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Abstract: Machine learning methods have widely been applied to detect anomalies in machine and
cutting tool behavior during lathe or milling. However, detecting anomalies in the workpiece itself
did not get the same attention by researchers. That is why in this article, the authors present a pub-
licly available multivariate time series dataset which was recorded during milling of 16MnCr5. Due
to artificially introduced, though realistic anomalies in the workpiece the dataset can be applied for
anomaly detection. By using a convolutional autoencoder as a first model good results in detecting
the location of the anomalies in the workpiece were achieved. Furthermore, milling tools with two
different diameters where used which led to a dataset eligible for transfer learning. The objective of
this article is to provide researchers with a real-world time series dataset of the milling process
which is suitable for modern machine learning research topics like anomaly detection and transfer
learning.

Dataset:  10.5445/IR/1000151546
Dataset License: CC BY 4.0: Creative Commons Namensnennung 4.0 International
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1. Summary

In process anomaly detection is an important topic in machine learning research and
has a huge potential to further decrease manufacturing costs on the way towards zero-
defect manufacturing [1]. With regards to milling lots of research has been done to detect
anomalous cutting tool behavior. Among other methods acoustic signals were classified
in normal and anomalous with generative adversarial networks [2], a CNN-AD was
trained on spindle current [3] and a decision tree for feature selection in combination with
a Naive Bayes classifier was introduced to detect faulty tool conditions [4]. However, de-
tecting anomalies in the workpiece itself didn’t get the same attention. To the best of our
knowledge no dataset has been published to detect anomalies in the workpiece during
milling by only using time series gathered by machine internal sensors which is the con-
tribution of this article.

The presented dataset was obtained by milling a workpiece made of 16MnCr5 which
is a commonly used steel in machining. Eleven anomalies consisting of six boreholes [5]
and five threaded holes in which a threaded rod made of brass was mounted were artifi-
cially introduced into the workpiece. The workpiece and its corresponding technical
drawing are shown in Figure 1. The dimensions of the workpiece are 150x110x30 mm.
Borehole diameters differ in size and consist of two boreholes with diameter 2 mm and 3
mm respectively as well as one borehole with diameter 5 mm and 8 mm respectively to
study the performance of anomaly detection under varying conditions. For the same
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reason three threaded rods with diameter 6 mm and two threaded rods with diameter 10
mm were used.
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Figure 1. top view of the workpiece with artificially inserted anomalies in the form of
boreholes and brass (top) and its dimensions in mm (bottom)

The data was captured by using the simatic edge device (IPC227E) developed by Sie-
mens. All milling runs were performed on a CMX 600 V milling center developed by DMG
Mori. Process parameters as well as used milling tools are presented in chapter 2.

The dataset was recorded and published to provide researchers with a real-world
dataset containing multiple features of a milling machine during machining. In addition
to machining under normal conditions the authors recorded the effects of differently sized
anomalies introduced into the workpiece as well as four milling tool breakages. This time
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series dataset therefore is relevant for multiple applications in industry as well as research
and suitable for anomaly detection and detection of milling tool breakage.

By training a convolutional based encoder-decoder model the authors achieved suc-
cess in detecting 98 % of artificially created anomalies in the time series before a tool break-
age occurred and could localize the anomalies in the workpiece based on the recorded
position of the milling tool over time. In this approach the accuracy of the location of de-
tected anomalies is dependent on the tool diameter which is explained further down be-
low. Furthermore, it was found that using a model trained on data collected during ma-
chining with a tool of diameter 10 mm for anomaly detection on data collected during
machining with a tool of diameter 8 mm results in worse model performance. Perfor-
mance also dropped when the authors switched from high-speed steel (HSS) milling cut-
ters to solid carbide (SC) milling cutters thus, indicating a domain shift and opening up
additional applications for domain adaption.

2. Data Description

The dataset consists of seven folders. Each folder represents one milling run. In each
milling run the depth of cut was set to 3 mm. A folder contains a maximum of three json
files. The number of files depends on the time needed for each run which is a function of
milling tool diameter and feed rate. Files in each folder were numerated in sequence. For
example, folder “runl” contains the files “runl_1” and “runl_2” with the last number
indicating the order in which the files were generated. The frequency of recording data-
points was set to 500 Hz.

During each milling run the milling tool moved along the longitudinal side and then
was moved back alongside the workpiece. This way machining started always on the
same side of the workpiece. Spindle speed and feed rate which are depended on material
(16MnCr5), depth of cut (3 mm) and full-slot milling were set according to the online cal-
culation tool provided by the milling tool manufacturer [6].

Table 1 provides an overview of the milling runs. Run 1 to 4 were performed with a
HSS tool with a diameter of 10 mm. The tool in use was an end mill (HSS-E-SPM HPC 10
mm) developed by Hoffmann Group. During the first three runs with this end mill no tool
breakage occurred. However, in run 4 the tool broke. Runs 5 and 6 were performed by
milling with an end mill of the same tool series (HSS-E-SPM HPC 8 mm) that just differs
in tool diameter. In contrast to this run 7 was performed by using a solid carbid tool (Solid
carbide roughing end mill HPC 8 mm). Cutting with SC tools provides much higher
productivity with the downside being higher tool price. In our case the SC end mill per-
formed cuts with a feed rate of 1150 mm/min compared to 191 mm/min achieved by a HSS
end mill of the same diameter. Tool breakages were recorded on all runs with end mills
of diameter 8 mm.

folder name number of json files tool diameter tool breakage tool type feed rate Cutting speed
run 1 2 10 mm No HSS 242 mm/min 50 m/min
run 2 2 10 mm No HSS 242 mm/min 50 m/min
run 3 2 10 mm No HSS 242 mm/min 50 m/min
run 4 2 10 mm Yes HSS 242 mm/min 50 m/min
run 5 2 8 mm Yes HSS 191 mm/min 50 m/min
run 6 3 8 mm Yes HSS 191 mm/min 50 m/min
run 7 1 8 mm Yes SC 1150 mm/min 180 m/min

Table 1. overview of the folders containing the data of each run
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Each json file consists of a header and a payload. The header lists all parameters that
were recorded such as position, motor torque and motor current of each of a maximum of
five axes of a milling machine. However, the machine used in our experiments is a 3-axis
machining center which leaves the payload of 2 possible additional axes to be empty. In
the payload the sequential data for each parameter can be found. A list of recorded signals
can be found in Table 2.

Table 2. recorded signals during milling

Signal index in payload Signal name Signal Address Type
13-18 VelocityFeedForward VEL_FFWI1* double
19-24 Power POWERI 1* string
25-30 CountourDeviation CONT_DEVI1* double
38-43 TorqueFeedForward =~ TORQUE_FFWI1* double
44-49 Encoder1Position ENC1_POSI1* double
56-61 Load LOADI1* double
68-73 Torque TORQUE I 1% double
68-91 Current CURRENTI1* double

* 1 represents x-axis, 2 represents y-axis, 3 represents z-axis and 6 represents spindle-axis.
Note that our milling center has 3 axis and therefore values for axes 4 and 5 are null.

3. Methods

The dataset was collected by using the simatic edge device developed by Siemens
which was connected to the milling center. The sampling rate was set to 500 Hz for every
collected signal listed in table 2. This way the authors ended up with a dataset containing
not only motor current but also the position as well as the torque of each axis and several
additional signals mentioned above. Since the recording was started shortly before the
NC program there is a short duration until the signals change its values. This must be
considered in the following work. The workflow for data recording is depicted in Figure
2.
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Figure 2. workflow for recording data with the simatic edge device.
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After collecting the data, a convolutional-based encoder-decoder network to determine
where anomalies exist in the workpiece was trained. The ability to detect anomalies in
time series by applying convolutions was successfully demonstrated by multiple publica-
tions [1, 7-9].

An undercomplete autoencoder is a feedforward deep neural network that tries to recon-
struct its input x € RP and consists of two parts being an encoder and a decoder [10]. The
encoder is for data compression with the function f : RP - RY and the second part is
the decoder for reconstruction with the function g : R? - RP with the most compressed
representation being called bottleneck, hidden layer, or latent representation h e R?,
where p > q [11]. This notation leads to the reconstructed input signal r € RP with r =
g(h) . The basic architecture of an autoencoder is depicted in Figure 3. A commonly used
loss function is mean squared error (MSE) [11].

x encoder h decoder r
f g

Figure 3. schematic architecture of an autoencoder.

As a first model, an encoder consisting of two Conv1D layers and a decoder consisting of
two ConvlDTranspose layers with adam optimizer, learning rate 0.001 and ReLu as acti-
vation function was used [12]. The number of filters was set to 16-32-16-1 and a stride of
two as well as padding was applied to all layers. Training data was split in sequences of
length 256 data points. In addition, early stopping with a patience of 5 was implemented.
The model was trained for 10 epochs on data of run 2 and a loss of 0.0184 with mean
squared error as the loss function was achieved [11].

Figure 4 shows an example of a sequence which was reconstructed well (left) and a se-
quence which was not reconstructed well (right) by our model. The left sequence is from
a part of the workpiece without an anomaly and the right sequence represents motor cur-
rent of the y-axis while cutting through the first borehole which can be seen at the top
center in Figure 5.
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Figure 4. input sequence (blue) and reconstructed sequence (orange) under normal cutting condi-
tions (left) and during cutting through a borehole (right).
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According to Figure 5 either three tool paths without anomalies were milled with a tool
diameter of 10 mm or four tool paths with a tool diameter of 8 mm. These anomaly free
tool paths were then used to train the model and the remaining part of the workpiece was
used for validation. All found anomalies are highlighted in red color in Figure 5. After
training the network the detected anomalies in the milling machine workspace were lo-
calized the. This was done by saving the time of each detected anomaly in the time series
and determine the value of the positional signals in x and y coordinates. After that the
authors put the plot of all found anomalies on top of the CAD model of the workpiece to
validate the model performance. Figure 5 gives an overview of the workpiece with its
anomalies and shows the anomaly free part used for training the convolutional-based en-

coder-decoder network.
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Figure 5. workpiece with artificially inserted anomalies in the form of boreholes and brass and de-
tected anomalies by our model (red).

The maximum achieved anomaly localization resolution is bound to tool diameter which
leads to a draft in localization for certain anomalies. This can be proven by the fact that
anomalies are detected with a slight shift to the left which can be traced back to the milling
tool being moved from left to right. This way the center of the milling cutter is on the left
when the cutter has its first contact with the anomaly. It can also be seen that some anom-
alies are detected twice. This is due to the anomaly being part of two milling paths. Besides
the actual anomalies several additional anomalies were found resulting from the tool en-
tering or leaving the workpiece. These additional anomalies are located on the right and
left side of each tool path. However, these anomalies can be deleted by implementing an
interface between the autoencoder and the CAD model which was not part of this study.

After achieving the above-mentioned results, the authors decided to use a model trained
on data generated with a tool diameter of 10 mm to detect anomalies in a workpiece which
is machined with a tool diameter of 8 mm. It was found that our model was not able to
achieve results as good regarding the reconstruction error. This indicates a domain shift
in the data. Model performance also worsened when the model trained on HSS milling
tools was used on data generated by milling with a SC cutter which implies a second do-
main shift.

Furthermore, a change in current distribution can be noticed by comparing histograms of
10 mm and 8 mm training data. Milling with a 10 mm end mill requires more current due
to a bigger radial depth of cut which then leads to an increase in samples with higher
current as pointed out in Figure 6 (left) by the orange arrow. Note that Figure 6 compares
the histograms of the part of the workpiece which is without anomalies. Due to an increase
from 3 needed milling paths for a tool with diameter 10 mm to 4 milling paths with a tool
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of diameter 8 mm, the sum of collected datapoints for the same machined area is varying.
Besides this domain shift between 8 mm and 10 mm data an additional effect was detected
in training data of all milling runs with tool diameter 8 mm. The reason lies in the combi-
nation of workpiece dimensions and tool diameter. To separate the workpiece in the same
machined areas for training and testing regardless of the tool diameter the first tool path
of 8 mm tools was conducted with a radial depth of cut of 6 mm compared to three fol-
lowing tool paths with 8 mm radial depth of cut. The decrease of radial depth of cut led
to a temporal shift in current consumption on tool path one compared to tool paths two
to four. Such a temporal shift in time series distribution was recently labeled Temporal
Covariate Shift (TCP) and is pointed out by the orange arow in figure 6 (right) [13]. Train-
ing a model which can handle data shifts is key to implementing this anomaly detection
approach in industry because varying radial and axial depths of cut throughout milling a
workpiece are common. Further publications regarding handling this domain shift are to
be expected in the future.
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Figure 6. Histogram of training data over motor current generated while milling with tool diameter
10 mm (left) and tool diameter 8 mm (right). In the right image a shift to the left is noticeable as well
as a peak at 0.5 which results from one tool path with reduced radial depth of cut.

In conclusion the presented multivariate real-world dataset of milling 16MnCr5 is suitable
for training and testing machine learning models for anomaly detection in time series.
This is successfully demonstrated by training a convolutional autoencoder as a first model
which can detect 98 % of the anomalies excluding those anomalies that were not machined
due to a prior tool breakage. Due to artificially introduced anomalies which vary in size
and type the presented dataset offers a unique challenge for machine learning algorithms
to detect these anomalies. Furthermore, by using multiple milling tools which differ in
diameter and material the presented dataset can also be applied for transfer learning. In
addition, during milling with tools of diameter 8 mm a temporal covariate shift (TCP) can
be detected in the training data thus offering additional challenges for machine learning
models. Therefore, the presented dataset combines multiple features which are of interest
for multiple research areas regarding time series.

Finally, the authors would like to encourage machine learning researchers to conduct fur-
ther studies which model is best suited to detect anomalies as well as handling the domain
shift and temporal covariate shift. Further research on predicting tool breakage also needs
to be done.
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