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1 Abstract: In the present paper, we introduced a quadratically convergent Newton’s like normal S-
2 iteration method free from the second derivative for the solution of nonlinear equations permitting
s f'(x) = 0 at some points in the neighborhood of the root. Our proposed method works well
4 when the Newton method fails. Numerically it has been verified that the Newton’s like normal
5 S-iteration method converges faster than Fang et al. method [A cubically convergent Newton-type
e method under weak conditions, J. Compute. and Appl. Math., 220 (2008), 409-412]. We studied
7 different aspects of normal S-iteration method. Lastly, fractal patterns support the numerical
s results and explain the convergence, divergence, and stability of method.

o Keywords: Newton’s method; normal S-iteration; weak condition; simple root; order of conver-
10 gence

11 1. Introduction

In this work, we have proposed a Newton’s like normal S-iteration method for
solving nonlinear algebraic and transcendental equations of the form ([17], [18], [19])

f(x)=0. @

Newton’s method [13] is a basic method for solving (1), which converges to the root
quadratically under some conditions. Newton’s method is defined as follows:

f(xn)
Xn4+1 —xn_f/(xn)/ n=0,12---. (2)
12 Some weakness of Newton’s method are as follows ([1]-[25]):
1z (i) It is only of order two.
1a  (ii) The initial approximation should be near to the root.
15 (iii) The denominator term of Newton’s method must not be zero, at the root or near to
1 the root.

To remove these weakness, Wu [25] developed a quadratic convergent method in

2000 as follows:

- f(xn) -
Xn+1 _xn_)\nf(xn)+f,(xn), n=012---, 3)

1z where |[A,| € (0,00).
Fang et al. [15] studied a method in 2008 as follows:

_ f(xn)
yﬂ - Xn "l_ )\nf(xn)+f,(xn), (4)
Yo — 1 — fyn) n=012.-.
n+1 ]/n )\nf(xn)"l‘f/(xn)’ rLr & ’
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where |A,| < 1. They claimed that their method (4) is of cubic convergence. More
precisely,

Theorem 1. [15] Let f : I C R — R be a function and assume that

(L1) x* € I is a simple zero of f,

(L2) f is three times differentiable on I,

(L3) Anf(x) + f'(x) # 0, forall x € N(x*), where N(x*) is neighborhood of x*. Then
the method (4) converges cubically to x*.

Recently, Wang and Liu [10] identified that the Fang et al. method given by (4) is
only of order two. Wang and Liu [10] revised Theorem 1 as follows:

Theorem 2. Let f : I C it — R be a function and assume that

(i) x* € I is a simple zero of f,

(ii) f is three times differentiable on I,

(ii)) Anf(x) + f'(x) # O, for all x € N(x*), where N(x*) is neighborhood of x*. Then
method (4) converges quadratically to x*.

Contemporary, Wang and Liu [10] modified method (4) for third-order convergence

as follows: o
Yn = Xn + )\nf(xn)xjf/(xn)'
flow) ®)

Xn+1 :]/n“‘m/ n=2012---,
where [A,| < 1 and it is equal to -sign(f(x,)f'(xn))min{1,|f(xs)|}. Under above
modification, Wang and Liu [10] settled third-order convergence Theorem as follows:

Theorem 3. Let f : I C R — R be a function and assume that

(W1) x* € 1 is a simple zero of f,

(W2) f is three times differentiable on I,

(W3) Anf(x) — f'(x) # 0, for all x € N(x*), where N(x*) is neighborhood of x*.
Then, the iterative method (5) is cubically convergent.

It is clear from condition (W2) of Theorem 3, that the sufficient condition for the
convergence of method (5) to the zero of the function f is that the third derivative of f
must exist. But, we often come across the situation, when the third order differential of
the function does not exist, while f has a zero in the interval I. Consider the function f;
defined by

fi(x) = x5/2 —exp(x) + 1.

Here x* = 0.0. Note that fi(x*) = 0 and f{”(x*) does not exist. Hence, we observe that

(i) Newton’s method (2) can not be used.

(ii) Wang and Liu method (5) doesn’t satisfy the condition (W2) of Theorem 3. At
this stage, following natural question arises: Is it possible to propose an iterative method
for finding solution of (1), when f is not three times differentiable on I.

The objective of this work is to introduce Newton’s like normal S-iteration method
for solving nonlinear equation (1). Taking into account, we describe the new method in
which second derivative of the function f is sufficient for the convergence and is compa-
rable to the third order methods. Thus, our method provides not only an affirmative
answer of the question, but also behaves well in comparison of third order Wang and
Liu method [10].

Rest of the paper is arranged as follows: Section 2 is Preliminary. In section 3, we
have proposed the new Newton’s like normal S-iteration method and established its
convergence analysis. In section 4, numerical examples are given to check the theoretical
results . Lastly, dynamical analysis supports the numerical and theoretical results in
section 5.
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ss 2. Preliminary

Let x* be a root of non-linear equation (1) and f be a sufficiently differentiable
function and x, € N(x*), where N(x*) is neighborhood of x*. Then, the numerical
solution of (1) can be written as

X
£ = f) + [ F (0 ©
Approximating the integral by (x — x,,) f'(x,) with x = x* in (6), we get

0~ f(xn) 4+ (x* = xn) f' (xn).

ss Therefore, a new approximation x,; to x* can be written as (2). Newton’s method (
sz 2) fails when derivative of the f becomes zero in the neighbourhood of the root. On
ss replacing f’(x,) in (2) by f’(xn) + Anf(x4), we obtain an approximation x, 1 as given
s in (3), which is quadratically convergent method given by Wu [25].

s 3. New Newton’s like method and its Convergence Analysis

61 In this section, we introduce new Newton like normal S-iteration method and study
ez its convergence analysis.
63 In [5], Sahu introduced normal S-iteration process as follows:

Definition 1. Let D be a nonempty convex subset of a normed space X and T :
D — D be an operator. Then for arbitrary xo € D, the normal S-iteration process is
defined by
Xpe1 =T((1 = Bn)xn + BnT(xy)), n=0,1,2,---,

s« where the sequence 8, € (0,1).
There are many papers dealing with S-iteration process and normal S-iteration
process in the literature. In [6], Sahu introduced Newton’s like method based on normal
S-iteration process as follows:

Xpn+1 = Yn — Jj:/((];r;))/
Yn = (1 - ﬁn)xn + ,Bnun/
f(xn)

un:xn_m/ n:0/1/2/"'/

es where the sequence B, € (0,1) and f/(x) is the derivative of f at point x.
We now introduce our new Newton’s like normal S-iteration method for solving
nonlinear equation (1), when f’ may be zero in the neighbourhood of the root, as

Yn = (1= Bu)xn + BuG(xn), @)
Xpe1=G(yn), n=0,12---,

where

f(xn)
G(xy) = x4 + , 8
o) =60 3 F o) — ) ©
Bn € (0,1) and A, is a sequence in R, such that |A,| < 1. The parameter A, is chosen in
such a manner that both A, f(x,,) and — f’(x,) have same sign and hence denominator
is non zero in equation (8). For this purpose we use signum function as follows:

. |1, ifx>0,
sign(x) = { ~1,  ifx<0.
66 We are ready to establish main result of this paper, which is as follows:

or Theorem 4. Let f : I C R — R be a function and assume that
o8 (i) x* € I is a simple zero of f,


https://doi.org/10.20944/preprints202210.0462.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | "Posted: 31 October 2022" d0i:10.20944/preprints202210.0462.v1

40f17
oo (ii) f is two times differentiable on I,
70 (iii) Auf(x) — f'(x) # 0, for all x € N(x*), where N(x*) is neighborhood of x* and
n A <1

72 Then, the Newton’s like normal S-iteration method defined by the (7) is quadratically convergent
7s locally to the zero of f.

Proof: Let x* € I be a simple zero of a function f, e, = x, — x* and Ay =
(%)f(k) (x*)/ f'(x*). Using Taylor expansion about x* and using f(x*) = 0, we get

fln) = £ () [en + Azeh + Ase +O(en)], ©)
F(xn) = f/(x%) [1 2 Agen +3A3¢2 + 4AE3 + O(eﬁ)} . (10)
7 Now, from above two equations we get
F(xn) = Anf(xn) = F ()14 (2A2 — An)en + (3A3 — Ay Ad)e? + (4A4 — Ay Az)e
+ 0O(ep)] (11)

and from (9) and (11), we get

f(xn)
Auf(xn) — f/(xn)

Using above in (8), we obtain,

= —en+ (A — An)é2 + (2A2An A2 2424 2A3)ei +0(eb).

Glxn) = X"+ (A = An)ed + (2424, — A% =243 +245)e} + O(e}).  (12)
-+ Now, on using (12) in the first substep of (7), we get
Yn = X%+ (1= Bu)en + Bu(Az — An)é2 + Bu (2A2An —A2-24A%+ 2A3>e‘:’l +0(et). 13)
- On expanding f(y,) and f'(y,) about x,,, we obtain
fo) = FE[ = Buen+ {A2(1 =B +pulAz — An) |
+/3,1{2A2/\,1 — A2 —2A3 4245+ 2A5(1 — By)(Ay — An)}ei
+0(eh)], (14
flyn) = F)[1424201 = Boen + {3As(1 = Bu)? +242B0(A2 — Ar) } €2
B0 {242 (2420, — A3 — 243 + 243 ) + 643(1 — B) (A2 — Au)
+0(ef)- (15)
- Now, from (14) and (15), we have
Anf(yn) = f(yn) = F () [=14 (1 = Bu)(An —24A2)en
+Aa{ (1= Bu)? (A2 = 343) + Bu(Az — An) (14242) el

+0(e)] (16)
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7o Furthermore, from (14) and (16), we have
f(yn)
= —(1—-Bn)en+{An —3A2 — Bu(An —5A
Anf(yn) = f'(yn) (L= Brjent{An 2= Prlhn 2)
+B3(An — 342) bel +O(ef). 17)
With the help of (17), the second equation of (7) becomes
- 2 2 3
Xus1 = X"+ {An = 342 = Bu(2An — 642) + B2 (An — 342) }é} + O(e})
= ey11 = Cej + O(e}) (18)
so where C = A, — 3A; — Bu(2A, — 6A3) + B2 (Ay — 3A2).
82 Hence, the Newton’s like normal S-iteration method proposed in (7) has second
s3 order convergence.
es 4. Numerical Results
85 In this section, we present some numerical tests to show the applicability of the

s proposed method by considering two categories of functions namely (i) functions which
ez are differentiable three times and (ii) functions which are differentiable only two times.
ss Numerical computations have been carried out in MATLAB 2007 and stoping criteria
s has been taken as (i) | f/(x¢)| < ¢, (ii) |xx — xx_1| < &, where ¢ = 107!, We have applied
%0 Newton’s like normal S-iteration method for the following three values of A,

91

o (@) [Aa] = 0.5
03 (11) |/\n| = 1.0 and
oa (iii) Ay = —sign (f (xn) f' (xn))min{1, |f (x4)|} (Ay is taken as in Wang and Liu [10]).

o6 (i) Functions with third order differentials
97
Here, we have considered those example which were taken by Wang and Liu [10]
as follows:

Fi(x) = xsinx +cosx — 0.6, x* = —2.54623173142842,

B(x) =x>—2x> +x—1, x* = 1.75487766624669,
F(x) =Inx, x*=1.0000,
Fy(x) = arctanx, x* = 0.0000,
F5(x) =x+1—exp(sinx), x*=1.69681238680975,
Fs(x) = xexp(—x2) — (sinx)> +3cosx +5, x* = —1.20764782713092,
Fr(x) = 10xexp(—x?) — 1. x* = 1.67963061042845.

9o For the two values of A, = 0.5 and A, as wang, we have considered 8, = 0.5 and 0.9
w0 in Table 1. On starting with the same initial point as in Wang and Liu [10] in all test
11 problems, we observe that for the both values of A,, our normal S-iteration method takes
102 less number of iterations than the Wang and Liu method [10] for the value of B, = 0.9.
s Thus in spite of being second order convergence it performs better than third order
1« Wang and Liu method [10]. Also, It may be noted that in all test problems, the classical
1s  Newton’s method is either fail or diverge in most of the cases. In Table 1 F, D and
16 NC denote failure of the method, divergence of the method and not converging to the
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Table 1: Functions whose third order differentials exist
f(x) xo Newton Wang and Liu Normal S-iteration method
Method Method [Aq| =0.5 An as Wang and Liu
Bi =05 Ppn=09  PBy=05 By =09
F 0 F 5 7 5 5 4
—4 6 5 5 4 6 5
B 1 F 7 5 5 5 4
3 7 6 6 6 6 5
F 5 D 5 5 4 7 6
2 6 4 3 3 5 4
F; 3 D 4 5 4 5 4
-1 5 3 4 3 4 3
F 4 NC 6 6 5 7 6
2 5 4 4 4 4 4
Fs 0.73 D 8 6 4 8 4
-3 23 15 11 9 11 9
F 0.7 D 5 4 4 4 4
2 6 4 4 3 4 3

17 desired root respectively.
o (ii) Functions which are differentiable only two times
We have considered the following real functions from I C ¥ — R and the results
are shown in Table 2. 5
filx) =x2 —expx+1, x" =00,

fa(x) = x*sin %,x #0, x* =0.31830988618379(xo = 1),
x* = 0.106103295394597 (xo = 0.1),
fa3(x) = x5 sinx, x*=0.0,
falx) = (x—2)F — ¥+ 3x2 -2, x* = 2.475200396019297,
fs(x) =xiexpx, x* =00,
folx) = (x+2)2 +expr—1, x* = —1.142466838767107.

Table 2: Functions whose third order differential does not exist

f(x) xo Newton Fangetal Normal S-iteration method
Method Method A, as Wang and Liu [A,]=05 AJ=1
By=09  Bu=05 Bi=09 B.=05 Ba=09 B.=05
I 05 F 7 3 1 3 1 1 5
fa 1.0 9 9 6 7 6 7 6 8
0.1 5 5 3 4 3 4 3 4
f3 0.3 85 58 47 60 47 60 47 60
1.0 88 61 49 62 49 62 49 62
fa 2.0 F 9 4 5 5 4 4 4
f5 1.0 89 43 33 42 33 42 33 43
fo -2.0 10 F 3 4 5 4 3 4
110 As we know from the condition (W2) of Theorem 3 that the cubically convergent

1 Wang and Liu method will converge to the root only if the third order differential to
1z the function would exist in the neighbourhood of the root. Hence, Wang’s method is
us  no more applicable in this case. Therefore, we have compared the present method with
us quadratically convergent same order Newton’s method and Fang et al. method [15]
us for the different values of A, and B, (A, = 0.5,A, = 1, A as in Wang and Liu [10] and
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us  PBn = 0.5,B, = 0.9) in Table 2. In all test problems, for all the values of A,, and 8, we
1z can see that the present new Newton's like normal S-iteration method is alwasys taking
us less number of iterations except for the example 3 (case §,, = 0.5) in comparison to the
ue quadratically convergent methods. Hence, we conclude that the present method is more
120 effective robust and stable.

11 4.1. Behavior of normal S-iteration method for different value of A, and B,

122 We have considered the function Fs to see the empirical behavior of proposed

123 normal S-iteration method for different value of A,, and §, starting with the initial points

12 0.73 and -3.0. Numerical results in Table 3 shows that the proposed method is not

125 affected much due to the variation in value of A,. But the value of §, play crucial role as

12¢ we take its different values in the interval (0, 1). We can see that ranging the value of

12z By, from 0.1 to 0.9, the optimum value of §;; comes out to be 0.9 for which the proposed
method is taking the least number of iterations.

Table 3: Proposed method for different value of A,; and 8,

f(x)  xo Bn Normal S-iteration method
[An] =05 [A,]=1 A, as Wangand Liu
0.1 13 9 9
0.3 7 8 8
073 05 6 8 8
0.7 5 5 5
0.9 4 4 4
Fe
0.1 14 15 14
0.3 12 13 13
3.0 05 11 11 11
0.7 10 10 10
0.9 8 9 9

120 5. Normal-S iteration method with variable value of

130 We consider the two sequence of B, as B, = 0.1+ 1/2(n+2)and B2 =1—1/2(n+
11 2) to solve following two test functions:

133 (a) Fy(x) = xsinx + cosx — 0.6 x* = —2.54623173142842 and
134 (b) fa(x) = x4sin(1/x) x* = 0.31830988618379.
136 We observe from the Table 4, that the second sequence 2 = 1 —1/2(n +2) is taking

137 less number of iterations in comparison to the first sequence B} = 0.1 +1/2(n +2) in
s converging to the root for the both examples. Hence, we conclude that the sequence
130 which converges near 1, (82 = 1 — 1/2(n + 2)) gives the faster convergence.

120 6. Average number of iterations in Normal-S iteration method

141 Table 5 and Table 6 show the average number of iterations denoted by ANI of
12 50 tests done for different values of B, [7]. For this purpose, we have considered the
w3 following two test functions, which are three times differentiable:

us  Example F(x) = x® —2x2 4+ x — 1.0 = 0.

15 It has root x* = 1.75487766624669. We have taken the initial approximations in the grid
e as follows: xg = 0.25+ih,i = 1,---,50 and h = 0.03 (see Table 5). Allowed error is
wr 10714,

w0 Example Fg(x) = xexp(—x2) — (sinx)? + 3 cos x + 5.
1o [t has root x* = —1.20764782713092. We have taken the initial approximations x( in the
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Table 4: Normal-S iteration method with variable value of 8

Normal S-iteration for sequence B} Normal S-iteration for sequence 2
f(x) [Au] =05 Ay as Wang and Liu | A =05 An as Wang and Liu
-4.00000000000000 -4.00000000000000 -4.00000000000000 -4.00000000000000
-3.019890471239318  -3.269614812666443 | -2.787748595141695  -3.031336002398129
Fi(x) | -2:647689829523139  -2.830596759888509 | -2.550732240466982  -2.602227130430227
-2.552574309373607  -2.597269129310047 | -2.546231963106547  -2.546267106449917
-2.546259317314531  -2.547305870288047 | -2.546231731428419  -2.546231731433164
-2.546231731968219  -2.546232155885697 -2.546231731428418
-2.546231731428418  -2.546231731428486
-2.546231731428418
1.000000000000000  1.000000000000000 | 1.000000000000000  1.000000000000000
0.690862097114279  0.713251419170333 | 0.588489366623379  0.613537499145787
fox) | 0500158984920628  0.506202917231944 | 0.388129276855868  0.391429495638206
0.391718592801076  0.390681052832476 | 0.323527870651833  0.323501217147855
0.338547374719877  0.337061756299449 | 0.318314259700137  0.318313848040219
0.320626856711258  0.320222652750527 | 0.318309886184780  0.318309886184561
0.318346374736978  0.318333591884421 | 0.318309886183791  0.318309886183791
0.318309895590689  0.318309889954683
0.318309886183791  0.318309886183791

Table 5: Average number of iterations in Normal-S iteration method

B Average number of iterations in Normal-S iteration method (ANI)

Au] =05 A, =1 Ay as Wang and Liu
0.1  5.340000  5.080000 5.100000
0.2  5.040000  4.920000 4.920000
0.3  4.800000 4.720000 4.600000
04 4.360000 4.480000 4.420000
0.5 4.240000  4.300000 4.280000
0.6 4.100000  4.080000 4.140000
0.7  3.800000  3.760000 3.640000
0.8 3.700000  3.600000 3.540000
09 3.620000  3.300000 3.340000

Table 6: Average number of iterations in Normal-S iteration method (ANI)

B Average number of iterations in Normal-S iteration method

[An] =05 A, =1 Ay as Wang and Liu
0.1 5725490 5.411765 5.333333
0.2 5411765 5.196078 5.137255
0.3 5176471 4.941176 4.882353
04 4980392  4.823529 4.764706
0.5 4.705882  4.666667 4.607843
0.6 4431373 4.549020 4.450980
0.7 4.254902  4.352941 4.294118
0.8 3.764706  4.137255 4.058824
09 3.803922 3.764706 3.666667
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Figure 1. Graph between value of functions and roots

11 grid as follows: xg = —2.0+ih,i =1,---,50 and h = 0.03 (see Table 6). Allowed error
152 1S 10_14.

153 7. Convergence behaviour of Newton’s, Fang et al. and present method

154 Convergence behaviour of Newton’s method, Fang et al. method [15] and new
155 Newton’s like normal S-iteration method are shown in Fig. 1-3. To study the convergence
15 behavior we have taken the test functions f,, f3 and fs and for each test functions, we
157 have considered the three cases as:

1o Case 1: The graph between function and root for f,, f3, fs.

160 Here, from the Fig. 1(a), it is clear that for x) = 1.0, we have f,(xy) = 0.841470984807896.
101 Starting with this initial approximation x, the value of x; for Newton’s method, Fang
12 et al. method [15] and present method are 0.702195479022049, 0.677964714450141 and
13 0.576332178830878 respectively. Clearly the present method (red line) is better in its
1ea  Very first iteration among the all three methods. After successive iterations starting with
s X9 = 1.0, present method converges to the root x* = 0.318309886183791 in very fast
1es manner as shown in figure. Similarly, we can see Fig. 1(b) for the function f3 and Fig. 1(c)
w7 for function fs, that the present method converges to the root x* = 0.318309886183791
s faster than others.

16 Case 2: The graph between number of iterations and root for f, f3, fs.

170 For the function f3, we have f3(xg) = 0.841470984807896 for xy = 1.0. It is clear
12 from Fig. 2(b) that starting with the initial approximation xy, Newton’s method, Fang
w2 et al. method [15] and present method converge to the root x* = 0.0 in 88, 61 and 49
s iterations respectively. Hence, new Newton'’s like normal S-iteration method takes less
174 number of iterations in a very efficient manner. Similarly, we see the same pattern for f,
s and f5 in Fig. 2(a) and Fig. 2(c) also.
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184

Case 3: The graph between number of iterations and function for f5, f3, fs.

In Fig. 3(c), we have f5(xg) = 2.718281828459045 for xo = 1.0. Starting with x,, we
can see from the graph that the value of the function f5 in present method becomes 0 in
33 iterations while the Newton’s method and Fang et al. method [15] takes 89 and 43
respectively, which shows that the present method converging to the root x* = 0.0 faster
than the Newton’s method and Fang et al. method. Fig. 3(a) and Fig. 3(b) shows the
same thing for the functions f, and f3 respectively.

8. Dynamical Results of Methods for fi, f», Fi, B

Now, we will define the following definitions but in the extended complex plane.
Definition 2 (see [20], [21]) Let us consider g : I — C be a rational map on the Riemann
sphere, where I is a subset of of the complex numbers C. Then a point z is said to be a
fixed point of g if

8(z0) = zo.

Again for any point z € C, the Orbit of the point z can be difined as the set

Orb(z) = {z,8(2),8*(2), -+ ,§"(2), -+~ }-

Definition 3 (see [20], [21]) A periodic point zj is said to be of period k if 3 a smallest
positive integer k i.e. ¢%(zo) = 2 .
Remark If z is periodic point of period k, then clearly it is a fixed point for gk.

Definition 4 (see [20], [21]) Let z* be a zero of the function F, then the basin of at-
traction of the zero z* is defined as the set of all initial approximations zy such that any
numerical iterative method starting with zy converges to z*. It can be written as

B(z") = {z0 : zn41 = §"(20) converges — z*}. (19)

Here g" is any fixed point iterative method.
Remark For example in case of Newton’s method

Zn+1 = §(2zn),

. F(zy) N
8(zn) = zn 71_,,(2”), n=20,1,2, )

We can write the basin of attraction of the zero z* for the Newton’s method as follows:
B(z") = {z0 : zy+1 = §"(20) converges — z*}.

Definition 5 (see [20], [21]) The Julia set of a nonlinear map g(z) is denoted as J(g) and is
defined as a set consisting of the closure of its repelling periodic points. The complement
of Julia set J(g) is called as the Fatou set f(g).

Remark

(i) Some times Julia set of a nonlinear map may also be defined as the common boundary
shared by basins of the roots and the Fatou set may also be defined as the set which
contains the basin of attraction.

(ii) Fractals are very complicated phenomenon that may be defined as a self-similar
surprising geometric object which repeated at every small scale ([4]).

We have studied the dynamical analysis of the rational functions using iterative
methods. Then, we examined the theoretical and numerical results with the help of
dynamical results. Dynamical study helps to understand the convergence and stabilty
of the methods [20]. We apply our method on a square ® x ® = [-5,5] x [-5,5] of
700 x 700 points with a tolerance- |f(z,)| < 5 x 1072 and a maximum of 30 iterations.

d0i:10.20944/preprints202210.0462.v1
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(a) Newton’s method (b) Fang et al. method

(c) Proposed method
Figure 4. Dynamics of different methods for f1(x) = X3 — expx +1
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100 200 300 400 500 600 700 100 200 300 400 500 600 700

(a) Newton’s method (b) Fang et al. method

(c) Proposed method
Figure 5. Dynamics of different methods for f,(x) = x*sin(1/x)

200 For any function, if the sequence generated by the iterative methods with any initial
201 point zg converge to a zero z* in the square, then we say that the point zg will lie in
202 the basins of attraction of this zero and we assign a fixed color to this point zy. In the
203 following, we have described the speed of convergence and dynamics of the considered
20e  methods under two cases for finding complex roots of functions. In first case we have
20s plotted the speed of convergence and dynamics of Newton’s method, Fang et al. method
26 [15] and the proposed method for functions f;, f, (whose third order differential does
207 Not exist) . In the second case we have shown the speed of convergence and dynamics of
200 Newton’s method, Wang and Liu method [10] and the proposed method for functions
200 Fp, B, (Whose third order differentials exist).

20 8.1. Functions whose third order differential does not exist

filx) = X3 — expx+1, x*=00,
fo(x) = x*sin(1/x), x* = 0.31830988618379.

2 For the function f; = x3 — expx+1, x* = 0.0, the dynamics and speed of convergence
212 for various methods are shown in Fig. (4a), (4b), and (4c). It is clear from Fig. 4 that the
a1z proposed method with |A,| = 0.5 and B, = 0.9 generate bigger orbits and darker color
214 having less fractal boundaries and chaotic behavior. Newton’s method show some type
215 of chaotic behavior. Dynamics of Fang et al. method [15] generate smaller orbits but
216 bigger Julia set showing the worst method.

217 The the dynamics and speed of convergence of Newton’s method, Fang et al.
21s method and the proposed method for f, = x*sin(1/x), have been plotted in Fig. 5(a),
210 5(b), and 5(c) respectively. Clearly, fractal patterns of Newton’s method contains large
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(a) Newton’s method (h) Wano and Tinn methnd

(c) Proposed method
Figure 6. Dynamics of different methods for F; (x) = xsinx + cos x — 0.6

220  size of julia set having fractal bounadries and chaotic behaviour. Whereas proposed
222 mathod and Fang et al. method [15] contains large size of Fotou set with basins but both
222 the method have some non converging region in the left side.

223 8.2. Functions whose third order differentials exist

Fi(x) = xsinx +cosx — 0.6, x* = —2.54623173142842,
B(x)=x>—2x2 +x—1, x* = 1.75487766624669.

225 For F; = xsinx + cosx — 0.6, the dynamics of Newton’s method, Wang and Liu
226 method [10] and the proposed method can be seen in Fig. 6(a), 6(b), 6(c) respectively.
22z Here Fig. 6 show that the proposed method with |A;| = 0.5 and B, = 0.9 is the best
226 estimation because of bigger orbits and darker color having less fractal boundaries and
220 chaotic behavior. Wang and Liu method [10] generate some type of chaotic behavior and
230 Newton’s method generate smaller orbits having fractal Julia set. This is the reason why
=1 Newton’s method take several iterations and some times get failed.

233 The dynamics of Newton’s method, Wang and Liu method and the proposed
2 method for function F, = x*> — 2x% + x — 1 have been shown in Fig. 7(a), 7(b), and 7(c).
235 Failure of Newton’s method with starting point xy = 1.0, as shown in the Table 3 is
236 proved by fractal patterns Fig. 7(a). The speed of convergence of the Newton method
237 and Wang and Liu method [10] is slow having fractal Julia set, chaotic behavior in
238 comparison to the proposed method.
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(a) Newton’s method

(c) Proposed method
Figure 7. Dynamics of different methods for F,(x) = x® — 2x2 + x — 1

230 8.3. Dynamics of proposed method with variable value of B for example F,

240 We have plotted the speed of convergence and dynamics of proposed method with
2 variable value of B for F(x) = x® —2x2 +x — 1, x* = 1.75487766624669. Results
22 are shown in Fig 8. It is clear from figure that speed of convergence is increasing with
a3 increase in value of B and for the value of § = 0.9, speed of convergence is optimal with
2as  bigger orbits and less chaotic behavior in comparison to the other value of g = 0.1,0.3,0.5
25 and 0.7.

226 9. Conclusion

247 We have obtained a new Newton’s like normal S-iteration method for finding the
2as 10Ot Of the non-linear equation f(x) = 0. Theoretical results shows that it requires
2e0  only second-order differentiability rather than third-order differentiability just like other
20 methods. Numerical results and graphical illustration shows that the present method
21 (7) is most effective and superior when Newton’s method fails as well as it performs
252 better than same order Fang et al. method [15] and third order Wang and Liu method
253 [10] as it converges to the root much faster in very efficient manner for different values
2s  of Ay with B, = 0.9. Further, we have shown that the proposed method (7) converges
255 to the root much faster for different values of A, with a sequence of variable value of §,
2ss  which converges to one. Dynamical analysis also support the theoretical and Numerical
257 results related to the convergence and stability behaviour of proposed method. Thus,
25 from a practical point of view, the new Newton’s like normal S-iteration method has the
250 definite practical utility.
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(2) Pronnced methad at R =01 (h) Prannced methnd at R =N 12

(c) Proposed method at R =N~ (A) Prannced methnd at R = (.7

(e) Proposed method at f = 0.9
Figure 8. Dynamics of proposed method with variable value of § for F(x) = x3 —2x2 + x — 1
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