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Abstract: Social insects, such as honey bees exhibit complex behavioral patterns and their inconspic-
uous coordination enables decision-making on the colony level. It is thus proposed, that a high-level 
description of their collective behavior might share commonalities with neural processes in the brains. 
At the same time, recent research concerning overarching features of neural activity implies that 
brains are poised at the edge of the critical phase transition and that such a state is enabling maximal 
computational power and adaptability. In our research, we applied some tools developed in the 
computational neuroscience field to the dataset of bee trajectories recorded within the hive, during 
the course of many days. Our results imply that certain characteristics of the system are remarkably 
similar to the Ising model when it operates at critical temperature and also shares some of the features 
with the human brain at the resting state
Key words: Swarm dynamics; Criticality; Ising Model; Collective behavior
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1. Introduction 11

Decision making and cognitive adaptive ability are manifested at different scales of 12

nature. Primates and other mammals are endowed with it, grouping individuals, such as 13

murmurating birds or shoals of fish exhibit it on the collective level, for example by making 14

rapid decisions about the direction of their movement and performing adroit maneuvers to 15

avoid predators. Social insects are capable of creating and supporting sophisticated modes 16

of spatial organization, furthermore they possess the ability for more abstract decision- 17

making. Several lines of research seek to elucidate what traits are shared by entities capable 18

of adaptive behavior, regardless of their mode of operation [1]. A prominent conjecture 19

conceived thought crosspolination of statistical physics and experimental neuroscience is 20

known is the "Critical brain hypothesis". It implies that remarkable adaptive abilities of 21

the neural systems require of them to be poised in the vicinity of critical state. This claim 22

is supported by an enormous trove of experimental data, recorded both in vitro and in 23

vivo. At the same name, recent research have generated evidence which implies that some 24

collective entites such as as swarms of midges and flocks of birds exhibit hallmarks of the 25

critical state at the collective level. However, a comprehensive assessment of criticality was 26

not done for any of the major types of eusocial insects, such as ants, bees, and termites. 27

Recent advances in the scientific image acquisition and analysis techniques now allow 28

recording trajectories of individual insects [2]. In our work we analyzed a dataset of honey 29

bee trajectories, focusing on the hallmarks of the critical state. 30

1.1. Smarts in numbers - collective intelligence 31

Eusocial insects’ abilities in foraging [3], enacting complex spatial arrangement of their 32

bodies [4,5] and creating elaborate nesting structures are well-known. Furthermore they 33

could handle making decision on more abstract level. For example, a honeybee colony 34

produces a daughter colony when the original site becomes overcrowded [6]. The choice of 35

nest site depends on a number of parameters and an erroneous decision could lead to the 36

inevitable demise of the colony and all its constituent individuals. Thus, when swarming, 37

bees aggregate themselves into a cluster, usually in a form of penchant hanging from a tree 38

brunch. Then the collective considers information brought by scout bees about the relative 39
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quality of the nearby locations. The swarm evaluates the merits of proposed locations 40

and makes the choice which is then followed thought unanimously, in the overwhelming 41

majority of cases. Everyday functioning of the colony also requires the able handling of 42

incoming information to optimize foraging and allocate tasks for individuals bees. 43

Ants display similarly complex behavior on the colony level. They are using coop- 44

eration to extend their sensing range [7] and engage in complex physical tasks, such as 45

transporting heavy objects or building elaborate structures. Furthermore different colonies 46

demonstrate distinct differences in behavioral patterns across several behavioral traits, thus 47

having a degree of "collective personality", which affects their evolutionary fitness [8]. 48

At a certain level of description mechanism of collective decision-making share com- 49

mon features with such mechanisms within the individual brains [1]. Famous entomologist 50

Thomas D. Seeley [6] noted in his book remarkable similarities between the way in which a 51

honeybee swarm performs the task of making a decision for a new nest site and the activity 52

of a primate brain during a perceptual discrimination task. In both cases, the correct deci- 53

sion is acquired through the non-linear aggregation of activity of individual constituents of 54

the system. Other studies showed [9], that bee colonies adhere to the same psychophysical 55

laws humans do when making decisions while facing varied and conflicting sources of 56

information 57

A fundamental organizing principle shared by the brain and eusocial insects is that 58

all forms of behavior and cognitive ability arise from the local interactions between the 59

system’s elements, be it insects on neurons, and does not need to be explicitly organized 60

with a blueprint or central pacemaker of some sort. 61

1.2. Critical brain theory 62

In the neuroscience field, it has been conjectured that healthy brains are poised in the 63

vicinity of second-order phase transition [10–13]. Unlike the more familiar case of first- 64

order transition, exemplified by the freezing of water, the second-order transition does not 65

have a sharp boundary separating the two phases. In the vicinity of the critical point, both 66

states of matter could coexist and the system displays a set of remarkable characteristics: 67

most notably, long-range correlations link distant locations, and events of all scales could 68

occur in the system [14]. 69

Recordings of Local Field potentials (LFPs) from cortical slices [15], as well as an anal- 70

ysis of neural data of different modalities, including EEG, MEG, and fMRI [16,17], showed 71

that both the isolated neural tissue and the intact functioning brains exhibit statistical 72

properties characteristic of the system in the critical state. Most importantly the size of 73

fluctuations in the system scales abides by the power-law scaling, making events of all sizes 74

possible, long-range correlations exist in both temporal and spatial domains, and patterns 75

of dynamic activity exhibited by the system exhibit complexity and variability significantly 76

exceeding what would be expected by random chance. Furthermore, research in the field 77

showed that such a state might be not epiphenomenal (i.e consequent of but nor causal to), 78

but necessary to maintain the brain’s functionality [12]. 79

This view, which became known as the "critical brain theory", conjectures that the 80

critical state of the system underlies its key functionality, including its ability to produce 81

a wide range of emergent configurations of activity. Emergent behavior is paramount for 82

an adaptive system, as it underlies its ability to produce multitude of responses without 83

altering the underlying structure. 84

It has been established that in the vicinity of the critical point the system has the 85

widest repertoire of dynamic patterns emerging from local interactions only [18]. A body 86

of evidence, accumulated through computational models and experiments with cortical 87

slices, shows that at critical state neural networks are best suited for complex computation. 88

Information transmission, integration [19], and representation [20] are optimal dynamic 89

range is maximized [21], allowing the networks to respond to a wide range of stimuli. These 90

findings are corroborated by medical research showing that deviations from criticality are 91

correlated with suboptimal mental states in humans [22]. 92
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1.3. Evidence for criticality in collective behavior 93

Evidence of criticality and its implications discussed above 1.3 applies mostly to 94

mammalian brains. As we argue in 1.1insect communities, despite having a little structural 95

resemblance to the brains share the same burden of navigating the world and making 96

choices crucial to survival. 97

The universality of physical laws implies that different systems could be described 98

with the same set of basic laws. At the same time principles of convergent evolution 99

make it possible that similar phenomena could come to be in unrelated species if they are 100

advantageous to survival. Given the benefits critical state confers to the adaptive ability of 101

the systems, it is fitting to conjecture that swarms and colonies of collective insects would 102

evolve to be positioned in its vicinity. Investigations of brains’ critical phenomena focus on 103

analyzing patterns of electric signals (EEG, LFP, MEG) or alternatively using proxy metrics 104

for brain activity (fMRI). Animal collectives use many modes of interaction to exchange 105

information and synchronize actions within the group, including vocal cues, movements, 106

and phenomenal signals. Previous research we reviewed assumes unanimously, that the 107

spatial and temporal scale at which critical phenomena would presumably be exhibited by 108

such systems, makes the movement patterns, correlations, and derivatives thereof the best 109

venue for analysis. 110

Recent research showed that critical phenomena are observable in flocking birds [23] 111

and swarming of midges [24,25]. Long-range velocity correlations underlie the astonishing 112

ability of these creatures to maneuver collectively with the synchronicity of one. Cursory 113

evidence exists, to suggest that ants make use of enhanced coordination between individ- 114

uals conferred by criticality to maximize the load carrying capacity of a group [26] and 115

optimize forage route allocation [27]. 116

2. Materials and Methods 117

2.1. Bee data 118

All bee data analyzed in this paper was provided by professor G. Robinson and his 119

team. Their recent paper explains the nuances of the methods [2]. To summarise briefly: 120

five trials were conducted, each using a colony of 1200 worker bees. Insects were marked 121

with barcodes attached to the thorax. Colonies resided in the rectangular hives which 122

had video cameras installed inside. Barcodes enabled tracking the positions of individual 123

insects. Several days and nights of activity were recorded for each colony. For the first two 124

days and two nights of each trial, hives were kept sealed and supplied with the necessary 125

nutrients. Afterward bees were allowed to leave at will to scout and forage. 126

Raw dataset, contained IDs and coordinates accompanied by UNIX timestamps. We 127

developed a prepossessing pipeline using linear interpolation to re-sample individual 128

trajectories at uniform time intervals. Data was partitioned into day and night intervals. 129

Bees that were inactive were filtered out. During our analysis we focused on the period of 130

time, when bees were sealed inside the hive, assuming that such a condition is similar to 131

the resting state of the brain. 132

For each insect we compute its Kinetic Energy from the horizontal and vertical dis-
placement over time (1). Such an approach was first implemented [28] to identify bursts
of activity in bee hives. It should be noted that the purpose of computing kinetic energy
is that it provides a convenient proxy to measure the change in activity over time, thus
physically rigorous details, such as accounting for mass of each bee could be omitted.
Figure 1 illustrates kinetic energy is computed. To characterize activity of a hive as a whole
mean kinetic energy, Kmean is computed according to (2)

Kbee(t) = ∆x2 + ∆y2 (1)

Kmean(t) =
n

∑
i=1

Ki (2)
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Figure 1. Illustrative example demonstrating how spatial coordinates are converted to kinetic energy.
Pane (a) presents fragments of trajectories of two bees recorded during the first day of Trial 1. Panes
(b) and (c) respectively show kinetic energy time-series computed from their movements.

2.2. The Ising Model 133

The Ising model is one of the simplest models which exhibits critical behavior. It
consists of a square lattice with sides of length L which is composed of N = L× L sites
with nearest neighbor interactions. Each site has an associated binary "spin" variable
si = ±1. Lattice configuration is uniquely specified by a sequence of spin variables. For
a system-level description of the model two order parameters - Magnetisation (3), which
corresponds to the mean spin of the model, and Energy (4) are computed.

M =
1
N

N

∑
i=1

si (3)

E = −J
N

∑
i,j=nn(i)

sisj (4)

Neighboring spins tend to align with each other, with alignment probability controlled 134

by the temperature parameter T. Competition between thermal fluctuations, which induce 135

chaotic behavior, and the nearest neighbor interactions, which pull the system towards 136

a more ordered state govern the dynamics of the model. At low temperatures T = Tlow 137

the system soon finds itself in a quiescent state. High temperature T = Thigh causes 138

uncorrelated, random activity. In the vicinity of the critical point, when T ≈ Tcrit the 139

system exhibits a multitude of critical phenomena, such as long-range temporal and spatial 140

correlations and complex patterns of activity. 141

We implemented the Metropolis Monte Carlo algorithm [29] to solve for the equilib- 142

rium configuration of the model. Details of the algorithm are given in the Appendix A.1. 143
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Each step of the algorithm consists of N site updates. Initially, the system is allowed to 144

settle into an equilibrium state. During this process, known as thermalization no recordings 145

are taken. In our implementation, this stage lasts 10000 steps. Then 2000 consecutive 146

configurations of the model, separated by one step of the algorithm are recorded. We used 147

3 Ising models of size N = 10000 with their T parameter set respectively at Tlow = 2.0, 148

Tcrit = 2.3 and Thigh = 3.0. We considered necessary to use a model of sufficient size to 149

make the statistical tests we perform more scrupulous. 150

2.3. Dynamic Correlations 151

Our approach to constructing and analyzing graphs of dynamic correlations was influ- 152

enced by a seminal paper [16] which used network approach to compare brain dynamics 153

inferred from resting state fMRI recordings with Ising model at different temperatures. 154

Thus, we tried to keep consistency with methods whenever it was possible, given different 155

nature of the data. 156

To construct correlation networks we treat each site of the Ising model and each bee
as node, while edges are inferred from correlations between activity of different nodes
(i. e either between Kinetic energy time-series of individual bees, or between the time-
series of spins of different lattice sites of the Ising Model). Correlations are computed
using Pearson’s correlation r coefficient (5) which captures the degree of linear correlation
between the two time series. Nodes are connected with edges, when correlation exceeds
some predefined threshold p.

r(x, y) =
E[(X− µx)(Y− µy)]

σ(x)σ(y)
(5)

A meaningful way to compare networks which have very different provenance is to scan 157

a range of p values for each of the networks at hand, while simultaneously computing 158

networks’ average degree 〈k〉. Then, comparisons could be made between networks of 159

similar 〈k〉. Figure 2 illustrates this approach for Ising networks at 3 different temperatures 160

and for the network derived from the correlations between kinetic energy time-series of 161

bees during 1 day. Exemplifying case of 〈k〉 ≈ 60 is used. 162

After constructing correlation networks for different systems we investigate their 163

degree distributions and other network metrics. Important step is to access if the degree 164

distribution of the system follows the power-law. It has been brought up by the statistical 165

community [30] that often methods used to characterize power-law relationships in statis- 166

tical research don’t stand up to mathematical scrutiny. We used what is considered to be 167

the cutting-edge methods [31] to make our assumptions. Some caveats and supplementary 168

information are contained in the B.2. 169
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Figure 2. Dependence of the mean degree 〈k〉 on the threshold p used for binarisation. The dashed
line shows a specific degree chosen to compare different networks, black circles indicate resultant
relations between 〈k〉 and p

2.4. Temporal Analysis 170

Correlations networks analysis elucidates the degree of correlation between time-series 171

of different nodes. However, previous research, concerning both neurological recordings 172

[32] and computational models [33] which are known to exhibit critical behavior showed 173

that such time-series exhibit significant autocorrelations - patterns of activity at one timestep 174

significantly influence activity at the lagged time interval. The established method to 175

quantitatively characterize the degree of autocorelation in the time-series is the Hurst 176

exponent H [34]. 177

It is a scalar metric that ranges between 0 and 1. For random walks and patterns 178

of Brownian motion, in which successive timesteps are completely independent H ≈ 179

0.5. Such processes are called memoryless. Values of H close to one imply significant 180

positive autocorrelations in the data, while values of H between 0 and 0.5 imply negative 181

autocorrelation. 182

Several approaches to computing H exist all of them having different pros and cons.
We adapted simplified methodology initially developed for stock market analysis [35] and
rigorously tested our implementation on synthetic data. For a timeseries S(t) we compute
cumulative sum of its deviations from the mean (6).

Ssum(t) =
S

∑
1

S(t)− µs (6)

Then we compute variance for a sequence of lags τ.

Var(τ) = 〈|Ssum
t+τ − Ssum

t |2〉 (7)

For Brownian motion variance is linearly dependent on lag Var(τ) ∝ τ. However, 183

when autocorelations are present this relation acquires anomalous exponent Var(τ) ∝ τH . 184

We compute H by solving for relation between log(Var(τ)) and log(τ). 185
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3. Results 186

3.1. Model Graphs 187

Figure 3 depicts degree distributions of correlation networks created using the Ising 188

model at 3 different temperatures as well as an illustrative degree distribution for the 189

correlation network computed using kinetic energy time-series of bees recorded during one 190

day. Earlier [16] work used an analogous approach to compare fMRI correlation network 191

with Ising model at T = Tcrit. It is important to underline, that it is not assumed that either 192

brain or bee hive share structural similarities with the Ising model, most notable difference 193

being that in the Ising model only possesses nearest neighbor interactions, while brains 194

have intricate wiring patterns with long-range connections and bees are able to move freely 195

inside the hive and thus interact with any other individual of their choosing. However, 196

it is possible to use the Ising model as the "worst case" scenario to show that even when 197

the such simplifying assumption is made remarkable similarities are present between the 198

dynamics of the system in question and the known model of the critical state. 199

Several methods have been used to analyze criticality in neural data. We choose to 200

use the network approach for our initial test for a number of reasons. Firstly, unlike fMRI 201

voxels or neurons, bees could move freely inside the hive. Thus, some methods which rely 202

on measuring spatially localized activity, for example, the local field potentials in different 203

areas of the neural tissue, would be challenging to apply. Using correlations between 204

kinetic energy time-series of individual bees allows to circumvent this difficulty and still 205

have a data which could be directly compatible to the Ising model. 206

From observing Figure 3 it is evident that the degree distribution of the Ising model 207

at the critical temperature and degree distribution of the bee correlation matrix share a 208

similar long-tailed structure, regardless of the mean degree chosen for comparison, while 209

at T = low and T = Thigh Ising model has a strikingly different degree distribution. We 210

choose to display only one day’s worth of kinetic energy measurements, yet we analyzed 211

multiple days from different trials and acquired similar degree distributions for all of them. 212

This data is presented in the Appendix A1. 213

Besides obvious visual similarities, several statistical characteristics are shared by the 214

Ising model at the vicinity of the critical point and the Beehive and are notably absent when 215

T = Tlow or T = THigh. As it is summarised in the table 1 the Ising model at T = Tcrit is 216

best described by the power-law, while at low and high temperatures the best fit for the 217

data is the Log-normal distributions. Different powerlaw exponents, as well as the different 218

numbers of nodes explain the somewhat different shape of degree distribution for Ising 219

model at T = Tcrit and the Beehive, however, general features of heavy-tailed distribution 220

are evident in both cases. 221
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Figure 3. Degree distribution for the correlation networks. Panels (a), (b) and (c) depict the degree
distributions of the Ising networks at T=2, T=2.3 and T=3. Panel (d) depicts an exemplifying degree
distribution computed using bee hive activity during 1 day. For each network 3 representative values
of 〈k〉 are plotted.

Table 1. Characteristics of Degree frequency distributions for various correlation networks. For Log-
normal distribution mean µ and standard deviation σ are given. Truncated powerlaw distributions
are characterized by the powerlaw exponent α and xmin. The latter specifies the minimum value of
the data for which the powerlaw holds. All networks have matching mean degree 〈k〉 ≈ 110

System Distribution family Parameters of the
distribution

Ising Model, T = Tlow Lognormal µ = 4.12, σ = 0.132
Ising Model, T = Tcrit Truncated Power-law α = 1.99, xmin = 2
Ising Model, T = Thigh Lognormal µ = 3.58, σ = 0.225

Bee Hive Truncated Power-law α = 3.49, xmin = 3

3.2. Network metrics 222

Besides the degree distribution networks can be characterized by a number of other 223

metrics, which account not only for the number of edges per node but also for the inter- 224

twined structure of the connections. Table 2 presents most common [36] metrics computed 225

for the correlation networks of the Ising model and various beehives of similar mean 226

degrees. Additional information about the metrics we used is given in the Appendix A.2 227

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0419.v1

https://doi.org/10.20944/preprints202210.0419.v1


9 of 19

and supplementary tables describing the same networks tresholded at different mean 228

degrees are available in A.2. In order to compute some characteristics, such as for example 229

Average path length L it is necessary for the network to be fully connected. Bee correlation 230

networks have a significant number of isolated nodes, although they always pertain a giant 231

component of significant size, regardless of the threshold value. Ising model always remain 232

fully connected at T = Tlow and T=Thigh. Interestingly enough isolated subgraphs begin to 233

appear in the network at T = Tcrit when threshold p is set to higher values. 234

We extract we giant component from the networks and use it to compute metrics. 235

Thus 〈k〉 can vary within reasonable limits. Common technique in the study of networks 236

is to compare the network at hand with a random graph. For each of the networks we 237

created an ensemble of equivalent random Erdos-Renui graphs and computed their average 238

characteristics as a reference. 239

Table 2. Network metrics computed for the giant components of correlation Graphs of Ising model
and Bee hive. N-number of nodes, 〈k〉 - mean degree, C - average clustering coefficient, L - average
path Length, D - diameter of the network. Crand, Lrand, Drand refer to the metrics computed on
ensemble of Erdos-Renui graphs with N and 〈k〉 identical to the original network

N 〈k〉 C L D Crand Lrand Drand

T = Thigh 10000.0 111.51980 0.08664 2.04040 3.0 0.02237 1.98442 3.0
T = Tcrit 10000.0 109.65700 0.55828 3.70079 14.0 0.02194 1.98597 3.0
T = Tlow 10000.0 107.26360 0.08130 2.03172 3.0 0.02118 1.98836 3.0
Trial 5 1166.0 110.32333 0.63224 1.91577 4.0 0.18797 1.81092 2.0
Trial 4 1138.0 109.28559 0.50052 1.81285 3.0 0.19185 1.80776 2.0
Trial 3 1137.0 110.95163 0.52267 1.81035 3.0 0.19605 1.80486 2.0
Trial 2 1097.0 114.12306 0.71736 2.05477 7.0 0.20800 1.79177 2.0
Trial 1 946.0 111.74313 0.61843 1.80857 4.0 0.23652 1.76367 2.0

It can be noted, that correlation networks of the bee hive and of the Ising model 240

at the critical temperature have much higher average clustering than both their random 241

equivalents and correlation networks of Ising model at low and high temperatures. The 242

average Path length in these clustered networks is generally somewhat higher than in the 243

random networks, but considerably lower than if the graph had been a regular lattice with 244

high clustering. Such graph structure, which combines high clustering characteristics of 245

lattice-like networks with relatively low average path length, inherent to random graphs is 246

known as the small-world network [37]. 247

3.3. Temporal correlations 248

As it has been noted earlier, the critical state manifests itself not only in through spatial 249

correlations, but also in the increased autocorrelations within the time-series. We computed 250

the Hurst exponent H to elucidate presence of autocorrelations. High values H imply that 251

the system which generated the timeseries at hand is in the vicinity of the critical state. 252

Mean magnetization M time-series of the Ising model is characterized by a high value of 253

H only when T is close to Tcrit [33]. A common technique is to compare the time-series 254

generated by the system of study with another time-series generated by a computational 255

model which is known to exhibit critical behavior. For example [38] such technique was 256

used to show that temporal patterns of blackouts in the USA exhibit characteristics of the 257

critical state. 258

Figure 4 exhibits different Hurst exponents computed for the Ising model at different 259

temperatures and exemplifying case of the Hurst exponent computed for the Kmean during 260

a single day. H computed for other days shows only minor differences and H value is 261

always significantly higher than 0.5. This is indicative of long-term corelations within 262

the timeseries. As a sanity check we also computed H for randomly permuted mean 263

kinetic energy time-series and as it would be expected of essentially random data H ≈ 0.5. 264

Ising model only displays high H values at T = Tcrit, this finding as consistent both 265
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with the previous research on the model and with the established connection between 266

autocorrelations and criticality. 267

Figure 4. Hurst exponents for magnetization time-series of the Ising model and Kmean time-series
of the bee hive. The main pane of the figure shows the slopes of the Hurst exponents for different
timeseries in relation to each other. Inset panes (a), (b), (c) and (d) demonstrate how well H values fit
the data.

4. Discussion 268

4.1. Summary of key findings 269

In our work, we analyzed a dataset of bee trajectories in a way that allowed us to 270

compare our empirical data to a well-studied model. Such an approach has been previously 271

used [16] to show that key dynamical characteristics of the human brain at its resting state 272

bear significant resemblance to the Ising model when the latter is in the vicinity of the 273

critical state. With some minor differences, which are to be expected, given the different 274

nature of the data, our analysis of bee correlation networks yielded remarkably similar 275

results - similarity between the Ising model and T = Tcrit and lack of thereof at low and 276

high temperatures. Furthermore, structural analysis of correlation networks showed that 277

certain characteristics, most notably clustering and path length are compatible between 278
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the network of bee correlations and critical state of the model and are drastically different 279

otherwise. Analysis of mean parameters Kmean and M showed that recordings of the 280

average activity of both the Bee Hive and the Ising model at the critical state are marked 281

with considerable autocorrelations within the time-series. 282

Earlier research [16] showed, that correlation networks of the Ising model bear simi- 283

larity to the resting state neural dynamics only at the critical state. Long-range temporal 284

autocorrelations are also considered to be a hallmark of criticality both in the Ising model 285

and in the neural timeseries [39]. 286

4.2. Critical brains and critical swarms 287

We believe that our results provide considerable evidence in support of what we 288

would call a "critical swarm" hypothesis. As we had summarised earlier 1.2 critical state 289

benefits the cognitive ability, to an extend that in can be argued that such state is not simply 290

advantageous, but necessary. At the same time, convincing arguments 1.1 imply that social 291

insects are endowed with a sort of collective cognitive capacity, which, despite the entirely 292

different modes of organization, shares some key similarities with the mammalian brains. 293

Thus, we believe that the benefits critical state brings, would be desirable for both these 294

systems. 295

Previous research showed that some of the hallmarks of critical state are observable in 296

swarming midges [24] and flocking birds [23]. Moreover, previous research on the same 297

dataset [28] found that time-series of the Kmean of the beehive incorporate bursts of activity, 298

significantly exceeding the average level, which are interspersed with quiescent periods. 299

The distribution of waiting times between these burst abides by the power-law distribution. 300

This was also found to be the case for "avalanches" in Back-Wisenfield sandpile, a famous 301

model of self-organized criticality [40], and for the patterns of the Neural activity recorded 302

in the cortical slices of mice [15] in vitro. 303

One of the benefits of the critical state in the neural networks is that it enables easier 304

integration of information. Our findings show that correlation graphs of bee activity 305

exhibit distinct small-world structure 3.2 and that this organization also emerges in the 306

Ising Model when T = Tcrit. Such network structure is known to enhcnace systems’ 307

capacity to integrate information. One should note, that in the human brain small-world 308

architecture of functional connectivity is undergrid by a similar structural organization 309

of cortical connectivity [41,42]. Bee hive and the critical Ising model have drastically 310

different underlying structures, one being the regular lattice, other having no connectivity 311

constraints. Yet, their functional connectivity is remarkably similar. Uncovering small- 312

world structure in the functional correlation of the bees might signify, that this type of 313

organisation, ubiquitous in the brain, is even more fundamental to the functionality of any 314

cognitive system than it was previously considered. 315

Other notable features of the network structure, shared by both the critical Ising model 316

and the bee hive data, is the presence of hubs - nodes with exceptionally high degree. And 317

again it is important to observe that such features arose in the dynamics of the system 318

without any preexisting structural frameworks which might have channeled the activity. 319

We should highlight several important differences between our work and the corpus 320

of research that concerns hallmarks of criticality in the swarm dynamics, as well as with 321

the studies employing tools of network science to study eusocial insects [2,43]. The most 322

notable dissimilarity with the latter is that most studies we reviewed focused on social 323

networks, constructed by observing species-specific means of communication, such as 324

trophallaxis in bees and attenuation in ants. Such contacts, important as they are, only 325

constitute a minuscule amount of individuals’ insect total activity and, as we believe, 326

account only for a portion of total informational exchange that takes place inside the 327

hive. Significant correlations between kinetic energy time-series and highly specific degree 328

distributions of the correlation graph, in our view, reflect some features of underlying 329

computation in the hive, aided by its critical state. 330
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Hallmarks of critical behavior, when studied previously, were investigated in freely- 331

moving agents: flocking birds or swarming midges. Thus, it is possible to argue, that 332

observed features, such as the long-range velocity correlations, were begotten by the spatial 333

order the organisms maintained. Indeed, most critical phenomena nature abounds with 334

are exhibited by systems that possess no cognitive ability, collective or otherwise. 335

Data we analyzed was acquired when bees were locked inside the hive and provided 336

with sustenance. They were under no pressure to maintain a specific movement order, as 337

they would have been during swarming, or to move at all, in fact. Thus, we believe that, 338

given the conditions, the hallmarks of the critical state we analyzed would be observed 339

only if such state is inherent to the system, much like it is to the human brain at its resting 340

state. 341

5. Conclusions 342

Our findings strongly imply that the honey bee swarm is a critical system. However, 343

complexity of the issue dictates that further work is required to ascertain the conjecture 344

that colonies of eusocial insects are critical. It is crucial to analyze other datasets, to confirm 345

that hallmarks of the kind we observed are ubiquitous across bee spices and to analyze 346

other eucsocial insects, such as ants and termites. Moreover, criticality manifests itself on 347

different levels - we focused on temporal and spatial correlations, however other aspects, 348

for example, behavior of the system during the coarse-graining should also be considered. 349

Other vantage direction is to explore how the critical state is affected by the hives’ normal 350

activity, such as foraging and swarming, as well as by the environmental factors, such as 351

the day-night cycle. 352

Comparing high-level descriptions of different systems could shed light on patterns 353

that are imperceptible when the focus is too narrow. Thus, much ink had been spilled by 354

some of the best scientific minds in debating the validity of the critical brain hypothesis 355

and the debate is still not settled [44]. Evidence from other fields could tip the scales in the 356

ongoing discussion. 357
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Appendix A. Algorithms and metrics 368

Appendix A.1. Monte-Carlo Algorithm 369

Metropolis Monte-Carlo Algorithm is commonly used to computationally solve for 370

the equilibrium configuration of the Ising model. This approach assumes that the system 371

is submerged in the heat bath of temperature T. Steps of the algorithm are summarized 372

below. 373

1. Initialise the model with random configuration of spins 374

2. Select random site and flip its spin 375
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3. Compute the energy of the new configuration using (4), than compute energy differ- 376

ence with the previous configuration δE = Enew − Eold. 377

4. If δE ≤ 0 accept the change. 378

5. Else, if δE > 0 379

i Compute transition probability w = e
δE
kT 380

ii Generate a random number r in the unit interval 381

iii Accept the change if r ≤ w 382

6. Return to step 1 383

Appendix A.2. Network Metrics 384

To concisely characterise network topology several common metrics are used [36].
Clustering quantifies the propensity of nodes in the network to cluster together i. e how
likely is that neighbours of a node would also be connected amongst each other. For a
graph G described by an adjacency matrix A local clustering coefficient Ci can be computed
using equation (A1) and average clustering C is simply the mean (A2) of the local clustering
coefficients for each node of the network.

Ci =
1

ki(ki − 1) ∑
j,k

Aij Ajk Aki (A1)

ki − degree o f a node

C =
1
n

n

∑
i=1

Ci (A2)

Average path length is the mean number of steps required to traverse from one node to
another. If shortest distance between any two nodes,vi and vj is defined as d(vi, vj), then
average distance for all possible pairs on nodes in the networks could be computed using
(A3).

L =
1

n(n− 1) ∑
i 6=j

d(vi, vj) (A3)

In our work we computed all possible shortest paths using Dijkstra’s algorithm and than 385

found an average L for the whole network. Final metric we used is the diameter of the 386

network D - which is equal to longest possible shortest path. 387
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Appendix B. Supplementary Data 388

Appendix B.1. Supplementary Graphs 389

Figure A1. Degree distribution for correlation networks. Panel (a), (b), (c) and (d) depict different
Trials using different hives. Methods used to generate depicted degree distributions are identical to
those used to produce Figure 3
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Figure A2. Illustrative images depicting of the bee correlation network and equivalent random
network. Mean degrees 〈k〉 and average clustering coefficients C are given below each image
pane. Low mean degrees and thus sufficiently high threshold values have been used for clarity of
visualisation.
Appendix B.2. Log-likelihood tables 390

Fitting a power-law to an empirical distribution is a task that requires due caution. The 391

most rigorous approach developed requires comparing hypothetical power-law fit with 392

other candidate long-tailed distributions [30]. Most important of them is the exponential 393

distribution, however log-normal and stretched exponential (Weibull) should also be 394

considered. Furthermore, using different thresholds to binarise the correlation matrices 395

could also affect the characteristics of resultant degree distribution. Thus, to provide a 396

comprehensive view of our analysis below we present the table of log-likelihood tests for 397

different dataset used in our work. 398

Log-likelihood tables A1, A2, A3 and A4 summarise results of statistical tests for dif- 399

ferent systems thresholded at various mean degrees. Each case is tested against 3 candidate 400

distributions: Exponential, Log-normal and Weibull. Possible lognormal distributions are 401

restricted to those with positive mean mu, for otherwise, one would have to assume possi- 402

bility of node having negative degree. For each test two values are generated: log-likelihood 403

` and p-value p. ` > 0 implies that power-law distribution is preferred, ` < 0 signifies that 404

another candidate distribution provides a better fit to the data. p indicates the statistical 405

significance of the uncovered relationship. Careful examination of the provided summary 406

tables allows to conclude, that although in some cases Ising model at T = Tlow could exhibit 407

power-law relationship, in overwhelming majority of cases such relationship exists only in 408

the vicinity of the critical point of the Ising model. Similar summary judgement illuminates 409

presence of clear power-law scaling in the degree distribution of bee correlations. 410

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2022                   doi:10.20944/preprints202210.0419.v1

https://doi.org/10.20944/preprints202210.0419.v1


16 of 19

Table A3. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the different Bee Hives during different trials. Part 1.

Mean Degree 〈k〉 ≈ 60.0 〈k〉 ≈ 90.0 〈k〉 ≈ 110.0
Log-likelihood, p-value ` p ` p ` p

Model Distribution

Trial 1 Exponential 35.2344 0.0057 11.1576 0.0029 2.6810 0.1226
Log-normal 1.9488 0.5026 1.8850 0.1182 0.5636 0.0446
Weibull -0.0331 0.9416 0.2664 0.3008 0.2525 0.0030

Trial 3 Exponential 26.0145 0.0000 3.3355 0.0999 0.0021 0.9967
Log-normal 1.7951 0.1321 1.3102 0.0007 0.4929 0.0104
Weibull 0.7285 0.0249 0.6027 0.0002 -0.0046 0.9910

Trial 4 Exponential 12.8372 0.0037 -0.0114 0.4864 0.2154 0.7090
Log-normal 1.2979 0.1088 -0.1651 0.7009 0.2560 0.0932
Weibull 0.4883 0.0046 -0.2188 0.6598 0.0524 0.5102

Trial 5 Exponential 72.9602 0.0000 43.4732 0.0001 11.1195 0.0029
Log-normal 9.4708 0.0086 4.8933 0.1093 1.6425 0.0999
Weibull 0.9996 0.1582 0.3480 0.3929 0.3398 0.0002

Table A1. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the Bee hive and the Ising model tresholded at different mean degrees. Part 1.

Mean Degree 〈k〉 ≈ 20.0 〈k〉 ≈ 27.5 〈k〉 ≈ 50.0
Log-likelihood, p-value ` p ` p ` p

Model Distribution

T = Tlow Exponential 14.0710 0.0224 9.7538 0.1672 -0.1100 0.0539
Log-normal 5.5999 0.0000 5.0950 0.0185 -1.6257 0.3173
Weibull 1.9843 0.1524 -0.3715 0.8911 -1.7395 0.2904

T = Tcrit Exponential 160.9710 0.0000 269.4061 0.0000 296.9442 0.0000
Log-normal 7.7403 0.0000 10.8814 0.0000 14.2553 0.0000
Weibull 4.2434 0.0000 4.9645 0.0000 6.5738 0.0000

T = Thigh Exponential -3.4572 0.5225 7.9102 0.4883 -0.1400 0.0288
Log-normal 0.5453 0.8520 0.5159 0.8926 -2.5385 0.1892
Weibull -4.2745 0.2793 -7.1229 0.1479 -3.1692 0.1353

Bee Hive Exponential 68.3686 0.0040 109.4801 0.0061 118.1101 0.0035
Log-normal 5.5905 0.0696 8.0556 0.1236 10.2539 0.1191
Weibull 1.1172 0.1596 1.3214 0.2896 1.8727 0.1386

Table A2. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the Bee hive and the Ising model tresholded at different mean degrees. Part 2.

Mean Degree 〈k〉 ≈ 60.0 〈k〉 ≈ 90.0 〈k〉 ≈ 110.0
Log-likelihood, p-value ` p ` p ` p

Model Distribution

T = Tlow Exponential -0.1507 0.0336 -0.2025 0.0005 -0.6169 0.0000
Log-normal -1.9751 0.2443 -5.3950 0.0348 -9.5480 0.0161
Weibull -2.2142 0.1969 -5.8917 0.0221 -10.4566 0.0152

T = Tcrit Exponential 335.6884 0.0000 353.2331 0.0000 330.8069 0.0000
Log-normal 18.0843 0.0000 20.5435 0.0000 20.3117 0.0000
Weibull 6.7255 0.0000 7.7506 0.0000 8.8427 0.0000

T = Thigh Exponential -0.1408 0.0057 -27.3007 0.0000 -0.2165 0.0316
Log-normal -3.9967 0.0747 -13.9405 0.0325 -2.0616 0.2600
Weibull -4.7758 0.0521 -29.7762 0.0002 -2.9617 0.1781

Bee Hive Exponential 114.6828 0.0014 92.1413 0.0017 79.2483 0.0006
Log-normal 13.1142 0.0297 11.4028 0.0448 11.5063 0.0243
Weibull 2.2617 0.0898 1.6717 0.1223 1.7065 0.0941
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Table A4. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the different Bee Hives during different trials. Part 2.

Mean Degree 〈k〉 ≈ 20.0 〈k〉 ≈ 27.5 〈k〉 ≈ 50.0
Log-likelihood, p-value ` p ` p ` p

Model Distribution

Trial 1 Exponential 42.0251 0.0122 39.4696 0.0006 37.1392 0.0000
Log-normal -0.5323 0.7987 3.6085 0.1000 6.6321 0.0018
Weibull -0.5369 0.4757 0.6376 0.2998 1.2888 0.0250

Trial 3 Exponential 51.6177 0.0000 47.7674 0.0000 23.9114 0.0000
Log-normal 2.2136 0.2228 1.8331 0.3150 2.6847 0.0234
Weibull 0.4194 0.1938 0.3688 0.3130 0.6090 0.0022

Trial 4 Exponential 16.3384 0.0003 17.4676 0.0000 12.4347 0.0018
Log-normal 0.6153 0.3228 1.1261 0.1393 0.7740 0.1541
Weibull 0.3341 0.1844 0.3577 0.0760 0.4721 0.0631

Trial 5 Exponential 58.6767 0.0000 76.2392 0.0001 80.6464 0.0000
Log-normal 5.7597 0.0110 4.8574 0.1337 9.6371 0.0113
Weibull 1.2528 0.0668 0.4872 0.4708 1.1838 0.1514

Appendix B.3. Networks Metrics 411

In this section we provide some supplementary information on networks metrics. 412

Methods are identical to those used in 3.2, however different combination of mean degrees 413

and tresholds was used. 414

Table A5. Supplementary table on network metrics, part 1

N 〈k〉 C L D Crand Lrand Drand

T = Tlow 10000.0 27.77980 0.10345 2.79937 4.0 0.00552 2.72503 4.0
T = Thigh 10000.0 27.33960 0.22436 2.86948 4.0 0.00566 2.73211 4.0
T = Tcrit 9990.0 27.56977 0.52762 7.71826 31.0 0.00571 2.72821 4.0
Trial 4 1135.0 27.06872 0.33549 2.44105 5.0 0.04775 2.02390 3.0
Trial 3 1135.0 26.84141 0.32411 2.49355 5.0 0.04734 2.02858 3.0
Trial 5 1066.0 29.88555 0.49939 2.74393 7.0 0.05540 1.97709 3.0
Trial 1 879.0 29.36177 0.41123 2.54526 8.0 0.06622 1.95331 3.0
Trial 2 783.0 39.68199 0.67767 2.52859 12.0 0.10136 1.89870 3.0

Table A6. Supplementary table of network metrics, part 2

N 〈k〉 C L D Crand Lrand Drand

T = Tcrit 10000.0 50.16580 0.55841 5.44477 20.0 0.01022 2.35186 3.0
T = Tlow 10000.0 48.71740 0.08564 2.50541 4.0 0.00942 2.37342 3.0
T = Thigh 10000.0 49.54980 0.12720 2.53886 4.0 0.00945 2.36108 3.0
Trial 5 1138.0 52.04218 0.52962 2.36404 6.0 0.09158 1.90867 3.0
Trial 4 1138.0 48.77768 0.39881 2.10649 4.0 0.08457 1.91453 3.0
Trial 3 1137.0 48.68338 0.41045 2.13271 4.0 0.08617 1.91448 3.0
Trial 2 934.0 60.53426 0.66733 2.43440 9.0 0.12875 1.87055 2.0
Trial 1 933.0 51.37835 0.48489 2.22992 7.0 0.11022 1.88991 3.0
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