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Abstract: Nowadays, the Internet of Things (IoT) devices and applications have rapidly expanded 

worldwide due to their benefits in improving the business environment, industrial environment, 

and people's daily lives. However, the IoT devices are not immune to malicious network traffic, 

which causes potential negative consequences and sabotages IoT operating devices. Therefore, de-

veloping a method for screening network traffic is necessary to detect and classify malicious activity 

to mitigate its negative impacts. Therefore, this research proposes a predictive machine learning 

model to detect and classify network activity in an IoT system. Specifically, our model distinguishes 

between normal and anomaly network activity. Furthermore, it classifies network traffic into five 

categories, normal, Mirai attack, denial of service (DoS) attack, Scan attack, and man-in-the-middle 

(MITM) attack. Five supervised learning models were implemented to characterize their perfor-

mance in detecting and classifying network activities for IoT systems. This includes models shallow 

neural networks (SNN), decision trees (DT), bagging trees (BT), support vector machine (SVM), and 

k-nearest neighbor (kNN). The learning models were evaluated on a new and broad dataset for IoT 

attacks, the IoTID20 dataset. Besides, a deep feature engineering process was applied to the dataset 

to improve the accuracy of the learning models. Our experimental evaluation exhibited an accuracy 

of 100% recorded for the detection using all implemented models and an accuracy of 99.4%-99.9% 

recorded for the classification process. 

Keywords: Supervised machine learning; intrusion detection; data engineering; cybersecurity; In-

ternet of Things. 

 

1. Introduction 

Internet of Things (IoT) and Cyber-physical systems (CPS) technologies have consid-

erably expanded our capability to realize our ecosystem and the surrounding world. IoT 

technology has touched almost every pitch of everyday life with its widespread applica-

tions. This, in turn, has substantially improved our life quality as a result of adopting the 

IoT “know-how” of several life, which have the potential to collect, harvest, and investi-

gate data concerning the adjoining environment [1]. This context has accelerated the im-

provement of smart cities by enabling communication between things (machines) and be-

tween machines and humans. Such communications have recently been termed machine-

to-machine (M2M) and machine-to-human (M2H) communication. IoT devices continue 

to expand swiftly and are being connected and spread through diverse applications and 

services. The number of IoT devices will likely exceed 125 billion by 2030 [2]. 

IoT system has been recently adopted in almost all areas of real-life applications. 

Many applications have been mentioned in the literature [3]. As such, smart cities require 

extensive use of technologies and connectivity resources to increase the overall quality of 
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people's lives [4], smart environment involves multiple IoT applications like monitoring 

the snow level, fire detection, pollution monitoring, earthquakes, landslides, early detec-

tion [5], smart grids involve applications related to different monitoring, management, 

and measurements [6], smart agriculture which includes monitoring soil moisture, hu-

midity, temperature, and selective irrigation in dry zones [7], home automation which 

contains various IoT applications such as remotely controlling electrical appliances to save 

energy, systems deployed (i.e., camera based on AI) on doors and windows disclosing 

intruders (hackers) [8], and security and emergencies include applications, for example, 

that allow only authorized persons to enter restricted (selected) areas and safe human and 

robotics interaction [9]. 

Even though IoT is a promising insightful technology with marvelous consequences 

and potential for spread and growth, IoT infrastructures are susceptible to various cyber-

attacks and threats [10]. This is due to constrictions in processing capability, storage, 

memory capabilities, and communication capacity for the tiny energy-aware endpoint de-

vices that reside within the IoT infrastructure. Indeed, confidentiality, integrity, and avail-

ability (CIA) are among the sizeable challenges of the IoT ecosystem [11]. Fig.1 illustrates 

the various cyber-attacks on IoT systems. 

 

 

Figure 1. Main types of Cyber-attacks against the different layers of IoT systems 

With the enormous and uninterrupted growth of cyber-attack occurrences in IoT in-

frastructures [12], it has become almost ridiculous to identify and thwart such attacks by 

means of conventional intrusion detection systems (IDSs) built based on the attack's sig-

nature. While the signature-based IDS can provide highly accurate and precise detection 

performance for the attacks/intrusions that match the pre-stored intrusion patterns (such 

as sequences of system calls, patterns of network traffic, … etc.), the problem occurs and 

even increases when a new attack (zero-day) is discovered. This is because traditional sig-

nature-based IDSs work depends on the pre-knowledge of a potential attack signature. 

Hence, they can detect an attack only if it is pre-deposited in their database.  

Therefore, to tackle this limitation, an anomaly-based IDS has been proposed to re-

place the conventional IDS using adopting smarter and more intelligent techniques. In-

stead of matching the attack's signature with the pre-existing intrusion patterns, anomaly-

based IDS defines a profile describing "normal" behavior and then detects deviations. This 

can detect potential new attacks (zero-day attacks). However, it still fails to detect all un-

known attacks accurately in a dynamic environment such as an IoT ecosystem, and the 
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cost of false detection rate is still high. Thus, many zero-day attacks remain undiscovered 

due to the existing limitations of IoT devices and conventional anomaly detection meth-

ods. Such functionalities are usually facilitated through vital and essential defense means 

such as a network intrusion detection system (NIDS), which examines network traffic for 

anomalous behaviors [13]. Fig.2 illustrates the typical deployment of NIDS in communi-

cation networks. To obtain a trusted environment and network, the anomaly-based-IDS 

can be utilized alongside conventional cyber-defense systems like firewall systems [14] to 

examine the network traffic, and anomaly-IDS can distinguish the traffic as benign or ma-

licious by using its pre-trained models. 

 

Figure 2. Typical NIDS architecture. 

Consequently, over the past decade, big endeavors in handling security concerns re-

lated to intrusion/cyber-attacks detection in the IoT system. Most of these anomaly-based 

IDS systems were developed by employing the techniques of machine learning (ML) and 

deep learning (DL) techniques to provide intelligent cybersecurity decision-making. Since 

ML/DL techniques operate using datasets of records and features that are used to train 

and test the predictive IDS models, it should be noted that not all of the features/records 

in a dataset are relevant or significant while training/testing classification/detection mod-

els. Therefore, data engineering and feature preprocessing have formulated a core phase 

of every ML/DL-based IDS model that played a major role in making the raw data col-

lected from the IoT ecosystem usable for further analysis and predictions. In anomaly de-

tection challenges, for example, feature/data engineering is more significant in the IoT 

ecosystem since the features may include null or zero features. Relevant features, in some 

cases, are more difficult to extract by only ML/DL algorithms without using feature/data 

engineering approaches. Techniques of relevant features to identify attacks have been 

made to classify the data by industrial companies and researchers. 

Several auspicious state-of-the-art models for anomaly intrusion detection models 

have been conducted for IoT cybersecurity using machine and deep learning approaches  

[15 - 31]. Tab.1 summarizes the reviewed research models for anomaly-based IDS using 

machine/deep learning approaches to solve cybersecurity concerns of cyber-attacks on IoT 

systems. 

1.1 Our Contributions  

This study proposed an anomaly-based intrusion detection system that can detect 

the zero-day attacks of common IoT cyberattacks using machine learning techniques uti-

lizing the sovereignty of Nvidia-Quad GPUs. Specifically, our model distinguishes be-

tween normal and anomaly network activity. Furthermore, it classifies network traffic into 

five categories, normal, Mirai attack, DoS attack, Scan attack, an MITM attack. Five super-

vised machine learning models, named Shallow Neural Networks (SNNs), Decision Trees 
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(DT), Bagged Tree (BT), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN), 

was implemented to detect and classify network activity in an IoT system. In addition, we 

have applied different data preprocessing and feature engineering processes to increase 

the prediction accuracy of the aforementioned machine learning models. As a result, the 

accuracy rates for all models have scored extremely high ratios rates between 99.40% to 

100%. Such accuracy scores have outperformed the performance of all other existing mod-

els. Specifically, the main contributions of this paper can be summarized as follows: 

• We present a comprehensive anomaly-based intrusion detection/classification sys-

tem that can identify and classify the IoT traffic records of an IoTID20 dataset into 

two classes (normal and anomaly) or five classes (normal, Mirai attack, DoS attack, 

Scan attack, and MITM attack). We stipulate an illuminated depiction of our sys-

tem modules and the machine learning algorithms.  

• We provide an extensive feature engineering and data preprocessing framework 

that significantly improves the system performance evaluation. We provide a thor-

ough development, validation environment, configurations, and extensive simu-

lation results, to better perceive the proposed solution methodology. The system 

has been evaluated using standard performance indicators of machine learning 

models such as confusion matrix, accuracy, precision, recall, and F-score metric. 

• We compare our findings with other related state-of-the-art works machine-learn-

ing-based intrusion detection systems (ML-IDSs) employing the same dataset. We 

show that our proposed system is superior. 

 

Table.1. Summary of surveyed related research articles of supervised ML-based anomaly IDS. 

Ref. Learning Models Datasets 
Number of Features/ 

Number of Records 
Cyber-Attacks 

[15] 

Auto-Encoder, random 

forest (RF), naïve Bayes 

(NB), Linear/ Quadratic 

Discriminator  

CICIDS2017 
83 Features/ 

2,830,540 records 

Distributed DoS (DDoS), 

Heartbleed, structured 

query language (SQL) Injec-

tion, Botnet. 

 

[16] 
Particle Swarm (PSO), 

XG Boost, RF 
IoTID20 

83 Features/ 

450,00 records 
Mirai, DoS, Scan, MITM 

[17] Auto-Encoders (AEs) 

NSL-KDD/ 

IoTID20/ 

N-BaIoT 

43 Features/140,000 

83 Features/450,000 

114Features/612,000 

Norm,DoS, Probe, R2L, U2R 

/ Mirai, DoS, Scan, MITM 

/ Normal, Bashlite,  Mirai 

[18] 

Convolutional neural 

network (CNN), long 

short-term memory 

(LSTM), CNN-LSTM 

NSL-KDD/ 

IoTID20/ 

43 Features/140,000 

83 Features/450,000 

Norm, DoS, Probe, root to local 

(R2L), user to root (U2R), / Mi-

rai, DoS, Scan, MITM 

[19] 

LightGBM, Optimized 

Adaptive and Sliding 

Windowing (OASW) 

NSL-KDD/ 

IoTID20/ 

43 Features/140,000 

83 Features/450,000 

Norm,DoS, Probe, R2L, U2R 

/ Mirai, DoS, Scan, MITM 

[20] Shallow CNN NSL-KDD 
43 Features/ 

150,000 Records 
Norm,DoS, Probe, R2L, U2R 

[22] 

Bagging, J48, KNN, 

Multilayer Perceptron 

(MLP), Ensemble. 

NSL-KDD/ 

IoTID20 

11-60 Features/ 

150,00−450,00 

Norm,DoS, Probe, R2L, U2R 

/ Mirai, DoS, Scan, MITM 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0431.v1

https://doi.org/10.20944/preprints202210.0431.v1


[23] Adaboost, DT 

KDDCUP99, 

UNSW-NB15, 

NSL-KDD, CI-

CIDS2017 

43-100 Features/ 

140,000− 612,000 
DDoS, flooding, U2R, Jamming 

[24] 

Gradient Boosting Ma-

chines, RF, NB, Deep 

Neural Network 

(DNN) 

ToN_IoT 
7 Features/ 

1,300,000 records 

Normal, DoS, DDoS, Injection, 

MITM, Password, Scan, Cross-

site scripting (XSS), Backdoor, 

Ransome. 

[25] SVM, NB, SNN, RF N_BaIoT, Bot_IoT 
114 Features/ 

612,000 records 
Normal, Bashlite,  Mirai 

[26] 
Adaboost, RusBoost, 

Bagging, Ensemble 

WUSTL_IIOT-

2018, N_BaIoT, 

and Bot_IoT 

100-114 Features/ 

100,000-612,000 

Normal, Bashlite,  Mirai, 

Port/Address Scanner. 

[27] 
AdaBoost CICIDS 2019. 88 Features/ 

4,201,795 Records 

DDoS, Heartbleed, SQL Injec-

tion, Botnet. 

[28] 
SNN, SVM, NB, RF, 

Self-organizing map 

NSL-KDD, 

KDDCup99, 

ADFA-LD12, 

UNSWNB15 

43-100 Features/ 

140,000− 612,000 
DDoS, flooding, U2R, Jamming 

[29] 

Ensembles:(Boosted 

DT, Subspace kNN, 

RUSBoosted DT), SNN, 

Bilayered NN, Logistic 

Regression Kernel 

Distilled-Kitsune-

2018/ NSL-KDD 

dataset 

43 Features/ 

145,00−150,000 

Mirai, operating system (OS) 

Scan, Fuzzing, Video Injection, 

Address Resolution Protocol 

(ARP), Wiretap, simple service 

discovery protocol (SSDP), Syn-

chronous DoS, secure sockets 

layer(SSL)/DoS, Probe, R2L, 

U2R 

[30] Beta Mixture Model BoT-IoT 21 
12 Features / 

3,000,000 records 

DDoS, DoS, OS and Service 

Scan, Keylogging, and Data ex-

filtration attacks 

[31] AdaBoost DT 
TON_IoT_2020 

datasets 

7 Features/ 

1,300,000 

 

DoS, DDoS, Injection Attacks, 

MITM, Password Attacks, Scan-

ning, XSS Attacks, Backdoor at-

tacks, and Ransomware attacks. 

1.2 Background of Machine Learning  

Machine learning is the main stage of this research because it is used to detect and 

classify network activity attacks, as was mentioned above. Varieties of supervised ma-

chine learning classifiers were being used: Shallow Neural Networks (SNNs), Decision 

Trees (DT), Bagged Trees (BT), Support Vector Machine (SVM), and K-Nearest Neighbor 

(KNN). 

Shallow Neural Networks (SNNs) is a feedforward neural networks that use multi-

layer perceptron (MLP) [32]. SNNs can be used to solve classification and regression prob-

lems based on supervised learning. Two SNNs models were developed; the first model 

predicts two classifications (label feature), and the second predicts five classifications 
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(category feature). Fig.3 depicts the second model. The input layer contains 71 input 

nodes, the hidden layer has ten nodes, and the output layer has five. The 71 features from 

the dataset were fed to the SNNs model and then processed by ten hidden nodes. Finally, 

the model predicts the five categories. For the detection procedure, we have a similar SNN 

model; however, the model has two output nodes instead of five nodes. 

 

 

Figure 3. Shallow Neural Networks 

 

Decision Trees (DT) is a widely used machine learning method in various fields such 

as image processing, pattern recognition, and classification [33]. DT can handle a vast da-

taset size. Two Decision Trees models were developed, the first model to predict the label 

feature and the other to predict the category feature. In addition, two Bagged Trees (BT) 

models were developed for classification purposes, one to predict two classifications and 

another to predict five classifications [34]. 

Support Vector Machine (SVM) is a powerful technique for solving classification and 

regression and linear and nonlinear problems [35]. The dataset is classified based on hy-

perplanes (lines). Two SVM models were developed, the first for predicting the label fea-

ture and the second for predicting the category feature. K-Nearest Neighbour (KNN) is a 

machine learning method that can be used as a classifier [36]. It classifies dataset points 

based on similarity; therefore, data points with similarities are close to each other. Two 

KNN models were developed: the first for predicting the label feature and the second for 

predicting the category feature. Fig.4 shows the training and classification process of DT, 

BT, SVM, and KNN models. 
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Figure 4. Machine Learning Classifiers 

The rest of this paper is organized as follows: Dataset collection and data engineering 

are discussed and elaborated on in this section. It also introduces and justifies the dataset 

of IoT cyber-attacks employed by our system. Section 3 provides details of the proposed 

system architecture, development, data preprocessing, and detailed design steps. Section 

4 presents the simulation environment for system implementation, testing, and validation 

and discusses the details of experimental evaluation, comparison, and discussion. Finally, 

Section 5 concludes the findings of the research. 

 

2. Data Collection and Engineering  

This section discusses the dataset used in this research to evaluate the anomaly-based 

IDS for the IoT system and the data engineering performed over the dataset to improve 

the learning and validation processes. 

2.1 Dataset of IoT System  

IoT devices can operate in many domains, such as smart cities, healthcare, education, 

smart homes, smart grids, and transportation systems [37]. Our research concentrates on 

a smart home IoT system; therefore, the IoTID20 dataset [38] was used to test the perfor-

mance of our model. The environment used to collect the IoTID20 dataset consists of IoT 

devices connected through an access point network [38]. The IoT devices comprise a lap-

top and a smartphone to establish intrusion attacks. The security camera and the AI 

speaker are the victims, as shown in Fig.5. A detail about the experiment can be found in 

this reference [38]. 

 

Figure 5. IoT devises Architecture 

The dataset was collected from a real-time scenario using IoT devices, as shown in 

Fig.5. The original IoTID20 dataset includes 86 columns and 625,783 rows. Each row in the 

dataset is labeled with the type of network activity [39]. We preprocessed the dataset to 

increase the classification accuracy of the label, category, and sub-category features. How-

ever, we focused our study on label and category features and will express the reason in 

the Features Engineering section. Label features include binary classification, which is 

Training 

Samples  
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normal, and anomaly. Category features have five classifications: normal, Mirai attack, 

DoS attack, Scan attack, and MITM attack [40].  

 

2.2 Features Engineering  

Features engineering is removing unnecessary features or extracting new features 

from existing features to increase the accuracy of the machine learning models [41]. 

Duplicated records were removed from the original dataset, and there were 164,087 

duplications of records. As a result, the dataset becomes having 461,696 records. Tab.2 

represents statistical information about the dataset used in this research. Moreover, the 

dataset has the source IP address (Src_IP) and destination IP address (Dst_IP) as features. 

However, machine learning models cannot sufficiently handle the format of IP addresses, 

such as "192.168.0.13" [42]. Therefore, to solve this issue and help the machine learning 

models obtain the most use of IP address information, we split the four IP address parts, 

octet numbers, into features, e.g., Src_IP_oct1: 192 Src_IP_oct2: 168, Src_IP_oct3: 0, and 

Src_IP_oct4: 13. By doing so, the machine learning model can understand and distinguish 

between the network and host portions. Furthermore, the IoTID20 dataset has a 

timestamp as a feature. Therefore, we extract the following information from the 

timestamp feature and include them in the dataset as new features: day of the week, hour, 

and am or pm to use it more efficiently. According to our experiment, those new features 

helped increase detection accuracy and machine learning classification. Finally, we con-

verted the label and category string values to numerical values. For example, we map the 

values of the label feature normal to 0 and anomaly to 1, as shown while the numerical 

conversion of the category feature was normal (0), Mirai (1), DoS (2), Scan (3), and MITM (4). 

 

Table 2. IoTID20 Dataset Statistics. 

Lable Number of Records Category  

Normal 38598 Normal 38598 

Anomaly 423098 Mirai 281102 

DoS 59390 

Scan 56744 

MITM 25862 

 

The Minimum Redundancy and Maximum Relevance (MRMR) algorithm are used 

for the feature selection procedure [43]. Each feature is ranked based on minimum redun-

dancy and maximum relevance and assigned an importance score [44]. Therefore, a fea-

ture with a high score is more important than a less-score feature. In addition, a large drop 

in the rank between features will ease the feature selection. However, a small drop will 

make the feature selection more challenging. Thus, this research discarded the sub-cate-

gory feature because after performing the MRMR algorithm on the sub-category feature, 

we observed that the drop in score between the 11th and the 72nd is relatively small, as 

shown in Fig.6. 
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Figure 6. MRMR Algorithm 

 

By looking at Fig.7, we can observe that intrusion attacks occurred every day of the 

week except Monday. In addition, most of the intrusion attacks take place on Thursday. 

Fig.8 illustrates whether the network traffic occurred in the morning or evening. It is 

worth saying that most of the network traffic recorded in the morning was intrusion at-

tacks, and a few traffic was normal network packets. However, a few network traffic oc-

curred in the evening and were intrusion activities. 

 

 
Figure 7. Network Traffic During the week 
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Figure 8. Network Traffic in Morning and Evening 

 

Fig.9, part A shows features excluded from the dataset because their values are 

mostly zeros. However, Fig.9-part B offers features that were used in this study which are 

74 features. 

 

 

Figure 9. Removed and Used Features.\ 

 

(A) Removed Features  

Flow_ID, Src_IP, Dst_IP, Timestamp, Fwd_PSH_Flags, Fwd_URG_Flags, Fwd_Byts/b_Avg, 

Fwd_Pkts/b_Avg, Fwd_Blk_Rate_Avg, Bwd_Byts/b_Avg, Bwd_Pkts/b_Avg, Bwd_Blk_Rate_Avg, 

Init_Fwd_Win_Byts, Fwd_Seq_Size_Min, Bwd_PSH_Flags, Bwd_URG_Flags, FIN_Flag_Cnt, 

SYN_Flag_Cnt, RST_Flag_Cnt, URG_Flag_Cnt, CWE_Flag_Count, and ECE_Flag_Cnt. 

(B)  Used Features  

Src_Port, Dst_Port, Protocol, Flow_Duration, Tot_Fwd_Pkts, Tot_Bwd_Pkts, TotLen_Fwd_Pkts, 

TotLen_Bwd_Pkts, Fwd_Pkt_Len_Max, Fwd_Pkt_Len_Min, Fwd_Pkt_Len_Mean, Fwd_Pkt_Len_Std, 

Bwd_Pkt_Len_MaxBwd_Pkt_Len_Min,Bwd_Pkt_Len_Mean, Bwd_Pkt_Len_Std, Flow_Byts/s, Flow_Pkts/s, 

Flow_IAT_Mean, Flow_IAT_Std, Flow_IAT_Max, Flow_IAT_Min, Fwd_IAT_Tot, Fwd_IAT_Mean, 

Fwd_IAT_Std, Fwd_IAT_Max, Fwd_IAT_Min, Bwd_IAT_Tot, Bwd_IAT_Mean, Bwd_IAT_Std, 

Bwd_IAT_Max, Bwd_IAT_Min, Fwd_Header_Len, Bwd_Header_Len, Fwd_Pkts/s, Bwd_Pkts/s, 

Pkt_Len_Min, Pkt_Len_Max, Pkt_Len_Mean, Pkt_Len_Std, Pkt_Len_Var, ACK_Flag_Cnt, Down/Up_Ratio, 

Pkt_Size_Avg, Fwd_Seg_Size_Avg, Bwd_Seg_Size_Avg,Subflow_Fwd_Pkts, Subflow_Fwd_Byts, 

Subflow_Bwd_Pkts, Subflow_Bwd_Byts, Init_Bwd_Win_Byts, Fwd_Act_Data_Pkts, Active_Mean, 

Active_Std, Active_Max, Active_Min, Idle_Mean, Idle_Std, Idle_Max, Idle_Min, Src_IP_oct1, Src_IP_oct2, 

Src_IP_oct3, Src_IP_oct4, Dst_IP_oct1, Dst_IP_oct2, Dst_IP_oct3, Dst_IP_oct4, Timestamp_DayOfWeek, 

Timestamp_Hour, Timestamp_AmPm_n, Label_n, Cat_n, Sub_Cat_n 
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3 System Development and Specifications 

This section discusses the data models and preprocessing used in this research by 

explaining the IoT system's architecture and a detailed description of the development 

and implementation of machine learning models used for detection and classification. Fi-

nally, it discusses the conducted simulation experiments, training, testing, and validation 

of the results. Classification is an intelligent technique to place a particular data set into a 

specific category based on predefined criteria [39]. In our case, the machine learning mod-

els are supposed to detect and classify IoT intrusion attacks by prediction procedure based 

on 74 selected features. The detection and classification machine learning models used in 

this research are supervised learning, so the models estimate the target output based on 

the chosen features [40]. This paper used machine learning models to predict the label and 

category features of the IoTID20 dataset. The architecture of the system model used in this 

research is illustrated in Fig.10.  

 

 

Figure 10. The architecture of ML models for prediction instruction attacks  

3.1 Data Preprocessing 

Data preprocessing is a technique to prepare the dataset to be fed to a machine learn-

ing model [45]. Fig.11 depicts the preprocessing step. Initially, the dataset was stored in a 

Comma-Separated Value (CSV) format. Next, any string value of the matrix is converted 

to a numerical record, as was discussed in the Feature Engineering section. Then, the CSV 

file is converted to a MAT file (Matlab matrix). After that, the dataset was normalized, so 

each matrix value had a value between 0 and 1. For the data partitioning procedure, data 

is randomly divided into parts 70 % for training, 25% for testing, and 5 % for validation. 

We used across-validation technic as a validation scheme for our research. Finally, data is 

fed to the machine learning model, which will be discussed next.   

3.2 Detection and Classification Procedures 

The detection procedure generates the label feature, which consists of two classifica-

tions, and the output is either normal or anomaly using the machine learning models men-

tioned earlier. The classification procedure generates the category feature, which consists 

of five classifications. The output is either normal, Mirai attack, DoS attack, Scan attack, 

or MITM attack using the earlier machine learning models. 
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Figure 11. Data Pre-processing 

3.3 Implementation and Validation Environment 

The IoTID20 dataset was used to train, validate and test our proposed detection and 

classification models. The aforementioned machine learning classifiers (i.e., SNN, DT, NB, 

SVM, and KNN) were trained, tested, and validated using the IoTID20 dataset. 

MATLAB® version 2022a was used to develop, test, and validate the five machine learn-

ing classifiers. Tab.3 briefly describes the hardware and software environment the authors 

used to experiment.  

Table 3. Hardware and Software Description. 

 

 

 

 

4. Results and Discussion 

This research proposes predictive models based on machine learning to detect and 

classify network activity. Ten models were trained, tested, and validated, five for detec-

tion and the remaining for classification purposes. For the detection model, network ac-

tivities are classified into two groups (normal and anomaly). Meanwhile, for the classifi-

cation model, network activities are classified into five groups (Normal, Mirai attack, DoS 

attack, Scan attack, and MITM attack) 

4.1 Accuracy Evaluation 

We evaluated our machine learning models using the confusion matrix shown in 

Fig.12, which depends on True Positive Rate (TPR) and False Negative Rate (FPR). First, 

TPR and FPR are calculated using Eq. (1) and Eq. (2), respectively. Then the accuracy is 

calculated using Eq. (3) [46]. 

 

 

 

 

Hardware / Software Description 

MATLAB Version 2022a                          

CPU Intel® Core™ i7-9750H CPU @ 2.60 GHz 

Memory 16.0 GB 

GPU NVIDIA GeForce RTX 2070 GDDR6 @ 8 GB 
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Figure 12. Two Class Confusion Matrix for calculation of the TPR, FPR. 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                                   (1) 

𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)                                                                   (2) 

𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)                  (3) 

 

TP refers to the number of positive data classified correctly, and FN refers to the 

number of positive misclassified data. Likewise, FP refers to the number of negative mis-

classified data, and TN refers to the number of negative data classified correctly. In addi-

tion, we have evaluated our models in terms of other standard metrics, including preci-

sion, recall, and F1-Score, as represented in Tab.4.  

By looking at Tab.4, it can be observed that our detection ML models achieved 100 % 

accuracy in the three metrics (Precision, recall, and F1- Score). In addition, we accom-

plished between 99.12% to 99.99% for classification ML models. The reason is that the 

comprehensive and enhanced data engineering as we have thoroughly investigated the 

dataset to come up with optimal (best) features that led to almost optimal performance of 

(precision, recall, and F1) in the case of detection ML models. We discussed the data en-

gineering process in section 2.2 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                                                                     (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                                                          (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)                 (6) 

Table 4. Accuracy Evaluation Results. 

ML Model Detection / Classification Precision Recall F1-Score 

SSNs Detection 100% 100% 100% 

SSNs Classification 100% 99.99% 99.99% 

DT Detection 100% 100% 100% 

DT Classification 99.99% 99.99% 99.99% 

BT Detection 100% 100% 100% 

BT Classification 99.99% 99.99% 99.99% 

SVM Detection 100% 100% 100% 

SVM Classification 99.81% 99.78% 99.79% 

KNN Detection 100% 100% 100% 

KNN Classification 99.36% 99.88% 99.12% 
  

 The confusion matrices for the detection model (binary classification) of all ML tech-

niques were equal for all and are shown in Fig.13(a); thus, no need to be repeated. 

4.2 Our Results 

Fig.13(b) illustrates the confusion matrix of the classification model using SNNs. In 

the case of the detection model, our SNNs have no miss-labeled traffic, and the total net-

work traffic classified as normal is 38596. However, 423096 of the traffic is classified as 

anomaly traffic. In the case of the classification model, only twelve traffic of the total net-

work traffic was miss-labeled. Therefore, the overall accuracy of the two models reached 100%. 

The performance of DT is shown in Fig.13(c), which shows the confusion matrix of 

the DT classification model. There is no miss-classified traffic in the detection model, and 
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only thirteen network activities were miss classified in the classification model. Therefore, 

the overall accuracy of the two models reached 100%.  

The evaluation performance of BT is represented in Fig.13(d), which shows the con-

fusion matrix of the BT classification model. No miss-classified traffic using the detection 

model, and only sixteen traffic were miss classified using the classification model. In brief, 

the accuracy of the detection and classification models is 100%. 

The performance response of SVM is shown in Fig.13(e), which illustrates the confu-

sion matrixes of the SVM classification model. There was no miss classified traffic using 

the detection model, and only 487 out of 461,696  network activities were miss classified 

using the classification model. In summary, the accuracy of the detection model is 100%, 

and the overall accuracy of the classification model reached 99.80%.  

The performance of KNN models is shown in Fig.13(b), which illustrates the confu-

sion matrix of the KNN classification model. Again, the accuracy of the detection model 

is 100%, and the overall accuracy of the classification model reached 99.40%. 

4.3 Comparing our Findings with Existing Results 

To our best knowledge, Tab.5 lists the recent machine models researchers developed 

to detect or classify the IoTID20 dataset. The table lists two types of classification used by 

researchers: detection (binary classification) and classification (multiclass classification). 

For machine learning, it is generally simpler to perform binary classification than mul-

ticlass classification [47]. The reason is that in binary classification, the ML needs to select 

from two decisions, i.e., 0 or 1; however, with multiclass classification, ML needs to choose 

from more than two decisions and perform sub-binary classification.  

We can observe that our results slightly exceed other results. Also, it is worth saying 

that in this research [38], the authors used several machine learning classifiers such as DT, 

SVM, and Ensemble to detect and classify network activities in the IoTID20 dataset. They 

claimed they reached %100 using DT for detection and classification models. However, 

they accomplished low accuracy using SVM (less than 80% in the detection model and 

less than 50% in the case of the classification model); however, we reached the accuracy 

of 100% for the detection model and 99.80% for the classification model using SVM due to 

the feature engineering we discussed earlier.  
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Figure 13. Confusion Matrix: (a) Detection model (For all models), (b) SNNs Classification model, (c) DT Classification 

model (d) BT Classification model, (e) SVM Classification model, (f) kNN Classification model. 
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Table 5. Comparing our ML models' accuracy with existing ML models' accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions and Future work 

This paper presents a new automated and intelligent intrusion detection system, 

modeled, implemented, and evaluated. The proposed predictive IDS utilizes machine 

learning techniques to detect and classify network activity in an IoT system. Particularly, 

five supervised learning models have been used, including shallow neural networks 

(SNNs), decision trees (DT), bagged tree (BT), support vector machine (SVM), and k-near-

est neighbor (kNN). The developed models have been evaluated on a recent broad dataset 

known as the IoTID20. Additionally, the features’ engineering approach was used with 

the dataset to increase the accuracy of the machine learning models. We used the confu-

sion matrix metric to evaluate our models. As a result, our detection models recorded 

100% for all machine learning models mentioned above. Furthermore, our classification 

models recorded 100% for the SNNs, DT, and BT, while KNN and SVM recorded 99.80% 

and 99.40%, respectively. Moreover, we will evaluate our predictive models with multiple 

IoT system datasets. In the future, we will seek to incorporate more datasets to develop a 

comparative study that compares the selected ML algorithms using several datasets. This 

will enrich the detection ability to detect more attack vectors in addition to those men-

tioned in this paper. Also, we believe that real-world deployment of the proposed IDS in 

different IoT/CPS networks (such as the internet of autonomous vehicles) is essential for 

more precise implementation representation and practical investigations. Furthermore, 

one can employ the deep neural networks or the log-linear neural networks [48] based 

intrusion detection system to provide deeper detection for the sub-categories of the stated 

attack vectors.  

Research Detection /Classification ML Model Accuracy 

Sarwar  et al. [16] Detection Random Forest 98% 

Sarwar et al.[16] Classification Random Forest 83% 

Song. et al.  [17] Classification Auto-Encoders 94.50% 

Alkahtani et al. [18] Classification 

Convolutional Neural Net-

works + Long Short-Term 

Memory  

98.40% 

Yang et al. [19] Detection 
LightGBM+ Optimized Adap-

tive Sliding Windowing 
99.9% 

Al-Haija et al.[20] Classification 
Convolutional Neural Net-

works  
98.2% 

Reddy et al.[21] Classification XGBoost 99.7% 

Proposed Method Classification Shallow Neural Networks 100% 

Proposed Method Detection Shallow Neural Networks 100% 

Proposed Method Classification Decision Trees 99.9% 

Proposed Method Detection Decision Trees 100% 

Proposed Method Classification Bagged Trees 99.9% 

Proposed Method Detection Bagged Trees 100% 

Proposed Method Classification Support Vector Machines 99.80% 

Proposed Method Detection Support Vector Machines  100% 

Proposed Method Classification K-Nearest Neighbor (KNN) 99.40% 

Proposed Method Detection K-Nearest Neighbor (KNN) 100% 
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