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Abstract: In the present paper, we introduced a quadratically convergent Newton’s like normal S-1

iteration method free from the second derivative for the solution of nonlinear equations permitting2

f ′(x) = 0 at some points in the neighborhood of the root. Our proposed method works well3

when the Newton method fails. Numerically it has been verified that the Newton’s like normal4

S-iteration method converges faster than Fang et al. method [A cubically convergent Newton-type5

method under weak conditions, J. Compute. and Appl. Math., 220 (2008), 409-412]. We studied6

different aspects of normal S-iteration method. Lastly, fractal patterns support the numerical7

results and explain the convergence, divergence, and stability of method.8

Keywords: Newton’s method; normal S-iteration; weak condition; simple root; order of conver-9

gence10

1. Introduction11

In this work, we have proposed a Newton’s like normal S-iteration method for
solving nonlinear algebraic and transcendental equations of the form ([17], [18], [19])

f (x) = 0. (1)

Newton’s method [13] is a basic method for solving (1), which converges to the root
quadratically under some conditions. Newton’s method is defined as follows:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, · · · . (2)

Some weakness of Newton’s method are as follows ([1]-[25]):12

(i) It is only of order two.13

(ii) The initial approximation should be near to the root.14

(iii) The denominator term of Newton’s method must not be zero, at the root or near to15

the root.16

To remove these weakness, Wu [25] developed a quadratic convergent method in
2000 as follows:

xn+1 = xn −
f (xn)

λn f (xn) + f ′(xn)
, n = 0, 1, 2, · · · , (3)

where |λn| ∈ (0, ∞).17

Fang et al. [15] studied a method in 2008 as follows: yn = xn +
f (xn)

λn f (xn)+ f ′(xn)
,

xn+1 = yn − f (yn)
λn f (xn)+ f ′(xn)

, n = 0, 1, 2, · · · ,
(4)
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where |λn| ≤ 1. They claimed that their method (4) is of cubic convergence. More18

precisely,19

Theorem 1. [15] Let f : I ⊆ < → < be a function and assume that20

(L1) x∗ ∈ I is a simple zero of f ,21

(L2) f is three times differentiable on I,22

(L3) λn f (x) + f ′(x) 6= 0, for all x ∈ N(x∗), where N(x∗) is neighborhood of x∗. Then23

the method (4) converges cubically to x∗.24

Recently, Wang and Liu [10] identified that the Fang et al. method given by (4) is25

only of order two. Wang and Liu [10] revised Theorem 1 as follows:26

Theorem 2. Let f : I ⊆ < → < be a function and assume that27

(i) x∗ ∈ I is a simple zero of f ,28

(ii) f is three times differentiable on I,29

(iii) λn f (x) + f ′(x) 6= 0, for all x ∈ N(x∗), where N(x∗) is neighborhood of x∗. Then30

method (4) converges quadratically to x∗.31

Contemporary, Wang and Liu [10] modified method (4) for third-order convergence
as follows:  yn = xn +

f (xn)
λn f (xn)− f ′(xn)

,

xn+1 = yn +
f (yn)

λn f (xn)− f ′(xn)
, n = 0, 1, 2, · · · ,

(5)

where |λn| ≤ 1 and it is equal to -sign
(

f (xn) f ′(xn)
)
min{1, | f (xn)|}. Under above32

modification, Wang and Liu [10] settled third-order convergence Theorem as follows:33

Theorem 3. Let f : I ⊆ < → < be a function and assume that34

(W1) x∗ ∈ I is a simple zero of f ,35

(W2) f is three times differentiable on I,36

(W3) λn f (x)− f ′(x) 6= 0, for all x ∈ N(x∗), where N(x∗) is neighborhood of x∗.37

Then, the iterative method (5) is cubically convergent.38

It is clear from condition (W2) of Theorem 3, that the sufficient condition for the
convergence of method (5) to the zero of the function f is that the third derivative of f
must exist. But, we often come across the situation, when the third order differential of
the function does not exist, while f has a zero in the interval I. Consider the function f1
defined by

f1(x) = x5/2 − exp(x) + 1.

Here x∗ = 0.0. Note that f1(x∗) = 0 and f ′′′1 (x∗) does not exist. Hence, we observe that39

(i) Newton’s method (2) can not be used.40

(ii) Wang and Liu method (5) doesn’t satisfy the condition (W2) of Theorem 3. At41

this stage, following natural question arises: Is it possible to propose an iterative method42

for finding solution of (1), when f is not three times differentiable on I.43

The objective of this work is to introduce Newton’s like normal S-iteration method44

for solving nonlinear equation (1). Taking into account, we describe the new method in45

which second derivative of the function f is sufficient for the convergence and is compa-46

rable to the third order methods. Thus, our method provides not only an affirmative47

answer of the question, but also behaves well in comparison of third order Wang and48

Liu method [10].49

Rest of the paper is arranged as follows: Section 2 is Preliminary. In section 3, we50

have proposed the new Newton’s like normal S-iteration method and established its51

convergence analysis. In section 4, numerical examples are given to check the theoretical52

results . Lastly, dynamical analysis supports the numerical and theoretical results in53

section 5.54
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2. Preliminary55

Let x∗ be a root of non-linear equation (1) and f be a sufficiently differentiable
function and xn ∈ N(x∗), where N(x∗) is neighborhood of x∗. Then, the numerical
solution of (1) can be written as

f (x) = f (xn) +
∫ x

xn
f ′(t)dt. (6)

Approximating the integral by (x− xn) f ′(xn) with x = x∗ in (6), we get

0 ≈ f (xn) + (x∗ − xn) f ′(xn).

Therefore, a new approximation xn+1 to x∗ can be written as (2). Newton’s method (56

2) fails when derivative of the f becomes zero in the neighbourhood of the root. On57

replacing f ′(xn) in (2) by f ′(xn) + λn f (xn), we obtain an approximation xn+1 as given58

in (3), which is quadratically convergent method given by Wu [25].59

3. New Newton’s like method and its Convergence Analysis60

In this section, we introduce new Newton like normal S-iteration method and study61

its convergence analysis.62

In [5], Sahu introduced normal S-iteration process as follows:63

Definition 1. Let D be a nonempty convex subset of a normed space X and T :
D → D be an operator. Then for arbitrary x0 ∈ D, the normal S-iteration process is
defined by

xn+1 = T((1− βn)xn + βnT(xn)), n = 0, 1, 2, · · · ,

where the sequence βn ∈ (0, 1).64

There are many papers dealing with S-iteration process and normal S-iteration
process in the literature. In [6], Sahu introduced Newton’s like method based on normal
S-iteration process as follows:

xn+1 = yn − f (yn)
f ′(yn)

,
yn = (1− βn)xn + βnun,
un = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, · · · ,

where the sequence βn ∈ (0, 1) and f ′(x) is the derivative of f at point x.65

We now introduce our new Newton’s like normal S-iteration method for solving
nonlinear equation (1), when f ′ may be zero in the neighbourhood of the root, as{

yn = (1− βn)xn + βnG(xn),
xn+1 = G(yn), n = 0, 1, 2, · · · ,

(7)

where

G(xn) = xn +
f (xn)

λn f (xn)− f ′(xn)
, (8)

βn ∈ (0, 1) and λn is a sequence in <, such that |λn| ≤ 1. The parameter λn is chosen in
such a manner that both λn f (xn) and − f ′(xn) have same sign and hence denominator
is non zero in equation (8). For this purpose we use signum function as follows:

sign(x) =
{

1, i f x ≥ 0,
−1, i f x < 0.

We are ready to establish main result of this paper, which is as follows:66

Theorem 4. Let f : I ⊆ < → < be a function and assume that67

(i) x∗ ∈ I is a simple zero of f ,68
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(ii) f is two times differentiable on I,69

(iii) λn f (x) − f ′(x) 6= 0, for all x ∈ N(x∗), where N(x∗) is neighborhood of x∗ and70

| λn |≤ 1.71

Then, the Newton’s like normal S-iteration method defined by the (7) is quadratically convergent72

locally to the zero of f .73

Proof: Let x∗ ∈ I be a simple zero of a function f , en = xn − x∗ and Ak =(
1
k!

)
f (k)(x∗)/ f ′(x∗). Using Taylor expansion about x∗ and using f (x∗) = 0, we get

f (xn) = f ′(x∗)
[
en + A2e2

n + A3e3
n + O(e4

n)
]
, (9)

f ′(xn) = f ′(x∗)
[
1 + 2A2en + 3A3e2

n + 4A4e3
n + O(e4

n)
]
. (10)

Now, from above two equations we get74

f ′(xn)− λn f (xn) = f ′(x∗)[1 + (2A2 − λn)en + (3A3 − λn A2)e2
n + (4A4 − λn A3)e3

n

+ O(e4
n)] (11)

and from (9) and (11), we get

f (xn)

λn f (xn)− f ′(xn)
= −en + (A2 − λn)e2

n +
(

2A2λn − λ2
n − 2A2

2 + 2A3

)
e3

n + O(e4
n).

Using above in (8), we obtain,

G(xn) = x∗ + (A2 − λn)e2
n +

(
2A2λn − λ2

n − 2A2
2 + 2A3

)
e3

n + O(e4
n). (12)

Now, on using (12) in the first substep of (7), we get75

yn = x∗ + (1− βn)en + βn(A2 − λn)e2
n + βn

(
2A2λn − λ2

n − 2A2
2 + 2A3

)
e3

n + O(e4
n). (13)

On expanding f (yn) and f ′(yn) about xn, we obtain76

f (yn) = f ′(x∗)
[
(1− βn)en +

{
A2(1− βn)

2 + βn(A2 − λn)
}

e2
n

+βn

{
2A2λn − λ2

n − 2A2
2 + 2A3 + 2A2(1− βn)(A2 − λn)

}
e3

n

+O(e4
n)
]
, (14)

77

f ′(yn) = f ′(x∗)
[
1 + 2A2(1− βn)en +

{
3A3(1− βn)

2 + 2A2βn(A2 − λn)
}

e2
n

+βn

{
2A2

(
2A2λn − λ2

n − 2A2
2 + 2A3

)
+ 6A3(1− βn)(A2 − λn)

}
e3

n

+O(e4
n)
]
. (15)

Now, from (14) and (15), we have78

λn f (yn)− f ′(yn) = f ′(x∗)[−1 + (1− βn)(λn − 2A2)en

+λn

{
(1− βn)

2(A2 − 3A3) + βn(A2 − λn)(1 + 2A2)
}

e2
n

+O(e3
n)
]
. (16)
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Furthermore, from (14) and (16), we have79

f (yn)

λn f (yn)− f ′(yn)
= −(1− βn)en + {λn − 3A2 − βn(λn − 5A2)

+β2
n(λn − 3A2)

}
e2

n + O(e3
n). (17)

With the help of (17), the second equation of (7) becomes

xn+1 = x∗ +
{

λn − 3A2 − βn(2λn − 6A2) + β2
n(λn − 3A2)

}
e2

n + O(e3
n)

⇒ en+1 = Ce2
n + O(e3

n) (18)

where C = λn − 3A2 − βn(2λn − 6A2) + β2
n(λn − 3A2).80

81

Hence, the Newton’s like normal S-iteration method proposed in (7) has second82

order convergence.83

4. Numerical Results84

In this section, we present some numerical tests to show the applicability of the85

proposed method by considering two categories of functions namely (i) functions which86

are differentiable three times and (ii) functions which are differentiable only two times.87

Numerical computations have been carried out in MATLAB 2007 and stoping criteria88

has been taken as (i) | f ′(xk)| ≤ ε, (ii) |xk − xk−1| ≤ ε, where ε = 10−15. We have applied89

Newton’s like normal S-iteration method for the following three values of λn90

91

(i) |λn| = 0.592

(ii) |λn| = 1.0 and93

(iii) λn = −sign
(

f (xn) f ′(xn)
)
min{1, | f (xn)|} (λn is taken as in Wang and Liu [10]).94

95

(i) Functions with third order differentials96

97

Here, we have considered those example which were taken by Wang and Liu [10]
as follows:

F1(x) = x sin x + cos x− 0.6, x∗ = −2.54623173142842,

F2(x) = x3 − 2x2 + x− 1, x∗ = 1.75487766624669,

F3(x) = ln x, x∗ = 1.0000,

F4(x) = arctan x, x∗ = 0.0000,

F5(x) = x + 1− exp(sin x), x∗ = 1.69681238680975,

F6(x) = x exp(−x2)− (sin x)2 + 3 cos x + 5, x∗ = −1.20764782713092,

F7(x) = 10x exp(−x2)− 1. x∗ = 1.67963061042845.

98

For the two values of λn = 0.5 and λn as wang, we have considered βn = 0.5 and 0.999

in Table 1. On starting with the same initial point as in Wang and Liu [10] in all test100

problems, we observe that for the both values of λn our normal S-iteration method takes101

less number of iterations than the Wang and Liu method [10] for the value of βn = 0.9.102

Thus in spite of being second order convergence it performs better than third order103

Wang and Liu method [10]. Also, It may be noted that in all test problems, the classical104

Newton’s method is either fail or diverge in most of the cases. In Table 1 F, D and105

NC denote failure of the method, divergence of the method and not converging to the106
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Table 1: Functions whose third order differentials exist

f (x) x0 Newton Wang and Liu Normal S-iteration method
Method Method |λn| = 0.5 λn as Wang and Liu

βn = 0.5 βn = 0.9 βn = 0.5 βn = 0.9
F1 0 F 5 7 5 5 4

−4 6 5 5 4 6 5

F2 1 F 7 5 5 5 4
3 7 6 6 6 6 5

F3 5 D 5 5 4 7 6
2 6 4 3 3 5 4

F4 3 D 4 5 4 5 4
−1 5 3 4 3 4 3

F5 4 NC 6 6 5 7 6
2 5 4 4 4 4 4

F6 0.73 D 8 6 4 8 4
−3 23 15 11 9 11 9

F7 0.7 D 5 4 4 4 4
2 6 4 4 3 4 3

desired root respectively.107

108

(ii) Functions which are differentiable only two times109

We have considered the following real functions from I ⊂ < → < and the results
are shown in Table 2.

f1(x) = x
5
2 − exp x + 1, x∗ = 0.0,

f2(x) = x4 sin
1
x

, x 6= 0, x∗ = 0.31830988618379(x0 = 1),

x∗ = 0.106103295394597(x0 = 0.1),

f3(x) = x
7
3 sin x, x∗ = 0.0,

f4(x) = (x− 2)
7
3 − x3 + 3x2 − 2, x∗ = 2.475200396019297,

f5(x) = x
7
3 exp x, x∗ = 0.0,

f6(x) = (x + 2)
5
2 + exp x− 1, x∗ = −1.142466838767107.

Table 2: Functions whose third order differential does not exist

f (x) x0 Newton Fang et al. Normal S-iteration method
Method Method λn as Wang and Liu |λn | = 0.5 |λn | = 1

βn = 0.9 βn = 0.5 βn = 0.9 βn = 0.5 βn = 0.9 βn = 0.5
f1 0.5 F 7 3 4 3 4 4 5
f2 1.0 9 9 6 7 6 7 6 8

0.1 5 5 3 4 3 4 3 4
f3 0.3 85 58 47 60 47 60 47 60

1.0 88 61 49 62 49 62 49 62
f4 2.0 F 9 4 5 5 4 4 4
f5 1.0 89 43 33 42 33 42 33 43
f6 −2.0 10 F 3 4 5 4 3 4

As we know from the condition (W2) of Theorem 3 that the cubically convergent110

Wang and Liu method will converge to the root only if the third order differential to111

the function would exist in the neighbourhood of the root. Hence, Wang’s method is112

no more applicable in this case. Therefore, we have compared the present method with113

quadratically convergent same order Newton’s method and Fang et al. method [15]114

for the different values of λn and βn (λn = 0.5, λn = 1, λ as in Wang and Liu [10] and115
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βn = 0.5, βn = 0.9) in Table 2. In all test problems, for all the values of λn and βn, we116

can see that the present new Newton’s like normal S-iteration method is alwasys taking117

less number of iterations except for the example 3 (case βn = 0.5) in comparison to the118

quadratically convergent methods. Hence, we conclude that the present method is more119

effective robust and stable.120

4.1. Behavior of normal S-iteration method for different value of λn and βn121

We have considered the function F6 to see the empirical behavior of proposed122

normal S-iteration method for different value of λn and βn starting with the initial points123

0.73 and -3.0. Numerical results in Table 3 shows that the proposed method is not124

affected much due to the variation in value of λn. But the value of βn play crucial role as125

we take its different values in the interval (0, 1). We can see that ranging the value of126

βn from 0.1 to 0.9, the optimum value of βn comes out to be 0.9 for which the proposed127

method is taking the least number of iterations.

Table 3: Proposed method for different value of λn and βn

f (x) x0 βn Normal S-iteration method
|λn| = 0.5 |λn| = 1 λn as Wang and Liu

0.1 13 9 9
0.3 7 8 8

0.73 0.5 6 8 8
0.7 5 5 5
0.9 4 4 4

F6

0.1 14 15 14
0.3 12 13 13

-3.0 0.5 11 11 11
0.7 10 10 10
0.9 8 9 9

128

5. Normal-S iteration method with variable value of β129

We consider the two sequence of βn as β1
n = 0.1+ 1/2(n + 2) and β2

n = 1− 1/2(n +130

2) to solve following two test functions:131

132

(a) F1(x) = xsinx + cosx− 0.6 x∗ = −2.54623173142842 and133

(b) f2(x) = x4sin(1/x) x∗ = 0.31830988618379.134

135

We observe from the Table 4, that the second sequence β2
n = 1− 1/2(n+ 2) is taking136

less number of iterations in comparison to the first sequence β1
n = 0.1 + 1/2(n + 2) in137

converging to the root for the both examples. Hence, we conclude that the sequence138

which converges near 1, (β2
n = 1− 1/2(n + 2)) gives the faster convergence.139

6. Average number of iterations in Normal-S iteration method140

Table 5 and Table 6 show the average number of iterations denoted by ANI of141

50 tests done for different values of βn [7]. For this purpose, we have considered the142

following two test functions, which are three times differentiable:143

Example F2(x) = x3 − 2x2 + x− 1.0 = 0.144

It has root x∗ = 1.75487766624669. We have taken the initial approximations in the grid145

as follows: x0 = 0.25 + ih, i = 1, · · · , 50 and h = 0.03 (see Table 5). Allowed error is146

10−14.147

148

Example F6(x) = x exp(−x2)− (sin x)2 + 3 cos x + 5.149

It has root x∗ = −1.20764782713092. We have taken the initial approximations x0 in the150
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Table 4: Normal-S iteration method with variable value of β

Normal S-iteration for sequence β1
n Normal S-iteration for sequence β2

n
f (x) |λn| = 0.5 λn as Wang and Liu |λn| = 0.5 λn as Wang and Liu

-4.00000000000000 -4.00000000000000 -4.00000000000000 -4.00000000000000
-3.019890471239318 -3.269614812666443 -2.787748595141695 -3.031336002398129
-2.647689829523139 -2.830596759888509 -2.550732240466982 -2.602227130430227F1(x)
-2.552574309373607 -2.597269129310047 -2.546231963106547 -2.546267106449917
-2.546259317314531 -2.547305870288047 -2.546231731428419 -2.546231731433164
-2.546231731968219 -2.546232155885697 -2.546231731428418
-2.546231731428418 -2.546231731428486

-2.546231731428418

1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
0.690862097114279 0.713251419170333 0.588489366623379 0.613537499145787
0.500158984920628 0.506202917231944 0.388129276855868 0.391429495638206f2(x)
0.391718592801076 0.390681052832476 0.323527870651833 0.323501217147855
0.338547374719877 0.337061756299449 0.318314259700137 0.318313848040219
0.320626856711258 0.320222652750527 0.318309886184780 0.318309886184561
0.318346374736978 0.318333591884421 0.318309886183791 0.318309886183791
0.318309895590689 0.318309889954683
0.318309886183791 0.318309886183791

Table 5: Average number of iterations in Normal-S iteration method

β Average number of iterations in Normal-S iteration method (ANI)
|λn| = 0.5 |λn| = 1 λn as Wang and Liu

0.1 5.340000 5.080000 5.100000
0.2 5.040000 4.920000 4.920000
0.3 4.800000 4.720000 4.600000
0.4 4.360000 4.480000 4.420000
0.5 4.240000 4.300000 4.280000
0.6 4.100000 4.080000 4.140000
0.7 3.800000 3.760000 3.640000
0.8 3.700000 3.600000 3.540000
0.9 3.620000 3.300000 3.340000

Table 6: Average number of iterations in Normal-S iteration method (ANI)

β Average number of iterations in Normal-S iteration method
|λn| = 0.5 |λn| = 1 λn as Wang and Liu

0.1 5.725490 5.411765 5.333333
0.2 5.411765 5.196078 5.137255
0.3 5.176471 4.941176 4.882353
0.4 4.980392 4.823529 4.764706
0.5 4.705882 4.666667 4.607843
0.6 4.431373 4.549020 4.450980
0.7 4.254902 4.352941 4.294118
0.8 3.764706 4.137255 4.058824
0.9 3.803922 3.764706 3.666667
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Figure 1. Graph between value of functions and roots

grid as follows: x0 = −2.0 + ih, i = 1, · · · , 50 and h = 0.03 (see Table 6). Allowed error151

is 10−14.152

7. Convergence behaviour of Newton’s, Fang et al. and present method153

Convergence behaviour of Newton’s method, Fang et al. method [15] and new154

Newton’s like normal S-iteration method are shown in Fig. 1-3. To study the convergence155

behavior we have taken the test functions f2, f3 and f5 and for each test functions, we156

have considered the three cases as:157

158

Case 1: The graph between function and root for f2, f3, f5.159

Here, from the Fig. 1(a), it is clear that for x0 = 1.0, we have f2(x0) = 0.841470984807896.160

Starting with this initial approximation x0, the value of x1 for Newton’s method, Fang161

et al. method [15] and present method are 0.702195479022049, 0.677964714450141 and162

0.576332178830878 respectively. Clearly the present method (red line) is better in its163

very first iteration among the all three methods. After successive iterations starting with164

x0 = 1.0, present method converges to the root x∗ = 0.318309886183791 in very fast165

manner as shown in figure. Similarly, we can see Fig. 1(b) for the function f3 and Fig. 1(c)166

for function f5, that the present method converges to the root x∗ = 0.318309886183791167

faster than others.168

Case 2: The graph between number of iterations and root for f2, f3, f5.169

For the function f3, we have f3(x0) = 0.841470984807896 for x0 = 1.0. It is clear170

from Fig. 2(b) that starting with the initial approximation x0, Newton’s method, Fang171

et al. method [15] and present method converge to the root x∗ = 0.0 in 88, 61 and 49172

iterations respectively. Hence, new Newton’s like normal S-iteration method takes less173

number of iterations in a very efficient manner. Similarly, we see the same pattern for f2174

and f5 in Fig. 2(a) and Fig. 2(c) also.175
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176

Case 3: The graph between number of iterations and function for f2, f3, f5.177

In Fig. 3(c), we have f5(x0) = 2.718281828459045 for x0 = 1.0. Starting with x0, we178

can see from the graph that the value of the function f5 in present method becomes 0 in179

33 iterations while the Newton’s method and Fang et al. method [15] takes 89 and 43180

respectively, which shows that the present method converging to the root x∗ = 0.0 faster181

than the Newton’s method and Fang et al. method. Fig. 3(a) and Fig. 3(b) shows the182

same thing for the functions f2 and f3 respectively.183

8. Dynamical Results of Methods for f1, f2, F1, F2184

Now, we will define the following definitions but in the extended complex plane.
Definition 2 (see [20], [21]) Let us consider g : I → C be a rational map on the Riemann
sphere, where I is a subset of of the complex numbers C. Then a point z0 is said to be a
fixed point of g if

g(z0) = z0.

Again for any point z ∈ C, the Orbit of the point z can be difined as the set

Orb(z) = {z, g(z), g2(z), · · · , gn(z), · · · }.

Definition 3 (see [20], [21]) A periodic point z0 is said to be of period k if ∃ a smallest
positive integer k i.e. gk(z0) = z0 .
Remark If z0 is periodic point of period k, then clearly it is a fixed point for gk.

Definition 4 (see [20], [21]) Let z∗ be a zero of the function F, then the basin of at-
traction of the zero z∗ is defined as the set of all initial approximations z0 such that any
numerical iterative method starting with z0 converges to z∗. It can be written as

B(z∗) = {z0 : zn+1 = gn(z0) converges → z∗}. (19)

Here gn is any fixed point iterative method.
Remark For example in case of Newton’s method

zn+1 = g(zn),

g(zn) = zn −
F(zn)

F′(zn)
, n = 0, 1, 2, · · · .

We can write the basin of attraction of the zero z∗ for the Newton’s method as follows:

B(z∗) = {z0 : zn+1 = gn(z0) converges → z∗}.

Definition 5 (see [20], [21]) The Julia set of a nonlinear map g(z) is denoted as J(g) and is185

defined as a set consisting of the closure of its repelling periodic points. The complement186

of Julia set J(g) is called as the Fatou set f (g).187

Remark188

(i) Some times Julia set of a nonlinear map may also be defined as the common boundary189

shared by basins of the roots and the Fatou set may also be defined as the set which190

contains the basin of attraction.191

(ii) Fractals are very complicated phenomenon that may be defined as a self-similar192

surprising geometric object which repeated at every small scale ([4]).193

194

We have studied the dynamical analysis of the rational functions using iterative195

methods. Then, we examined the theoretical and numerical results with the help of196

dynamical results. Dynamical study helps to understand the convergence and stabilty197

of the methods [20]. We apply our method on a square < × < = [−5, 5]× [−5, 5] of198

700× 700 points with a tolerance- | f (zn)| < 5× 10−2 and a maximum of 30 iterations.199
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Figure 4. Dynamics of different methods for f1(x) = x

5
2 − exp x + 1
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Figure 5. Dynamics of different methods for f2(x) = x4sin(1/x)

For any function, if the sequence generated by the iterative methods with any initial200

point z0 converge to a zero z∗ in the square, then we say that the point z0 will lie in201

the basins of attraction of this zero and we assign a fixed color to this point z0. In the202

following, we have described the speed of convergence and dynamics of the considered203

methods under two cases for finding complex roots of functions. In first case we have204

plotted the speed of convergence and dynamics of Newton’s method, Fang et al. method205

[15] and the proposed method for functions f1, f2 (whose third order differential does206

not exist) . In the second case we have shown the speed of convergence and dynamics of207

Newton’s method, Wang and Liu method [10] and the proposed method for functions208

F1, F2 (whose third order differentials exist).209

8.1. Functions whose third order differential does not exist210

f1(x) = x
5
2 − exp x + 1, x∗ = 0.0,

f2(x) = x4sin(1/x), x∗ = 0.31830988618379.

For the function f1 = x
5
2 − exp x + 1, x∗ = 0.0, the dynamics and speed of convergence211

for various methods are shown in Fig. (4a), (4b), and (4c). It is clear from Fig. 4 that the212

proposed method with |λn| = 0.5 and βn = 0.9 generate bigger orbits and darker color213

having less fractal boundaries and chaotic behavior. Newton’s method show some type214

of chaotic behavior. Dynamics of Fang et al. method [15] generate smaller orbits but215

bigger Julia set showing the worst method.216

The the dynamics and speed of convergence of Newton’s method, Fang et al.217

method and the proposed method for f2 = x4sin(1/x), have been plotted in Fig. 5(a),218

5(b), and 5(c) respectively. Clearly, fractal patterns of Newton’s method contains large219
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Figure 6. Dynamics of different methods for F1(x) = x sin x + cos x− 0.6

size of julia set having fractal bounadries and chaotic behaviour. Whereas proposed220

mathod and Fang et al. method [15] contains large size of Fotou set with basins but both221

the method have some non converging region in the left side.222

8.2. Functions whose third order differentials exist223

F1(x) = x sin x + cos x− 0.6, x∗ = −2.54623173142842,

F2(x) = x3 − 2x2 + x− 1, x∗ = 1.75487766624669.

224

For F1 = xsinx + cosx− 0.6, the dynamics of Newton’s method, Wang and Liu225

method [10] and the proposed method can be seen in Fig. 6(a), 6(b), 6(c) respectively.226

Here Fig. 6 show that the proposed method with |λn| = 0.5 and βn = 0.9 is the best227

estimation because of bigger orbits and darker color having less fractal boundaries and228

chaotic behavior. Wang and Liu method [10] generate some type of chaotic behavior and229

Newton’s method generate smaller orbits having fractal Julia set. This is the reason why230

Newton’s method take several iterations and some times get failed.231

232

The dynamics of Newton’s method, Wang and Liu method and the proposed233

method for function F2 = x3 − 2x2 + x− 1 have been shown in Fig. 7(a), 7(b), and 7(c).234

Failure of Newton’s method with starting point x0 = 1.0, as shown in the Table 3 is235

proved by fractal patterns Fig. 7(a). The speed of convergence of the Newton method236

and Wang and Liu method [10] is slow having fractal Julia set, chaotic behavior in237

comparison to the proposed method.238
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Figure 7. Dynamics of different methods for F2(x) = x3 − 2x2 + x− 1

8.3. Dynamics of proposed method with variable value of β for example F2239

We have plotted the speed of convergence and dynamics of proposed method with240

variable value of β for F2(x) = x3 − 2x2 + x − 1, x∗ = 1.75487766624669. Results241

are shown in Fig 8. It is clear from figure that speed of convergence is increasing with242

increase in value of β and for the value of β = 0.9, speed of convergence is optimal with243

bigger orbits and less chaotic behavior in comparison to the other value of β = 0.1, 0.3, 0.5244

and 0.7.245

9. Conclusion246

We have obtained a new Newton’s like normal S-iteration method for finding the247

root of the non-linear equation f (x) = 0. Theoretical results shows that it requires248

only second-order differentiability rather than third-order differentiability just like other249

methods. Numerical results and graphical illustration shows that the present method250

(7) is most effective and superior when Newton’s method fails as well as it performs251

better than same order Fang et al. method [15] and third order Wang and Liu method252

[10] as it converges to the root much faster in very efficient manner for different values253

of λn with βn = 0.9. Further, we have shown that the proposed method (7) converges254

to the root much faster for different values of λn with a sequence of variable value of β,255

which converges to one. Dynamical analysis also support the theoretical and Numerical256

results related to the convergence and stability behaviour of proposed method. Thus,257

from a practical point of view, the new Newton’s like normal S-iteration method has the258

definite practical utility.259
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Figure 8. Dynamics of proposed method with variable value of β for F2(x) = x3 − 2x2 + x− 1
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