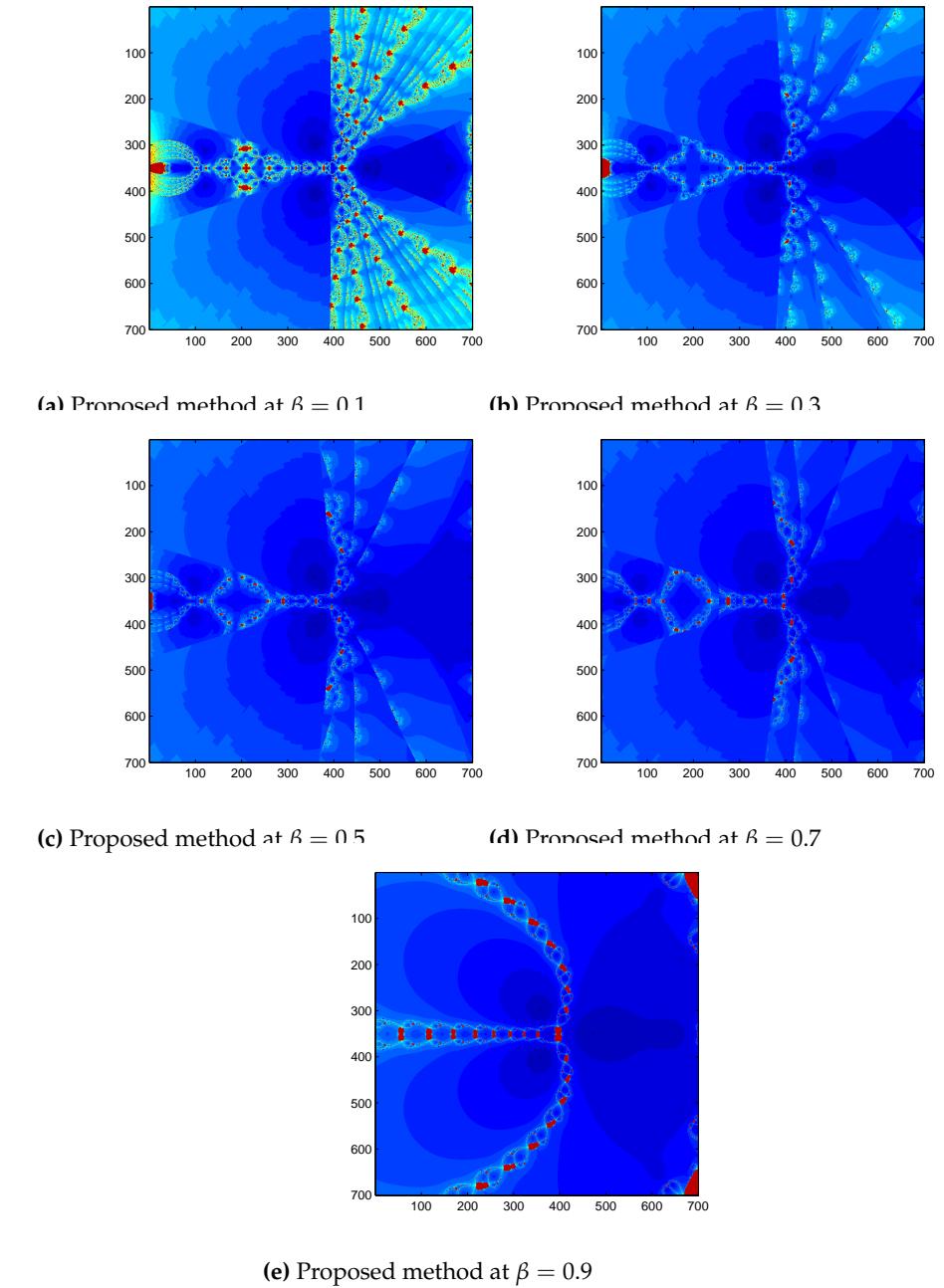


Figure 8. Dynamics of proposed method with variable value of β for $F_2(x) = x^3 - 2x^2 + x - 1$

²⁶² **Author Contributions:** Conceptualization, M.K.S. and I.K.A.; methodology, M.K.S. and I.K.A.;
²⁶³ software, M.K.S. and I.K.A.; validation, M.K.S. and I.K.A.; formal analysis, M.K.S. and I.K.A.;
²⁶⁴ investigation, M.K.S. and I.K.A.; resources, M.K.S. and I.K.A.; data curation, M.K.S. and I.K.A.;
²⁶⁵ writing—original draft preparation, M.K.S. and I.K.A.; writing—review and editing, M.K.S. and
²⁶⁶ I.K.A.; visualization, M.K.S. and I.K.A.; supervision, M.K.S. and I.K.A.; project administration,
²⁶⁷ M.K.S. and I.K.A.; funding acquisition, M.K.S. and I.K.A. All authors have read and agreed to the
²⁶⁸ published version of the manuscript.

References

1. A. Galantai, The theory of Newton's method, *J. Comput. Appl. Math.*, **124** (2000), 25–44.
2. A. M. Ostrowski, *Solution of Equations and Systems of Equations*, Academic Press Inc., 1966.
3. A. Y. Ozban, Some new variants of Newton's method, *Appl. Math. Lett.*, **17** (2004), 677–682.
4. B. B. Mandelbrot1983, The fractal geometry of nature. *Macmillan. ISBN 978-0-7167-1186-5*, 1983.
5. D. R. Sahu, Applications of theS-iteration process to constrained minimization problems and split feasibility problems, *Fixed Point Theory*, **12** (2011), 187–204.
6. D. R. Sahu, Strong convergence of a fixed point iteration process with applications, *International Conference on Recent Advances in Mathematical Sciences and Applications*, (2009), 100–116.
7. G. Ardelean and L. Balog, A qualitative study of Agarwal et al. iteration procedure for fixed points approximation, *CREAT. MATH. INFORM.*, **25** (2016), No. 2, 135–139.
8. G. Julia, Memoire sur l'itération des fonction rationnelles. *J. Math. Pures et Appl.* **81**, 47–235, (1918).
9. H. H. H. Homier, On Newton-type methods with cubic convergence, *J. Comput. Appl. Math.*, **176** (2005), 425–432.
10. H. Wang and H. Liu, Note on a Cubically Convergent Newton-Type Method Under Weak Conditions, *Acta. Appl. Math.*, **110** (2010), 725–735.
11. I. K. Argyros and S Hilout, On Newton's Method for Solving Nonlinear Equations and Function Splitting, *Numer. Math. Theor. Meth. Appl.*, **4** (2011), 53–67.
12. I. K. Argyros; A. A. Magrenan: Iterative Methods and Their Dynamics with Applications: A Contemporary Study. *C R C Press, Taylor and Francis, Boca Raton, Florida* 2017.
13. J. F. Traub, *Iterative Methods for the Solution of Equations*, Prentice Hall, Clifford, NJ, 1964.
14. J. Kou, Y. Li and X. Wang, On modified Newton methods with cubic convergence, *Appl. Math. Compute.*, **176** (2006), 123–127.
15. L. Fang, G. He and Z. Hub, A cubically convergent Newton-type method under weak conditions, *J. Compute. and Appl. Math.*, **220** (2008), 409–412.
16. M. Frontini and E. Sormani, Some variant of Newton's method with third-order convergence, *Appl. Math. Compute.*, **140** (2003), 419–426.
17. Singh, M. K.: A Six-order variant of Newton's method for solving non linear equations. *Comput. Meth. Sci. Technol.* **15**(2), 185–193, (2009).
18. Singh, M. K.; Argyros, I. K.; Singh, A. K.: An optimal 8th order Newton's-type method with basin of attraction. *SeMA Journal*, <https://doi.org/10.1007/s40324-021-00262-1>.
19. Singh, M.K.; Singh, A.K.: The Optimal Order Newton's Like Methods with Dynamics. *Mathematics*, **9**, 527,2021, <https://doi.org/10.3390/math9030527>.
20. S. Amat, S. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, *Scientia* **10**, (2004), 3–35.
21. M. Scott, B. Neta, C. Chun, Basin attractors for various methods, *Appl. Math. Comput.*, **218**(2), 2584–2599, (2011).
22. S. K. Parhi and D. K. Gupta, Convergence of a third order method for fixed points in Banach spaces, *Numerical Algorithms* , **60**(3) (2012), 419–434.
23. S. Weerakoon and T.G.I. Fernando, A variant of Newton's method with accelerated third-order convergence, *Appl. Math. Lett.*, **13** (2000), 87–93.
24. X. Wu and D. Fu, New high-order convergence iteration methods without employing derivatives for solving nonlinear equations, *Computers & Mathematics with Applications*, **41** (2001), 489–495.
25. X.Y. Wu, A new continuation Newton-like method and its deformation, *Appl. Math. Comput.*, **112** (2000), 75–78.