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Abstract: Machine learning methods have widely been applied to detect anomalies in machine and 

cutting tool behavior during lathe or milling. However, detecting anomalies in the workpiece itself 

did not get the same attention by researchers. That is why in this article, the authors present a pub-

licly available multivariate time series dataset which was recorded during milling of 16MnCr5. Due 

to artificially introduced, though realistic anomalies in the workpiece the dataset can be applied for 

anomaly detection. By using a convolutional autoencoder as a first model good results in detecting 

the location of the anomalies in the workpiece were achieved. Furthermore, milling tools with two 

different diameters where used which led to a dataset eligible for transfer learning. The objective of 

this article is to provide researchers with a real-world time series dataset of the milling process 

which is suitable for modern machine learning research topics like anomaly detection and transfer 

learning.   

Dataset:  10.5445/IR/1000151546 

Dataset License: CC BY 4.0: Creative Commons Namensnennung 4.0 International 
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1. Summary  

In process anomaly detection is an important topic in machine learning research and 

has a huge potential to further decrease manufacturing costs on the way towards zero-

defect manufacturing [1]. With regards to milling lots of research has been done to detect 

anomalous cutting tool behavior. Among other methods acoustic signals were classified 

in normal and anomalous with generative adversarial networks [2], a CNN-AD was 

trained on spindle current [3] and a decision tree for feature selection in combination with 

a Naïve Bayes classifier was introduced to detect faulty tool conditions [4]. However, de-

tecting anomalies in the workpiece itself didn’t get the same attention. To the best of our 

knowledge no dataset has been published to detect anomalies in the workpiece during 

milling by only using time series gathered by machine internal sensors which is the con-

tribution of this article.   

The presented dataset was obtained by milling a workpiece made of 16MnCr5 which 

is a commonly used steel in machining. Eleven anomalies consisting of six boreholes [5] 

and five threaded holes in which a threaded rod made of brass was mounted were artifi-

cially introduced into the workpiece. The workpiece and its corresponding technical 

drawing are shown in Figure 1. The dimensions of the workpiece are 150x110x30 mm. 

Borehole diameters differ in size and consist of two boreholes with diameter 2 mm and 3 

mm respectively as well as one borehole with diameter 5 mm and 8 mm respectively to 

study the performance of anomaly detection under varying conditions. For the same 
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reason three threaded rods with diameter 6 mm and two threaded rods with diameter 10 

mm were used.  

 

 
 

 
Figure 1. top view of the workpiece with artificially inserted anomalies in the form of 

boreholes and brass (top) and its dimensions in mm (bottom) 

 

The data was captured by using the simatic edge device (IPC227E) developed by Sie-

mens. All milling runs were performed on a CMX 600 V milling center developed by DMG 

Mori. Process parameters as well as used milling tools are presented in chapter 2.   

The dataset was recorded and published to provide researchers with a real-world 

dataset containing multiple features of a milling machine during machining. In addition 

to machining under normal conditions the authors recorded the effects of differently sized 

anomalies introduced into the workpiece as well as four milling tool breakages. This time 
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series dataset therefore is relevant for multiple applications in industry as well as research 

and suitable for anomaly detection and detection of milling tool breakage.   

By training a convolutional based encoder-decoder model the authors achieved suc-

cess in detecting 98 % of artificially created anomalies in the time series before a tool break-

age occurred and could localize the anomalies in the workpiece based on the recorded 

position of the milling tool over time. In this approach the accuracy of the location of de-

tected anomalies is dependent on the tool diameter which is explained further down be-

low. Furthermore, it was found that using a model trained on data collected during ma-

chining with a tool of diameter 10 mm for anomaly detection on data collected during 

machining with a tool of diameter 8 mm results in worse model performance. Perfor-

mance also dropped when the authors switched from high-speed steel (HSS) milling cut-

ters to solid carbide (SC) milling cutters thus, indicating a domain shift and opening up 

additional applications for domain adaption.   

           

2. Data Description  

The dataset consists of seven folders. Each folder represents one milling run. In each 

milling run the depth of cut was set to 3 mm. A folder contains a maximum of three json 

files. The number of files depends on the time needed for each run which is a function of 

milling tool diameter and feed rate. Files in each folder were numerated in sequence. For 

example, folder “run1” contains the files “run1_1” and “run1_2” with the last number 

indicating the order in which the files were generated. The frequency of recording data-

points was set to 500 Hz.  

During each milling run the milling tool moved along the longitudinal side and then 

was moved back alongside the workpiece. This way machining started always on the 

same side of the workpiece. Spindle speed and feed rate which are depended on material 

(16MnCr5), depth of cut (3 mm) and full-slot milling were set according to the online cal-

culation tool provided by the milling tool manufacturer [6].  

Table 1 provides an overview of the milling runs. Run 1 to 4 were performed with a 

HSS tool with a diameter of 10 mm. The tool in use was an end mill (HSS-E-SPM HPC 10 

mm) developed by Hoffmann Group. During the first three runs with this end mill no tool 

breakage occurred. However, in run 4 the tool broke. Runs 5 and 6 were performed by 

milling with an end mill of the same tool series (HSS-E-SPM HPC 8 mm) that just differs 

in tool diameter. In contrast to this run 7 was performed by using a solid carbid tool (Solid 

carbide roughing end mill HPC 8 mm). Cutting with SC tools provides much higher 

productivity with the downside being higher tool price. In our case the SC end mill per-

formed cuts with a feed rate of 1150 mm/min compared to 191 mm/min achieved by a HSS 

end mill of the same diameter. Tool breakages were recorded on all runs with end mills 

of diameter 8 mm. 

Table 1. overview of the folders containing the data of each run 

 

folder name number of json files  tool diameter tool breakage tool type feed rate Cutting speed 

run 1  2 10 mm No HSS 242 mm/min 50 m/min 

run 2 2 10 mm No HSS 242 mm/min 50 m/min 

run 3 2 10 mm No HSS 242 mm/min 50 m/min 

run 4 2 10 mm Yes HSS 242 mm/min 50 m/min 

run 5 2 8 mm Yes HSS 191 mm/min 50 m/min 

run 6 3 8 mm Yes HSS 191 mm/min 50 m/min 

run 7 1 8 mm Yes SC 1150 mm/min 180 m/min 
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Each json file consists of a header and a payload. The header lists all parameters that 

were recorded such as position, motor torque and motor current of each of a maximum of 

five axes of a milling machine. However, the machine used in our experiments is a 3-axis 

machining center which leaves the payload of 2 possible additional axes to be empty. In 

the payload the sequential data for each parameter can be found. A list of recorded signals 

can be found in Table 2. 

Table 2. recorded signals during milling 

Signal index in payload Signal name Signal Address Type 

13-18 VelocityFeedForward VEL_FFW|1* double 

19-24 Power POWER|1* string 

25-30 CountourDeviation CONT_DEV|1* double 

38-43 TorqueFeedForward TORQUE_FFW|1* double 

44-49 Encoder1Position ENC1_POS|1* double 

56-61 Load LOAD|1* double 

68-73 Torque TORQUE|1* double 

68-91 Current CURRENT|1* double 

     * 1 represents x-axis, 2 represents y-axis, 3 represents z-axis and 6 represents spindle-axis. 

       Note that our milling center has 3 axis and therefore values for axes 4 and 5 are null.  

 

3. Methods  

The dataset was collected by using the simatic edge device developed by Siemens 

which was connected to the milling center. The sampling rate was set to 500 Hz for every 

collected signal listed in table 2. This way the authors ended up with a dataset containing 

not only motor current but also the position as well as the torque of each axis and several 

additional signals mentioned above. Since the recording was started shortly before the 

NC program there is a short duration until the signals change its values. This must be 

considered in the following work. The workflow for data recording is depicted in Figure 

2.  

 

                                     
                     

 Figure 2. workflow for recording data with the simatic edge device. 

All workpieces 

 machined? 
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After collecting the data, a convolutional-based encoder-decoder network to determine 

where anomalies exist in the workpiece was trained. The ability to detect anomalies in 

time series by applying convolutions was successfully demonstrated by multiple publica-

tions [1, 7-9].    

An undercomplete autoencoder is a feedforward deep neural network that tries to recon-

struct its input 𝒙 ϵ ℝ𝑝 and consists of two parts being an encoder and a decoder [10]. The 

encoder is for data compression with the function 𝑓 ∶  ℝ𝑝 →  ℝ𝑞 and the second part is 

the decoder for reconstruction with the function 𝑔 ∶  ℝ𝑞 →  ℝ𝑝 with the most compressed 

representation being called bottleneck, hidden layer, or latent representation 𝒉 ϵ ℝ𝑞 , 

where p > q [11]. This notation leads to the reconstructed input signal 𝒓 ϵ ℝ𝑝 with 𝒓 =

𝑔(𝒉) . The basic architecture of an autoencoder is depicted in Figure 3. A commonly used 

loss function is mean squared error (MSE) [11]. 

 

Figure 3. schematic architecture of an autoencoder. 

As a first model, an encoder consisting of two Conv1D layers and a decoder consisting of 

two Conv1DTranspose layers with adam optimizer, learning rate 0.001 and ReLu as acti-

vation function was used [12]. The number of filters was set to 16-32-16-1 and a stride of 

two as well as padding was applied to all layers. Training data was split in sequences of 

length 256 data points. In addition, early stopping with a patience of 5 was implemented. 

The model was trained for 10 epochs on data of run 2 and a loss of 0.0184 with mean 

squared error as the loss function was achieved [11].    

Figure 4 shows an example of a sequence which was reconstructed well (left) and a se-

quence which was not reconstructed well (right) by our model. The left sequence is from 

a part of the workpiece without an anomaly and the right sequence represents motor cur-

rent of the y-axis while cutting through the first borehole which can be seen at the top 

center in Figure 5.   

                                   

Figure 4. input sequence (blue) and reconstructed sequence (orange) under normal cutting condi-

tions (left) and during cutting through a borehole (right). 
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According to Figure 5 either three tool paths without anomalies were milled with a tool 

diameter of 10 mm or four tool paths with a tool diameter of 8 mm. These anomaly free 

tool paths were then used to train the model and the remaining part of the workpiece was 

used for validation. All found anomalies are highlighted in red color in Figure 5. After 

training the network the detected anomalies in the milling machine workspace were lo-

calized the. This was done by saving the time of each detected anomaly in the time series 

and determine the value of the positional signals in x and y coordinates. After that the 

authors put the plot of all found anomalies on top of the CAD model of the workpiece to 

validate the model performance. Figure 5 gives an overview of the workpiece with its 

anomalies and shows the anomaly free part used for training the convolutional-based en-

coder-decoder network.                 

          

Figure 5. workpiece with artificially inserted anomalies in the form of boreholes and brass and de-

tected anomalies by our model (red).  

The maximum achieved anomaly localization resolution is bound to tool diameter which 

leads to a draft in localization for certain anomalies. This can be proven by the fact that 

anomalies are detected with a slight shift to the left which can be traced back to the milling 

tool being moved from left to right. This way the center of the milling cutter is on the left 

when the cutter has its first contact with the anomaly. It can also be seen that some anom-

alies are detected twice. This is due to the anomaly being part of two milling paths. Besides 

the actual anomalies several additional anomalies were found resulting from the tool en-

tering or leaving the workpiece. These additional anomalies are located on the right and 

left side of each tool path. However, these anomalies can be deleted by implementing an 

interface between the autoencoder and the CAD model which was not part of this study.  

After achieving the above-mentioned results, the authors decided to use a model trained 

on data generated with a tool diameter of 10 mm to detect anomalies in a workpiece which 

is machined with a tool diameter of 8 mm. It was found that our model was not able to 

achieve results as good regarding the reconstruction error. This indicates a domain shift 

in the data. Model performance also worsened when the model trained on HSS milling 

tools was used on data generated by milling with a SC cutter which implies a second do-

main shift.   

Furthermore, a change in current distribution can be noticed by comparing histograms of 

10 mm and 8 mm training data. Milling with a 10 mm end mill requires more current due 

to a bigger radial depth of cut which then leads to an increase in samples with higher 

current as pointed out in Figure 6 (left) by the orange arrow. Note that Figure 6 compares 

the histograms of the part of the workpiece which is without anomalies. Due to an increase 

from 3 needed milling paths for a tool with diameter 10 mm to 4 milling paths with a tool 
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of diameter 8 mm, the sum of collected datapoints for the same machined area is varying. 

Besides this domain shift between 8 mm and 10 mm data an additional effect was detected 

in training data of all milling runs with tool diameter 8 mm. The reason lies in the combi-

nation of workpiece dimensions and tool diameter. To separate the workpiece in the same 

machined areas for training and testing regardless of the tool diameter the first tool path 

of 8 mm tools was conducted with a radial depth of cut of 6 mm compared to three fol-

lowing tool paths with 8 mm radial depth of cut. The decrease of radial depth of cut led 

to a temporal shift in current consumption on tool path one compared to tool paths two 

to four. Such a temporal shift in time series distribution was recently labeled Temporal 

Covariate Shift (TCP) and is pointed out by the orange arow in figure 6 (right) [13]. Train-

ing a model which can handle data shifts is key to implementing this anomaly detection 

approach in industry because varying radial and axial depths of cut throughout milling a 

workpiece are common. Further publications regarding handling this domain shift are to 

be expected in the future. 

       
Figure 6. Histogram of training data over motor current generated while milling with tool diameter 

10 mm (left) and tool diameter 8 mm (right). In the right image a shift to the left is noticeable as well 

as a peak at 0.5 which results from one tool path with reduced radial depth of cut.    

In conclusion the presented multivariate real-world dataset of milling 16MnCr5 is suitable 

for training and testing machine learning models for anomaly detection in time series. 

This is successfully demonstrated by training a convolutional autoencoder as a first model 

which can detect 98 % of the anomalies excluding those anomalies that were not machined 

due to a prior tool breakage. Due to artificially introduced anomalies which vary in size 

and type the presented dataset offers a unique challenge for machine learning algorithms 

to detect these anomalies. Furthermore, by using multiple milling tools which differ in 

diameter and material the presented dataset can also be applied for transfer learning. In 

addition, during milling with tools of diameter 8 mm a temporal covariate shift (TCP) can 

be detected in the training data thus offering additional challenges for machine learning 

models. Therefore, the presented dataset combines multiple features which are of interest 

for multiple research areas regarding time series.  

Finally, the authors would like to encourage machine learning researchers to conduct fur-

ther studies which model is best suited to detect anomalies as well as handling the domain 

shift and temporal covariate shift. Further research on predicting tool breakage also needs 

to be done.          

Author Contributions: Conceptualization, T.S. and J.W.; methodology, T.S. and J.W.; software, J.W. 

and A.P.; validation, T.S. and J.W.; formal analysis, T.S. and J.W.; investigation, T.S. and J.W.; re-

sources, T.S.; data curation, T.S. and J.W.; writing—original draft preparation, T.S. and J.W.; writ-

ing— T.S. and J.W.; visualization, J.W.; supervision, T.S.; project administration, T.S.; funding ac-

quisition, T.S. All authors have read and agreed to the published version of the manuscript.  

Funding: Please add: “This research received no external funding” or “This research was funded by 

NAME OF FUNDER, grant number XXX” and “The APC was funded by XXX”. Check carefully that 

the details given are accurate and use the standard spelling of funding agency names at 

https://search.crossref.org/funding. Any errors may affect your future funding. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0423.v1

https://doi.org/10.20944/preprints202210.0423.v1


Data 2022, 7, x FOR PEER REVIEW 8 of 8 
 

 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable 

Data Availability Statement:   

The data presented in this study are openly available in KITopen at 10.5445/IR/1000151546 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

 

1. Tziolas, T., Papageorgiou, K., Theodosiou, T., Papageorgiou, E., Mastos, T. & Papadopoulos, A. (2022). Autoencoders for Anom-

aly Detection in an Industrial Multivariate Time Series Dataset. engineering proceedings(18), 23. 

https://doi.org/10.3390/engproc 

2. Cooper, C.; Zhang, J.; Gao, R. & Wang, P. (2020), “Anomaly detection in milling tools using acoustic signals and generative 

adversarial networks”, Procedia Manufacturing, 48, p.372-378, https://doi.org/10.1016/j.promfg.2020.05.059 

3. Guang, L.; Fu, Y.; Chen, D.; Shi, L. & Zhou, J. (2020), “Deep Anomaly Detection for CNC Machine Cutting Tool Using Spindle 

Current Signals”, sensors, 20, https://doi.org/10.3390/s20174896  

4. Madhusudana, C.; Budati, S.; Gangadhar, N.; Kumar, H. & Narendranath, S. (2016), “Fault diagnosis studies of face milling 

cutter using machine learning approach”, Journal of Low Frequency Noise, Vibration and Active Control, 35, p.128-138, 

https://doi.org/10.1177/0263092316644090 

5. Netzer, M.; Palenga, Y. & Fleischer, J. (2022), “Machine tool process monitoring by segmented timeseries anomaly detection 

using subprocess-specific thresholds”, Production Engineering, https://doi.org/10.1007/s11740-022-01120-3  

6. Hoffmann ToolScout. Available on https://toolscout.com/processdata (accessed on 21.06.2022)  

7. Valant, C.; Wheaton, J.; Thurston, M.; McConky, S. & Nenadic, N (2019), “Evaluation of 1D CNN Autoencoders for Lithium-

ion Battery Condition Assessment Using Synthetic Data”, Proceedings of the Annual Conference of the PHM Society

 https://doi.org/10.36001/phmconf.2019.v11i1.876  

8. Ehsani, N. ;Aminifar, F. & Mohsenian-Rad, H. (2022), “Convolutional autoencoder anomaly detection and classification 

based on distribution PMU measurements”, IET Generation, Transmission & Distribution, https://doi.org/10.1049/gtd2.1242 

9. Chadha, G.S.; Islam, I.; Schwung, A. & Ding, S.X. Deep Convolutional Clustering-Based Time Series Anomaly Detection. Sen-

sors 2021, 21, 5488. https://doi.org/10.3390/s2116548  

10. Goodfellow, I.; Bengio, Y. & Courville, A. (2016), “Deep Learning”, MIT Press 

11. Marowski, F.; Bejger, M.; Cuoco, E. & Petre, L. (2021), “Anomaly detection in gravitational waves data using convolutional 

autoencoders”, Machine Learning: Science and Technology, https://doi.org/10.1088/2632-2153/abf3d0 

12. Liu, X.; Zhou, Q.; Zhao, J.; Shen, H. & Xiong, X. (2019), “Fault Diagnosis of Rotating Machinery under Noisy Environment 

Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network”, sensors, 19, 

https://doi.org/10.3390/s19040972 

13. Du, Y.; Wang, J.; Feng, W.; Pan, S.; Qin, T.; Xu, R. & Wang, C. (2021), “AdaRNN: Adaptive Learning and Forecasting for Time 

Series“, Proceedings of the 30th ACM Int’l Conf. on Information and Knowledge Management (CIKM ’21), 

https://doi.org/10.1145/3459637.3482315 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0423.v1

http://dx.doi.org/10.1016/j.promfg.2020.05.059
https://doi.org/10.3390%2Fs20174896
https://toolscout.com/processdata
http://dx.doi.org/10.36001/phmconf.2019.v11i1.876
https://doi.org/10.3390/s2116548
https://doi.org/10.1088/2632-2153/abf3d0
https://doi.org/10.20944/preprints202210.0423.v1

