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Abstract: Deep learning, specifically the supervised approach, has proved to be a breakthrough in 1

depth prediction. However, the generalization ability of deep networks is still limited, and they 2

cannot maintain a satisfactory performance on some inputs. Addressing a similar problem in the 3

segmentation field, a scheme (f-BRS) has been proposed to refine predictions in the inference time. 4

f-BRS adapts an intermediate activation function to each input by using user clicks as sparse labels. 5

Given the similarity between user clicks and sparse depth maps, this paper aims at extending the 6

application of f-BRS to depth prediction. Our experiments show that f-BRS, fused with a depth 7

estimation baseline, is trapped in local optima, and fails to improve the network predictions. To 8

resolve that, we propose a double-stage adaptive refinement scheme (DARS). In the first stage, a 9

Delaunay-based correction module significantly improves the depth generated by a baseline network. 10

In the second stage, a particle swarm optimizer (PSO) delineates the estimation through fine-tuning 11

12

13

14

f-BRS parameters—that is, scales and biases. DARS is evaluated on an outdoor benchmark, KITTI, 
and an indoor benchmark, NYUv2 while for both the network is pre-trained on KITTI. The proposed 
scheme outperformed rival methods on both datasets.

Keywords: depth estimation; optimization; deep learning 15

1. Introduction 16

Dense depth maps play a crucial role in a variety of applications, such as simultaneous 17

localization and mapping (SLAM) [1], visual odometry [2], and object detection [3]. With 18

the advent of deep learning (DL) and its ever-growing success in most fields, DL methods 19

have also been utilized for generating dense depth (DD) maps and have demonstrated a 20

prominent improvement in this field. 21

Depending on the primary input, DL-based depth generation methods can be catego- 22

rized into depth completion and estimation methods. Depth completion methods try to 23

fill the gaps present in input sparse depth (SD) maps [4,5], whereas depth estimation ones 24

attempt to estimate depth for each pixel of an input image [6–10]. Although the results 25

provided by depth completion methods [4,11] are usually more accurate than those from 26

depth estimation ones, they need to be supplied by a remarkably large number of DD maps 27

as targets in the training stage. This is while collecting such data in a real-world application 28

is an expensive and time-consuming task [8,12]. 29

In parallel, depth estimation methods take either SD [13] or DD maps [14,15] as the 30

target during training. Between these two depth estimation approaches, using SD maps 31

usually leads to less accurate results but is more viable than using DD ones. Because 32

SD-based methods only need SD maps which can be provided using a LiDAR sensor and 33

without any need for post-processing or labeling effort. Considering the above issues, 34

depth estimation methods which use sparse depth maps are preferred, especially for most 35

real-world cases in which access to large-enough accurate DD maps is difficult or even 36

impossible. 37

Similar to all DL methods, DL-based depth estimation methods can be categorized into 38

supervised and unsupervised approaches. Supervised ones are more popular because of 39
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their superior performance in depth estimation [14,16]. However, supervised approaches, 40

also named guided depth estimation, suffer from the generalization problem. In other 41

terms, DL models trained on an arbitrary dataset are not able to preserve their satisfying 42

performance neither on unseen data samples nor even on hard seen ones. This problem 43

is more severe in applications such as SLAM and autonomous vehicles, where the test 44

environment is under a constant change. Hence the high variety in input samples leads to 45

accuracy degradation [17]. 46

In the segmentation field, a similar problem, i.e., limited generalization ability, has 47

been alleviated by backpropagating refinement scheme (BRS) [18]. This method has been 48

proposed to optimize an input to a segmentation network based on user clicks. The method 49

performs this process via backpropagating through the whole network; thus, it suffers from 50

the computational burden. To speed up the process, feature BRS (f-BRS) [19] has been pro- 51

posed to only backpropagate through several last layers and optimizes activation responses 52

of an intermediate layer using some introduced parameters. Optimizing those parameters 53

during inference can be viewed as an adaptive approach because an intermediate activation 54

function and indeed the output is adapted to input data. In other words, f-BRS converts 55

the baseline network to a functionally adaptive method, in which the shape of activation 56

function changes in the inference time [20,21]. 57

As user clicks and SD maps are both sparse labels, it seems that the application of the 58

above-mentioned scheme, f-BRS [19], can be generalized to depth estimation. Accordingly, 59

we present an inference-time functionally adaptive refinement scheme for depth estimation 60

networks (see Figure 1). For this purpose, f-BRS [19] is used which can be injected into any 61

DL baseline and adapts the model to hard and unseen environments or different datasets. 62

Nevertheless, f-BRS suffers from two fundamental issues which prevent it from being 63

applicable in depth estimation. The first problem is associated with its nature which cannot 64

manage highly inaccurate products (here, the depth predicted by the network). Since f-BRS 65

has been originally proposed for interactive segmentation [19], where there is often no need 66

for a considerable modification. To resolve this, a sliced Delaunay correction (SDC) module 67

is designed to carry out a correction using SD maps and provide an appropriate initial 68

value for the optimizer. The second problem is that f-BRS is trapped in local optima due to 69

its local optimizer. To address this, f-BRS is equipped with particle swarm optimization 70

(PSO) as a global optimizer [22]. For simplicity, this novel generalization of f-BRS which 71

is applicable to depth estimation is named as double-stage adaptive refinement scheme 72

(DARS), where the first stage is done through SDC and the second stage is conducted by 73

optimizing the f-BRS parameters, i.e., adapting the activation maps. 74

Overall, our contributions can be summarized as: 75

• A novel double-stage adaptive refinement scheme for monocular depth estimation 76

networks. The proposed scheme needs neither offline data gathering nor offline 77

training, because it uses available pre-trained weights. 78

• Introduction of functional adaptation schemes in the field of depth generation, for the 79

first time. 80

• A model-agnostic scheme which can be plugged into any baseline. In this paper, 81

we selected Monodepth2 [23], as one of the most widely used baselines for depth 82

estimation. 83
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Figure 1. Overall performance of the proposed scheme. Keeping the pre-trained weights fixed,
channel-wise scales and biases are applied to an intermediate activation map and are optimized
to improve the predictions for the input dataset. The input dataset can be identical to the training
dataset or a new one.

2. Related Work 84

Here, we initially provide an overview for unsupervised and supervised depth es- 85

timation methods. In the last part, a brief review of functionally adaptive networks is 86

brought. 87

2.1. Unsupervised Depth Estimation Methods 88

These methods use color consistency loss between stereo images [24], temporal ones 89

[25], or a combination of both [23] to train a monocular depth estimation model. Many 90

attempts have been made to rectify the self-supervision by new loss terms like left-right 91

consistency [26], temporal depth consistency [27], or cross-task consistency [28–30]. Of these 92

improvements, Monodepth2 has attracted substantial attention because of the different 93

sets of techniques it has used for modification [23]. To the best of our knowledge, methods 94

in this category have been presented for either outdoor environments, such as the above 95

ones, or indoor environments as in [31]. Not being applicable for both indoor and outdoor 96

datasets can be regarded as a drawback of these methods. Another problem of these 97

methods is that they suffer from low accuracy. 98

2.2. Supervised Depth Estimation Methods 99

The inputs to these methods are only images and they use either DD maps or SD maps 100

as targets. This group can be categorized into DD-based and SD-based methods. Of these 101

two, DD-based ones need DD maps during their training. DD-based methods, like AdaBins 102

[14] and BTS [15], learn based on the error between predicted depth maps and DD maps. 103

The main disadvantage of these methods is their need to DD maps for training. 104

Unlike DD-based methods, SD-based ones use SD maps only. Training data are not 105

an issue for these methods because current robots and mapping systems can capture both 106

images and SD maps simultaneously. The distance between predictions and SD maps are 107

used as loss functions [32–34]. These methods are also known as semi-supervised [35]. 108

2.3. Functionally Adaptive Neural Networks 109

Neural networks are called adaptive when they can adapt themselves to unseen 110

environments i.e., new inputs [36,37]. There are different techniques for designing adaptive 111
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networks, among which weight modification and functional adaptation can be mentioned. 112

The former optimizes the network weights for new inputs while the latter modifies the 113

slope and shape of the activation functions usually through a relatively few number of 114

additional parameters [36]. Functional adaptation can be categorized under activation 115

response optimization methods [38–41], in which the aim is to update activation responses 116

while the network weights are fixed. The reason behind keeping the network weights 117

fixed is to preserve the semantics learned by the network during the training process. 118

On the other hand, one or several activation responses are modified to optimize the 119

performance on inevitable unseen objects and scenes so that the network maintains its 120

proficient performance in constantly-changing environments [19]. 121

The adaptation process can happen in either the training stage [20] or the inference 122

stage for some tasks like interactive segmentation or SLAM that some ground truth (even 123

though sparse) is available on the fly [37]. In addition, the networks can adapt to a 124

sequence of images or a single image. In single-image adaptation, core merit is to optimize 125

the prediction for a specific image or even an object and the adaptation is discarded for the 126

next image [37]. Thus, single-image adaptation can be beneficial specially when scenes are 127

prone to varying significantly. 128

Inspired from the biological neurons, some investigations have been conducted on the 129

adaptive activation functions such as PReLU, which shows that adaptation behaviour in 130

such activation functions can improve the accuracy and generalization of neural networks 131

[20]. In [19], some parameters are introduced to adapt the activation functions to user 132

clicks during the inference of the interactive segmentation task. An adaptive instance 133

normalization layer is proposed in [21] that enables the style transfer networks to adapt to 134

arbitrary new styles with adding negligible computational cost. 135

3. Theoretical Background 136

In this section, some theoretical background needed for understanding the proposed 137

scheme is provided. 138

3.1. Delaunay-based Interpolation 139

The first step of the interpolation is to conduct triangulation. Considering that there 140

are many different triangulations for a given point set, we should obtain an optimal 141

triangulation method avoiding poorly shaped triangles. Delaunay triangulation method 142

has proved to be the most robust and widely-used triangulation approach. This method 143

connects all the neighboring points in a Voronoi diagram to obtain a triangulation [42]. 144

To find the value of any new point by interpolation, its corresponding triangle in which 145

it lies should be identified. Suppose P(x, y) is a new point that belongs to a triangle with 146

vertices of P1(x1, y1), P2(x2, y2) and P3(x3, y3) with the values of z1, z2 and z3, respectively. 147

To linearly interpolate the value z of P, we should fit a plane (Equation (1)) to the vertices 148

P1, P2 and P3. 149

z = ax + by + c (1)

By inserting the known points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) in Equation (1) 150

and solving a linear system of equations, the unknown coefficients (a, b, c) of the plane are 151

estimated. Finally, applying Equation (1) and having (a, b, c), the value z for any arbitrary 152

point P(x, y) is interpolated within the triangle (Figure 2). 153
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Figure 2. Delaunay-based interpolation on a set of points. First, a Delaunay triangulation is done on
the points. Then a plane is fitted to each triangle, and finally the value for points on each of them is
obtained based on the fitted plane.

3.2. PSO 154

PSO is a population-based stochastic optimization technique inspired by the social 155

behavior of birds within a flock or fish schooling [22]. PSO has two main components which 156

need to be specifically defined for each application. One component is the introduction of 157

particles, and the other is an objective function for particle evaluation. 158

Each particle has the potential of solving the problem; this means they must contain 159

all the arguments needed for the problem in question. 160

The velocity and position of each particle are calculated using Equation (2) and 161

Equation (3), respectively [22]. Optimum values of unknown parameters are iteratively 162

updated using the position equation, which is itself dependent on the velocity. 163

Vi(t + 1) = wVi(t) + c1r1(t)[pbesti(t)− Xi(t)] + c2r2(t)[gbesti(t)− Xi(t)] (2)

Xi(t + 1) = Xi(t) + Vi(t + 1) (3)

In Equation (2), Vi(t) is the velocity of a particle i at time t, and pbesti(t) and gbesti(t) 164

are personal and global best positions found by the particle i and all the particles by the 165

iteration t, respectively. The w parameter is an inertia weight scaling the previous time step 166

velocity. Parameters c1 and c2 are two acceleration coefficients that scale the influence of 167

pbesti(t) and gbesti(t), respectively. In addition, parameters r1 and r2 are random variables 168

between 0 and 1 obtained from a uniform distribution. The next position of each particle 169

(Xi(t + 1)) can be calculated using Equation (3). 170

4. Proposed Method 171

Supervised depth estimation methods suffer from the generalization problem. In other 172

words, they usually need to be retrained for achieving a proficient performance on an 173

unseen dataset. To alleviate this, a double-stage adaptive refinement scheme (DARS) is pro- 174

posed to equip pre-trained depth estimation networks with an inference-time optimization 175

for improving the performance on both seen and unseen datasets. The proposed scheme 176

(Figure 3) consists of several components including a deep baseline model, a correction 177

module which applies the first stage of refinement, and an activation optimization as the 178

second stage. The tasks and details of each, and the overall proposed scheme are brought 179

in below. In the following subsections s and d superscripts respectively indicate that depth 180

maps are sparse or dense. 181
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Figure 3. The proposed scheme.

4.1. Baseline 182

Given an input monocular RGB image I ∈ Rw×h×3, we rely on a depth estimation 183

network F : I 7→ Dd
0 to provide us with an initial depth map Dd

0 ∈ Rw×h. The proposed 184

scheme can utilize any monocular depth estimation network. In this study, Monodepth2 185

[23] has been selected as the baseline, as one of most widely used depth estimation networks. 186

The baseline is pre-trained and the weights are kept fixed. 187

4.2. Correction 188

The depth map Dd
0 predicted by the baseline lacks sufficient accuracy, especially for 189

an unseen input. Thus, Dd
0 is not a proper initial value for the optimization stage. As a 190

solution, in the first stage of the proposed refinement scheme, a sliced Delaunay correction 191

(SDC) C : Rw×h 7→ Rw×h is used to correct Dd
0 , using the available sparse depth map Ds. In 192

SDC, first a correction value δds ∈ ∆Ds for any available depth pixel ds ∈ Ds is calculated: 193

δds = ds
0 − ds (4)

where ds
0 ∈ Dd

0 are the pixels in Dd
0 corresponding to the ones in Ds. Then the 194

sparse correction map ∆Ds is divided into three overlapped slices (see Figure 4). Because 195

neighboring pixels are intuitively assumed to share a similar error pattern, and slices can 196

represent a simplistic segmentation based on the error pattern. 197

Figure 4. (a) Delaunay correction (DC), and (b) sliced Delaunay correction (SDC). In DC, the Delaunay-
based interpolation is conducted on the whole sparse correction map. While in SDC, each SD map
is first divided into three slices with overlap, then the correction value (∆Ds) is interpolated using
Delaunay-based interpolation in each of them, independently. In the overlapped areas, the average
of the values coming from the two slices is taken.

In each slice, a Delaunay-based interpolation (see 3.1) J : R2 7→ R is utilized to 198

estimate a dense correction map ∆Dd = J(∆Ds), given the sparse one ∆Ds. For the pixels 199
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in overlapped areas (see Figure 4), the average of the values coming from two adjacent 200

slices is considered as the final depth correction value. As a result of this stage, a corrected 201

depth D̂d = Dd
0 + ∆Dd is generated, yet with marginal errors. 202

4.3. Activation Optimization 203

Given the initial value from the first stage (correction), the core part of network adap- 204

tation is conducted in the second stage. The technique chosen for the network adaptation 205

is to modify an intermediate set of activation outputs [36]. This is usually done by freezing 206

the weights and optimizing some auxiliary parameters. This way, not only are the valuable 207

learned semantics preserved, but also the network can adapt itself to inputs. Inspired from 208

works like f-BRS [19] in interactive segmentation field, we apply channel-wise scale and 209

bias parameters on intermediate features of the baseline network. The scales are initialized 210

to ones and biases to zeros; they are then optimized based on a cost function. To describe 211

the algorithm of the optimization module better, the overall scheme, i.e., from baseline to 212

optimization module is explained, followed by some details about the optimizer. 213

4.3.1. Overall Scheme 214

Given an input RGB image I ∈ Rw×h×3, denote the intermediate feature set as G(I) ∈ 215

Rm×n×c where G : Rw×h 7→ Rm×n×c is the network body and m, n, and c are respectively 216

width, height, and number of channels. The auxiliary parameters, scales S ∈ Rc and 217

biases B ∈ Rc are applied on G(I), and the depth Dd
0 = H(S

⊗
G(I)

⊕
B) is predicted, 218

where H : Rm×n×c 7→ Rw×h is the network head, and
⊗

and
⊕

represent channel-wise 219

multiplication and addition. Afterwards, the correction module C : Rw×h 7→ Rw×h carries 220

out the first refinement stage on Dd
0 and returns D̂d: 221

D̂d = C(Dd
0 , Ds) (5)

The auxiliary parameters X ∈ R2c, i.e, channel-wise scales and biases, are learnable. 222

Therefore, the following optimization problem can be formulated as: 223

L(D̂d(I, X + ∆X), Ds) → min
∆X

., (6)

where ∆X is the corrections applied to the parameters and L is the cost function given 224

to the optimizer. 225

4.3.2. Optimizer 226

The above optimization problem can be given to any type of optimizers. The default 227

optimizer of f-BRS is limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [43,44]. 228

This optimizer , due to its local gradient-based nature, is trapped in local optima. To 229

overcome this problem, L-BFGS is replaced with PSO [22]. PSO iteratively updates scale 230

and bias parameters in each particle based on the below distance loss: 231

L =

√√√√ 1
T

T

∑
i=1

∥∥∥log(d̂s)− log(ds)
∥∥∥, (7)

where T is the total number of pixels with depth values in Ds. 232

5. Experiments 233

In this section, we first briefly describe the datasets used in the experiments. Secondly, 234

the metrics are introduced and after that an ablation study is brought to show the effective- 235

ness of each module. Finally, the results by the proposed scheme are compared with those 236

of the state of the art. 237
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5.1. Datasets 238

Two datasets are used in the experiments, KITTI [45] and NYUv2 [46]. KITTI is a 239

well-known outdoor dataset, on which the baseline is trained. While NYUv2 is an indoor 240

benchmark dataset and the adaptation performance of the scheme is highlighted through 241

testing on that. 242

5.1.1. KITTI 243

KITTI dataset [45] consists of stereo RGB images and corresponding SD and DD 244

maps of 61 outdoor scenes acquired by 3D mobile laser scanners. The RGB images have a 245

resolution of 1241×376 pixels, while the corresponding SD maps are of very low density 246

with lots of missing data. The dataset is divided into 23,488 train and 697 test images, 247

according to [47]. For testing, 652 images associated with DD maps are selected from the 248

test split. A sample data has been brought in Figure 5 for KITTI dataset. 249

5.1.2. NYUv2 250

NYUv2 dataset [46] contains 120,000 RGB and depth pairs having a size of 640×480 251

pixels acquired as video sequences using a Microsoft Kinect from 464 indoor scenes. The 252

official train/test split contains 249 and 215 scenes, respectively. Given that NYUv2 does 253

not contain any SD maps, SD maps with 80% sparsity have been randomly synthesized 254

from DD maps for the experiments of the proposed method. Sample data for NYUv2 255

dataset, including the synthetic SD maps are illustrated in Figure 5. 256

Figure 5. A sample of used datasets.

5.2. Assessment Criteria 257

Assessment criteria proposed by [47] include error and accuracy metrics. The error 258

metrics are root mean square error (RMSE), logarithmic RMSE (RMSElog), absolute relative 259

error (Abs Rel), and square relative error (Sq Rel), whereas the accuracy rate metrics contain 260

δ < 1.25t where t = 1, 2, 3. These criteria are formulated as follows: 261

RMSE =

√
1
T ∑

i∈T
||di − dgt

i ||2, (8)

RMSElog =

√
1
T ∑

i∈T
||log(di)− log(dgt

i )||2, (9)

AbsRel =
1
T ∑

i∈T

di − dgt
i

dgt
i

, (10)
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SqRel =
1
T ∑

i∈T

||di − dgt
i ||2

dgt
i

, and (11)

accuracies = % of di subject to max(
di

dgt
i

,
dgt

i
di

) = δ (12)

where di and dgt
i are the predicted and target (ground truth) depth respectively at the 262

pixel indexed by i, and T is the total number of pixels in all the evaluated images. 263

5.3. Network Architecture 264

As the proposed scheme is by design model agnostic, the network architecture is not 265

the focus of this study. Thus, we used the standard monocular version of Monodepth2 [23] 266

model with the input size of 640 × 192 × 3. 267

5.4. Implementation Details 268

We have used monocular Monodepth2 pre-trained on KITTI as our baseline. The input 269

images were resampled to 640 × 192 and then were fed to the network. The weights were 270

fixed and network was run in inference mode. In SDC, the number of slices were 3 and the 271

overlap between was set to 50%. Moreover, PSO paramters, i.e., c1, c2, number of particles, 272

and number of iterations were respectively set to 0.5, 0.3, 10, and 30 in all the experiments. 273

Also, all the implementations were conducted in PyTorch [48]. 274

5.5. Ablation Studies 275

This ablation study aims to prove the effectiveness of different stages and modules 276

in the proposed scheme. To do this, starting from the baseline, we have enabled the 277

correction and optimization modules in several steps (see Table 1). First of all, the result of 278

Monodepth2 [23] without any kind of post-processing is reported as our baseline. It means 279

that the baseline results are without median scaling by target DD maps. As a result, they 280

suffer from scale ambiguity and low accuracy. In addition, DC is introduced to show the 281

efficacy of slicing in our proposed SDC as the correction module. The difference between 282

SDC and DC is that, in the latter, Delaunay interpolation and correction are carried out on 283

the entire depth maps instead of separately on each slice. For the sake of brevity, these two 284

methods have just been surveyed for KITTI. 285

Table 1. Ablation Study on KITTI and NYUv2.

Dataset Modules Lower is better Higher is better
Baseline Correction Optimizer AbsRel RMSE RMSElog δ1.25 δ1.252 δ1.253

KITTI

Monodepth2 - - 0.996 19.324 5.715 0.000 0.000 0.000
Monodepth2 DC - 0.864 16.888 3.149 0.183 0.330 0.447
Monodepth2 SDC - 0.046 1.676 0.091 0.976 0.991 0.995
Monodepth2 SDC L-BFGS 0.046 1.676 0.091 0.976 0.991 0.995
Monodepth2 SDC PSO 0.024 1.440 0.071 0.985 0.993 0.996

NYUv2
Monodepth2 SDC - 0.018 0.766 0.747 0.972 0.974 0.975
Monodepth2 SDC L-BFGS 0.018 0.766 0.747 0.972 0.974 0.975
Monodepth2 SDC PSO 0.017 0.109 0.044 0.993 0.996 0.999

From Table 1, the worst results on KITTI in terms of all the metrics was recorded by 286

the baseline, which was expected because of scale ambiguity. Using DC as the correction 287

module improved the results by 13% in terms of RMSE, while SDC showed a significantly 288

higher improvement over the baseline by 91%. This not only proves the contribution of 289

the correction module but also indicates the effectiveness of the slicing process in SDC. 290

Moreover, this observation supports the assumption that adjacent pixels in depth maps 291

share a similar error pattern. First because adjacent pixels usually belong to same objects. 292
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Second, the error in LiDAR sensor has a correlation with distance from sensor , and as a 293

result pixels which are in an approximately equal distance to the sensor are likely to have 294

close error magnitudes. From another perspective, the proposed slicing proved to be a 295

simplistic segmentation based on the error pattern and was able to remarkably contribute 296

to the correction stage. 297

According to Table 1, the results obtained when using L-BFGS as the optimizer are 298

equal to ones without optimization on both KITTI and NYUv2 datasets. This means that 299

L-BFGS could not improve the results because, unlike PSO, it does not have the capability 300

for global search. In better words, it seems that it was trapped in local optima, i.e, the 301

depth provided by SDC. Therefore, due to the identical performances and for the sake of 302

conciseness, just one row is dedicated to both SDC and L-BFGS in Figure 6 and Figure 7. 303

304

Figure 6. Visual results related to ablation study of KITTI dataset. Numbers on the right side of error
patterns are in meters.

In the meanwhile, PSO improved the results significantly in terms of all metrics and 305

on both KITTI and NYUv2 datasets. For instance, PSO showed nearly 50% enhancement in 306

AbsRel and 14% in RMSE on KITTI and 6% and 86% respectively in terms of AbsRel and 307

RMSE on NYUv2. 308

If we compare the improvement of PSO over L-BFGS on KITTI and that on NYUv2, it 309

can be observed that the improvement was more remarkable on NYUv2. Thus, considering 310

that the baseline was trained on KITTI, one can conclude that the optimization module with 311

PSO as its optimizer, plays a significant role in the adaptation process. This observation 312

also demonstrated the capability and efficacy of the activation optimization used in the 313

proposed scheme. 314

To conclude, both of the proposed correction and optimization stages in DARS, i.e., 315

SDC and activation optimization using PSO, proved to be effective and led to considerable 316

improvements. Moreover, DARS proved its capability in network adaptation, given its 317

performance on NYUv2. 318
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As is clear from error patterns in Figure 6, related to KITTI and Figure 7 pertaining to 319

NYUv2, the introduction of PSO has led to considerable improvements. The improvements 320

can be specifically observed in more distant pixels which are usually of a higher error 321

magnitude. 322

Figure 7. Visual results related to ablation study of NYUv2 dataset. Numbers on the right side of
error patterns are in meters.

5.6. Comparison with SOTA 323

As is clear from Table 2, DARS outperformed competing methods in terms of almost 324

all assessment criteria except for δ1.252 and δ1.253 . From the perspective of these two criteria, 325

the performance of our method was not as good as the second-place rival. However, DARS 326

led to better performance in terms of δ1.25, which is the primary criterion for accuracy 327

assessment. Although DARS utilizes a self-supervised baseline, Monodepth2, it outper- 328

formed its supervised rivals by a 39% margin in terms of RMSE on KITTI. This confirms 329

the superiority of the proposed DARS even over supervised approaches and in dealing 330

with harder scenes in a seen dataset. 331
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Table 2. Comparative Study on KITTI.

Method Lower is better Higher is better
AbsRel SqRel RMSE RMSElog δ1.25 δ1.252 δ1.253

[49] 0.120 0.789 4.755 0.177 0.856 0.961 0.987

[28] 0.132 0.994 5.240 0.193 0.833 0.953 0.985

[26] 0.114 0.898 4.935 0.206 0.861 0.949 0.976

[23] 0.090 0.545 3.942 0.137 0.914 0.983 0.995

[50] 0.090 0.424 3.419 0.133 0.916 0.984 0.996

[51] 0.060 0.231 2.642 0.094 0.958 0.994 0.999

[14] 0.058 0.190 2.360 0.088 0.964 0.995 0.999

DARS 0.024 0.137 1.442 0.071 0.985 0.993 0.996

Regarding the second dataset, NYUv2, DARS outperformed the competing methods 332

in terms of all criteria according to Table 3. In terms of AbsRel and RMSE, DARS reached 333

improvements of respectively 83% and 70% with respect to the best competing method. 334

Furthermore, this table indicates how the proposed method successfully adapted to an 335

unseen dataset. Note that unlike DARS, the other methods in Table 3 have been trained 336

on NYUv2. Hence, one can deduce that DARS not only could adapt a network to an 337

unseen dataset but also outperformed the methods trained on the exact same dataset. Also, 338

it suggests DARS as a possible alternative to supervised approaches which suffer from 339

complicated generalization problems in practice. This adaptation capability is extremely 340

advantageous in applications with constantly-changing environments such as SLAM, where 341

the scenes are of an unlimited variety and sparse LiDAR maps are available on the fly. 342

Table 3. Comparative Study on NYUv2.

Method Lower is better Higher is better
AbsRel RMSE RMSElog δ1.25 δ1.252 δ1.253

[47] 0.158 0.641 - 0.769 0.950 0.988

[15] 0.110 0.392 0.047 0.885 0.978 0.994

[51] 0.107 0.373 0.046 0.893 0.985 0.997

[14] 0.103 0.364 0.044 0.903 0.984 0.997

DARS 0.017 0.109 0.044 0.993 0.996 0.999

6. Conclusion 343

This paper deals with one of the main problems of available deep learning-based 344

depth estimation networks, which is their limited generalization capability. This problem 345

specifically restricts the practical usage of such models in applications with a constantly- 346

changing environment, such as SLAM. To alleviate this problem, a new double-stage 347

adaptive refinement scheme for depth estimation networks, namely, DARS based on the 348

combination of f-BRS and PSO is proposed in this paper. DARS, here, is injected into 349

Monodepth2 as the baseline and adapts the pre-trained network to each input during 350

inference. Experimental results on KITTI and NYUv2 datasets, demonstrated the efficacy of 351

the proposed scheme not only for KITTI but also for NYUv2, while the baseline model was 352

pre-trained only on KITTI. Although our approach is model agnostic by design, this paper 353

did not explore the effects of using different baselines. In future work, we will therefore 354

replace our unsupervised baseline with other networks, ranging from unsupervised to 355

supervised to investigate the effectiveness of our proposed scheme on different baselines. 356
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