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Abstract

Collatz conjecture (or 3n+1 problem) has been explored for about 85 years. In this

article, we prove the Collatz conjecture. We will show that this conjecture is valid

for all positive integers by performing the Collatz inverse operation on the numbers

that comply with the rules of the Collatz conjecture. Finally, it will be proved that

there are no positive integers that do not comply with this conjecture.
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1 Introduction

The Collatz conjecture is one of the unsolved problems in mathematics. Introduced by

German mathematician Lothar Collatz in 1937 [1], it is also known as the 3n + 1 prob-

lem, 3x + 1 mapping, Ulam conjecture (Stanis law Ulam), Kakutani’s problem (Shizuo

Kakutani), Thwaites conjecture (Sir Bryan Thwaites), Hasse’s algorithm (Helmut Hasse),

or Syracuse problem [2,3].

The Collatz Conjecture or 3n+1 problem can be summarized as follows:

Take any positive integer n. If n is even, divide n by 2. If n is odd, multiply n by 3

and add 1. Repeat this process continuously. The conjecture states that no matter which

number you start with, you will always reach 1 eventually.

For example, if we start with 17, multiply by 3 and add 1, we get 52. If we divide 52

by 2, 26, and so on, the rest of the sequence is: 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.Or if we

start 76, the sequence is: 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,

5, 16, 8, 4, 2, 1.
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This sequence of numbers involved is sometimes referred to as the hailstone sequence,

hailstone numbers or hailstone numerals (because the values are usually subject to mul-

tiple descents and ascents like hailstones in a cloud) [4], or as wondrous numbers [5].

2 The Conjecture and Releated Conversions

Definition 2.1. N+ the set of all positive integers, n ∈ N+ Collatz defined the following

map:

f(n) =

n
2
, if n is even

3n + 1, if n is odd

The Collatz conjecture states that the value of every positive integer in the f function

eventually reaches 1. In the following sections, In the following sections we will refer to

the function f as Collatz operations.(CO).

Remark 2.2 According to definition of the Collatz conjecture, if the number we

choose at the beginning is even, by continuing to divide all even numbers by 2, one of

the odd numbers is achieved. For this reason, It is only sufficient to check whether all

odd numbers reach 1 by the Collatz operation.

Therefore, If we prove that it reaches 1, when we apply the Collatz operation to all

the elements of the set N+
odd ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25. . .}, we have proved

it for all positive integers. (The notaion of N+
odd is positive odd numbers.)

Remark 2.3. If the Collatz operation is applied to the number 2n ( n ∈ N+ ), then

eventually 1 is reached. When we apply the Collatz operation to all the elements of the

N+
odd set, if we can convert them to 2n numbers, we reach the result.

2.1 Collatz Inverse Operation (CIO)

Let n ∈ N+, a ∈ N+
odd; if a is converted to 2n by the Collatz operation (CO), it must

satisfy the following equation,

3.a + 1 = 2n

then,
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a =
2n − 1

3
(1)

When we apply the collatz operation to the numbers a in (1), we always get 1.But,

Lemma 2.4. In a = 2n−1
3

( 1), a cannot be an integer if n is a positive odd integer.

Proof. Let n = 2m + 1 and m ∈ N , (n is a positive odd integer), then substituting

n to 2m + 1 in (1); We get,

a =
22m+1 − 1

3
(2)

The factorization of 22m+1 + 1;

22m+1 + 1 = (2 + 1)(22m − 22m−1 + 22m−2 − . . . + 1) = 3.k, that is multiples of 3 are

obtained. (k is positive odd numbers).

Since 22m+1 − 1 = (22m+1 + 1)− 2 = 3.k − 2,

3k − 2 (k ∈ N+
odd) is not a multiple of 3.Therefore a is not integer, for all m.

If we substitute 2n for n in (2), we get equation

a =
22n − 1

3
(3)

Lemma 2.5. If n ∈ N+ in (3), a = 22n−1
3

, we can find positive odd numbers a for all

numbers of n.

Proof. Factorization of 22n−1 for all n, (n ∈ N+), if

n = 1, (22 − 1) = (2− 1)(2 + 1) = 3.1

n = 2, (24 − 1) = (2− 1)(2 + 1)(22 + 1) = 3.5

n = 3, (26 − 1) = (23 − 1)(23 + 1) = 3.3.7

n = 4, (28 − 1) = (2− 1)(2 + 1)(22 + 1)(24 + 1) = 3.(. . .)

n = 5, (210 − 1) = (25 − 1)(25 + 1) = (2− 1)(24 + . . .)(2 + 1)(24 + . . ..) = 3.(. . .)

n = 6, (212 − 1) = (23 − 1)(23 + 1)(26 + 1) = 3.3.(. . .)

n = 7, (214 − 1) = (27 − 1)(2 + 1)(26 − 25 + . . ...) = 3.(. . .)

. . .

. . .

Subsituting n to 2m, (m ∈ N+);

(22m − 1) = (2− 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1). . .. . ..(22m−1− 1) = 3.(. . .)
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. . .

Since each of these infinite numbers has a factor of 3, we can find infinite positive

odd numbers a, and when the Collatz operation is applied to these numbers, 1 is always

obtained. In (3),

a =
22n − 1

3
;

If n = 1, a1 = 1

n = 2, a2 = 5

n = 3, a3 = 21 = 3.7

n = 4, a4 = 85

n = 5, a5 = 341

. . . . . .

22 24 26 28 210 212 214 216 218 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A= { 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381 . . . }

Corollary 2.6. We get a set of A with infinite elements,these numbers reach 1 when

we apply the collatz operation. (In the following sections, we will call the elements of the

set A and the another numbers that fit the Collatz conjecture as Collatz numbers.)

Example 2.7. 5 → odd number, 16 →8→4→2→1.

21→ odd number, 64→32→16→8→4→2→1.

If we can generalize the elements of the set A = {1, 5, 21, 85, 341, 1365, 5461, 21845, 87381. . .}
to all positive odd numbers, the Collatz conjecture is proven.

2.2 Transformations in the Set A with Infinite Elements

Let the elements of set A = {1, 5, 21, 85, 341, 1365, 5461, 21845, 87381. . .} be {a0, a1, a2, a3, a4,
a5, a6, a7, . . .} respectively.

Lemma 2.8. In the set of A\{a0}, if an ≡ 1 (mod 3)

bn =
22m.an − 1

3
(4)

4
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m ∈ N+, from each an we get infinite different Bn sets, that have infinite elements

bn (Collatz numbers), these numbers fit the conjecture. And than, from each bn to Cn

(with infinite elements), from each cn to Dn . . . similarly goes on forever.

Proof. If an≡1 (mod 3), we can take an as 3.p + 1. (p ∈ N+
odd)

an = 3.p + 1, substituting in (4),

bn =
22m.(3.p + 1)− 1

3
=

22m3p + 22m − 1

3
= 22mp +

22m − 1

3

is divisible by 3 (Lemma 2.5.). Therefore, we get set of bn with infinite different elements,

which can be converted to an, so 1 by the Collatz operation. The elements of bn are odd

numbers.

Example 2.9. Let a1 = 85, a1≡1 (mod 3),

in (4), a1 = 85 → b1 = 22.85−1
3

= 113, b2 = 24.85−1
3

= 453, b3 = 26.85−1
3

= 1813

b4 = 28.85−1
3

= 7253, b5 = 210−1
3

= 29013, b6 = 212.85−1
3

= 116053

B = {113, 453, 1813, 7253, 29013, 116053. . .}

Lemma 2.10. In the set of A\{a0}, if an ≡2 (mod 3),

bn =
22m−1.an − 1

3
(5)

m ∈ N+, from each an we get infinite sets with infinite elements bn, that fit the collatz

conjecture.

Proof. If an ≡2 (mod 3), we can take an as 3.p + 2. (p ∈ N+
odd)

an = 3.p + 2, substituting in (5),

bn =
22m−1.(3p + 2)− 1

3
=

22m−1.3p + 22m − 1

3
= 22m−1p +

22m − 1

3

22m−1
3

is divisible by 3 (Lemma 2.5). Therefore, we get set of bn with infinite different

elements, which can be converted to an, so 1 by the Collatz operation. The elements of

bn are odd numbers.
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Example 2.11. Let a1 = 5 and a1 ≡ 2 (mod 3) ;

a1 = 5 → b1 = 21.5−1
3

= 3, b2 = 23.5−1
3

= 13, b3 = 25.5−1
3

= 53

b4 = 27.5−1
3

= 213, b5 = 29.5−1
3

= 853, b6 = 211.5−1
3

= 3413. . .

B = {3, 13, 53, 213, 853, 3413, 13653, 54613. . .}

Lemma 2.12. In the set of A\{a0}, if an ≡0 (mod 3),

bn =
2m.an − 1

3
(6)

m ∈ N+, there is no such integer bn.

Proof . If an≡ 0 (mod 3), we can take an as 3.p (p ∈ N+
odd)

an = 3.p, substituting in (6),

bn =
2m(3.p)− 1

3
=

2m3.p− 1

3
= 2m.p− 1

3
,

is not integer. We can apply Collatz inverse operation again to each element of the Bn

set, we obtained above.

2.3 Converting the Collatz Numbers to all Positive Odd

Integers

In the previous sections, when we applied the Collatz operation, we had named the

numbers that reached 1 as the Collatz numbers. Now let’s see how these collatz numbers

convert to all integers.

22 24 26 28 210 212 214 216 218 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A= { 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381 . . . } (Collatz Numbers)
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Example 2.13. A small fraction of the Collatz numbers that convert to 24

. . . . . . . . . . . . . . . . . .

46421 2389 4949 1077 34581 69173

11605 597 1237 269 8645 17293

2901 149 309 67 2161 4323

725 37 77 ↑ ↑ ↑
181, 9, 19 → 25, 101, 405, 1621, 6485, . . .

5 45, ↑ ↑
↓ 11 → 7, 29, 117, 469, 1877, 7509, 30037, . . .

3 ↑
13→ 17, 69, 277, 1109, 4437, 17749, 70997, . . .

53 ↓ ↓ ↓ ↓
213 151 739 23665 47331

853 605 2957 94661 189325

3413 2421 11829 378645 757301

13653 9685 47317 1514581 3029205

54613 38741 189269 6058325 12116821

218453 154965 757073 24233331 48467285

. . . . . . . . . . . . . . .

Example 2.14. Collatz numbers converting to 26

26 → 21 (There are no other Collatz numbers. Lemma 2.12)

Lemma 2.15. There is only one different Collatz number which converts into each

of 26n; (26, 212, 218, 224 . . . ) numbers.

Proof. Factorization of 26n - 1,

26n−1 = (23n−1)(23n+1), In the expression 26n- 1, there is always a factor of (23+1),

Because when factoring (23n − 1) and (23n + 1),

if n is even, (23n − 1) = . . . (23f + 1) 3f is odd integer.

if n is odd, in (23n + 1), 3n is odd integer.

And if 3f , 3n are odd,

23n + 1 = (23 + 1)(23n−3 − 23n−6 + 23n−9 − 23n−12 + 23n−15. . . + 1)

Therefore 26n − 1 = (23 + 1).(. . .) = 9.(odd integer)

And, when we divide (26n − 1) by 3, only one collatz number is obtained. We can’t

obtain another collatz number because it is a multiple of 3.(Lemma 2.12)
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Example 2.16. There is only one Collatz number of each of 26n, because the numbers

are the multiple of 3.

26→21

212→1365

218→87381

224→5592405

Example 2.17. A small fraction of the Collatz numbers that convert to 28

85

↓ . . . . . . . . . . . . . . . . . . . . . . . .

113 → 75, 301, 1205, 4821, 19285, 77141, 308565 . . .

453 ↓
1813 401 → 267, 1069, 4277, 17109 . . . .

7253 1605 ↓ ↓
29013 6421 1425 2851 → 3801 . . .

116053 25685 5701 11405 → 7603 . . .

464213 102741 22805 45621 ↓
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Lemma 2.18. We obtain new Collatz numbers by applying the Collatz inverse op-

eration (2
m.an−1

3
) (m ∈ N+), to the Collatz numbers. All of these numbers are different

from each other.

Proof. Let a1 and a2 be any Collatz numbers, when we apply the collatz inverse

operation to each of them, the resulting numbers are b1 and b2. If b1 = b2 then,

2m.a1−1
3

= 2t.a2−1
3

and 2m.a1 = 2t.a2 for odd positive integers, must be a1 = a2 and

m = t.

Lemma 2.19. Let an≡ 0 (mod 3) and an Collatz numbers. We can derive an, from

other collatz numbers.

Proof. If an≡ 0 (mod 3), we can write an = 3.k , k ∈ N+
odd, then let bn ̸≡ 0 (mod 3),

With the Collatz operation to an is

3an + 1

2n
= bn =

3.3.k + 1

2n
=

9k + 1

2n

Then, we get k = 2.m + 1, for divide bn by 2;

8
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bn = 9.(2.m+1)+1
2n

= 9m + 5 if bn = 9m + 5 is odd, bn ̸≡ 0 (mod 3)

if bn = 9m + 5 is even, m is odd, take that m = 2y + 1 and then,

substituting m to 2y + 1, bn = 18y + 14 when we divide bn by 2,

bn = 9y + 7 if bn is odd, bn ̸≡ 0 (mod 3)

if bn = 9y + 7 is even, y is odd , take that y = 2x + 1 and then,

substitutingny to 2x + 1, bn = 18x + 16 when we divide bn by 2, bn = 9x + 8 if bn is

odd, bn ̸≡ 0 (mod 3)

if bn = 9x + 8 is even,x is even, take that x = 2.z and then,

substituting x to 2z , bn = 18z + 8 when we divide bn by 2, bn = 9z + 4 if bn is odd,

bn ̸≡ 0 (mod 3)

when we go on like this bn = 9s + 2, bn ̸≡ 0 (mod 3)

and bn = 9r + 1,

consequantly bn ̸≡ 0 (mod 3)

so we aplly Collatz inverse operaton to bn, we get an, 2n.bn−1
3

= an

Corollary 2.20. The Collatz conjecture is valid for all positive odd integers.

Corollary 2.21. From each element of the infinitely element set A (the set of collatz

numbers), we create new Collatz sets with infinite elements. [Note: If the elements of set

A are an, must be an ̸≡ 0 (mod 3) ] From the new infinite Collatz numbers that have

been formed, infinite new numbers are formed, and it goes on like this forever and ever

without stopping. So we get the whole set of positive odd numbers and we prove the

Collatz conjecture for all N+ (Remark 2.2).

3 The Absence of Any Positive Integer Other Than

Collatz Numbers

In this section, we prove that there are no positive integers that do not comply with this

conjecture.

Lemma 3.1. Cannot be any positive integer other than Collatz numbers.

Proof. Let’s a number t0 that is not Collatz number, t0 ∈ N+, then

When we apply the collatz inverse operation to t0,

t0 → 2n .t0−1
3

we get T ={ t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 . . . }, and the elements of

set T are not Collatz numbers.

9
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Also, apply the collatz operation to t0, until finding odd numbers;

t0→ 3. t0 +1
2n

, s1 → s2 → s3 → s4 → s5 → s6 → s7 → s8 → s9 → s10 . . .

We get S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10. . .} and the elements of set S are not

Collatz numbers.

When we apply the Collatz inverse operation to each number that is not divisible by

3 in the sets T and S, we get new numbers that is not Collatz numbers. If t0 is multiple

of 3, we take s1 instead of set T.

t0

↓
t1 → t1(1), t1(2), t1(3) , t1(4), t1(5), t1(6), t1(7), t1(8), t1(9), t1(10) . . .

t2 ↓
t3 t11(1) →t111(1), t111(2), t111(3), t111(4), t111(5), t111(6), t111(7), . . .

t4 t11(2) ↓ ↓ ↓ ↓ ↓ ↓ ↓
t5 t11(3) t1111(1) t1112(1) t1113(1) t1114(1) t1115(1) t1116(1) t1117(1) . . .

t6 t11(4) t1111(3) t1112(3). t1113(3) t1114(3) t1115(3) t1116(3) t1112(3)

t7 t11(5) t1111(2) t1112(2). t1113(2) t1114(2) t1115(2) t1116(2) t1112(2) . . .

t8 t11(6) t1111(4) t1112(4) t1113(4) t1114(4) t1115(4) t1116(4) t1112(4) . . .

t9 t11(7) t1111(5) t1112(5). t1113(5) t1114(5) t1115(5) t1116(5) t1112(5) . . .

t10 t11(8) t1111(6) t1112(6) t1113(6) t1114(6) t1115(6) t1116(6) t1112(6) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s1→ t0

↓
s1(1) → s11(1), s11(2), s11(3) , s11(4), s11(5),s11(6), s11(7), s11(8), s11(9), s11(10) . . .

s1(2) ↓
s1(3) s111(1)→ s1111(1), s1111(2), s1111(3) , s1111(4), s1111(5),s1111(6), s1111(7) . . .

s1(4) s111(2)→ s1112(1), s1112(2), s1112(3) , s1111(4), s1111(5),s1111(6), s1111(7) . . .

s1(5) s111(3)→ s1113(1), s1113(2), s1113(3) , s1113(4), s1113(5),s1113(6), s1113(7) . . .

s1(6) s111(4)→ s1114(1), s1114(2), s1114(3) , s1114(4), s1114(5),s1114(6), s1114(7) . . .

s1(7) s111(5)→ s1115(1), s1115(2), s1115(3) , s1115(4), s1115(5),s1115(6), s1115(7) . . .

s1(8) s111(6)→ s1116(1), s1116(2), s1116(3) , s1116(4), s1116(5),s1116(6), s1116(7) . . .

s1(9) s111(7)→ s1117(1), s1117(2), s1117(3) , s1117(4), s1117(5),s1117(6), s1117(7) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Lemma 3.2. The elements of set S do not loop with any element of set S or T.

Proof. We assume that such a loop exist.

t0→ s1 → s2 → s3 → s4 → s5 → s6 → s7 → s8→ s9

↑ ↓
CIO↓ . . . s10 ↓ CO

↑ ↓
sn ← . . . . . . . . . . . . ← . . . . . . ← . . . . . . . . . . . . ← s12 ← s11

For such a loop to exist, must have the same value, any number in the loop is applied

the Collatz inverse operation and the Collatz operation. This is not possible.

Example 3.3. Lets take t0 in the loop and t0 ̸≡ 0 (mod 3), then for such a loop to

occur, must be t0→CIO = t0→CO = s1.

If t0 ≡ 2 (mod 3) 2t0−1
3

= 3t0+1
2n

2n+1.t0 − 2n = 9t0 + 3

t0 = 2n+3
2n+1−9

or if t0 ≡ 1 (mod 3) 4t0−1
3

= 3t0+1
2n

2n+2.t0 − 2n = 9t0 + 3

t0 = 2n+3
2n+2−9

There is no such a positive integer t0. Therefore, a loop cannot exist.

As a result, since we assume that there is a number t0 that is not a Collatz number,

we obtained two sets (T and S) with infinitely different elements from this number. The

elements of T and S sets are not Collatz number. From the new infinite numbers that

have been formed, infinite new numbers are formed, and it goes on like this forever and

ever without stopping. And they don’t form a loop. If there was such a number t0,

there would be no Collatz number. This result contradicts the result we found above

(Corollary2.21). Therefore, there cannot be any number that is not the Collatz number.

4 Conclusion

We proved the Collatz conjecture with the Collatz inverse operation method. It is shown

that all positive integers reach 1 as indicated in the Collatz conjecture. In this study,

with the methods described for 3n + 1, numbers such as 5n + 1, 7n + 1, 9n + 1 . . . etc.

It can be found whether it reaches 1.

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0432.v1

https://doi.org/10.20944/preprints202210.0432.v1


References

[1] O’ Connor, J.J.; Robertson, E.F. (2006). “Lothar Collatz”. St Andrews University

School of Mathematics and Statistics, Scotland.

[2] Maddux, Cleborne D.; Johnson, D. Lamont (1997). Logo: A Retrospective. New

York: Haworth Press. p. 160. ISBN 0-7890-0374-0. The problem is also known by several

other names, including: Ulam’s conjecture, the Hailstone problem, the Syracuse problem,

Kakutani’s problem, Hasse’s algorithm, and the Collatz problem.

[3] Lagarias, Jeffrey C. (1985).”The 3x + 1 problem and its generalizations”. The

American Mathematical Monthly. 92(1):3–23.doi:10.1080/00029890.1985.11971528.JSTOR

2322189.

[4] Pickover, Clifford A. (2001). Wonders of Numbers. Oxford: Oxford University

Press. pp. 116–118. ISBN 0-19-513342-0.

[5] ”Hailstone Number”. MathWorld. Wolfram Research.

Author : Bülent SUKUŞU
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