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Abstract: Deep learning, specifically the supervised approach, has proved to be a breakthroughin 1
depth prediction. However, the generalization ability of deep networks is still limited, and they =
cannot maintain a satisfactory performance on some inputs. Addressing a similar problem in the s
segmentation field, a scheme (f-BRS) has been proposed to refine predictions in the inference time. 4
f-BRS adapts an intermediate activation function to each input by using user clicks as sparse labels. s
Given the similarity between user clicks and sparse depth maps, this paper aims at extending the
application of f-BRS to depth prediction. Our experiments show that f-BRS, fused with a depth 7
estimation baseline, is trapped in local optima, and fails to improve the network predictions. To s
resolve that, we propose a double-stage adaptive refinement scheme (DARS). In the first stage,a o
Delaunay-based correction module significantly improves the depth generated by a baseline network. 1o
In the second stage, a particle swarm optimizer (PSO) delineates the estimation through fine-tuning 11
{-BRS parameters—that is, scales and biases. DARS is evaluated on an outdoor benchmark, KITTI, 12
and an indoor benchmark, NYUv2 while for both the network is pre-trained on KITTI. The proposed 13

scheme outperformed rival methods on both datasets. 14
Keywords: depth estimation; optimization; deep learning 15
1. Introduction 16

Dense depth maps play a crucial role in a variety of applications, such as simultaneous 17
localization and mapping (SLAM) [1], visual odometry [2], and object detection [3]. With 1.
the advent of deep learning (DL) and its ever-growing success in most fields, DL methods 1.
have also been utilized for generating dense depth (DD) maps and have demonstrated a =0
prominent improvement in this field. 21

Depending on the primary input, DL-based depth generation methods can be catego- 22
rized into depth completion and estimation methods. Depth completion methods try to  2s
fill the gaps present in input sparse depth (SD) maps [4,5], whereas depth estimation ones 2.
attempt to estimate depth for each pixel of an input image [6-10]. Although the results 25
provided by depth completion methods [4,11] are usually more accurate than those from 2o
depth estimation ones, they need to be supplied by a remarkably large number of DD maps  =-
as targets in the training stage. This is while collecting such data in a real-world application  2s
is an expensive and time-consuming task [8,12]. 20

In parallel, depth estimation methods take either SD [13] or DD maps [14,15] as the 20
target during training. Between these two depth estimation approaches, using SD maps =
usually leads to less accurate results but is more viable than using DD ones. Because s
SD-based methods only need SD maps which can be provided using a LiDAR sensor and s
without any need for post-processing or labeling effort. Considering the above issues, s
depth estimation methods which use sparse depth maps are preferred, especially for most s
real-world cases in which access to large-enough accurate DD maps is difficult or even 6
impossible. 37

Similar to all DL methods, DL-based depth estimation methods can be categorized into s
supervised and unsupervised approaches. Supervised ones are more popular because of 3¢
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their superior performance in depth estimation [14,16]. However, supervised approaches, 4o
also named guided depth estimation, suffer from the generalization problem. In other 4
terms, DL models trained on an arbitrary dataset are not able to preserve their satisfying a2
performance neither on unseen data samples nor even on hard seen ones. This problem s
is more severe in applications such as SLAM and autonomous vehicles, where the test s
environment is under a constant change. Hence the high variety in input samples leads to 45
accuracy degradation [17]. 46

In the segmentation field, a similar problem, i.e., limited generalization ability, has 47
been alleviated by backpropagating refinement scheme (BRS) [18]. This method has been 4=
proposed to optimize an input to a segmentation network based on user clicks. The method 4
performs this process via backpropagating through the whole network; thus, it suffers from  so
the computational burden. To speed up the process, feature BRS (f-BRS) [19] has been pro- s
posed to only backpropagate through several last layers and optimizes activation responses s
of an intermediate layer using some introduced parameters. Optimizing those parameters s
during inference can be viewed as an adaptive approach because an intermediate activation  ss
function and indeed the output is adapted to input data. In other words, f-BRS converts s
the baseline network to a functionally adaptive method, in which the shape of activation e
function changes in the inference time [20,21]. 57

As user clicks and SD maps are both sparse labels, it seems that the application of the  ss
above-mentioned scheme, {-BRS [19], can be generalized to depth estimation. Accordingly, e
we present an inference-time functionally adaptive refinement scheme for depth estimation o
networks (see Figure 1). For this purpose, f-BRS [19] is used which can be injected into any e
DL baseline and adapts the model to hard and unseen environments or different datasets. 2
Nevertheless, {-BRS suffers from two fundamental issues which prevent it from being s
applicable in depth estimation. The first problem is associated with its nature which cannot s
manage highly inaccurate products (here, the depth predicted by the network). Since f-BRS s
has been originally proposed for interactive segmentation [19], where there is often no need s
for a considerable modification. To resolve this, a sliced Delaunay correction (SDC) module &7
is designed to carry out a correction using SD maps and provide an appropriate initial s
value for the optimizer. The second problem is that {-BRS is trapped in local optima due to s
its local optimizer. To address this, f-BRS is equipped with particle swarm optimization 7o
(PSO) as a global optimizer [22]. For simplicity, this novel generalization of f-BRS which
is applicable to depth estimation is named as double-stage adaptive refinement scheme 7
(DARS), where the first stage is done through SDC and the second stage is conducted by 7
optimizing the f-BRS parameters, i.e., adapting the activation maps. 7a

Overall, our contributions can be summarized as: 75

* Anovel double-stage adaptive refinement scheme for monocular depth estimation 7
networks. The proposed scheme needs neither offline data gathering nor offline 7

training, because it uses available pre-trained weights. 78
¢ Introduction of functional adaptation schemes in the field of depth generation, for the 7
first time. 80

* A model-agnostic scheme which can be plugged into any baseline. In this paper, e
we selected Monodepth2 [23], as one of the most widely used baselines for depth e
estimation. 83
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Figure 1. Overall performance of the proposed scheme. Keeping the pre-trained weights fixed,
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channel-wise scales and biases are applied to an intermediate activation map and are optimized
to improve the predictions for the input dataset. The input dataset can be identical to the training
dataset or a new one.

2. Related Work 84

Here, we initially provide an overview for unsupervised and supervised depth es- s
timation methods. In the last part, a brief review of functionally adaptive networks is s
brought. o7

2.1. Unsupervised Depth Estimation Methods a8

These methods use color consistency loss between stereo images [24], temporal ones &
[25], or a combination of both [23] to train a monocular depth estimation model. Many oo
attempts have been made to rectify the self-supervision by new loss terms like left-right o
consistency [26], temporal depth consistency [27], or cross-task consistency [28-30]. Of these 2
improvements, Monodepth?2 has attracted substantial attention because of the different o3
sets of techniques it has used for modification [23]. To the best of our knowledge, methods s
in this category have been presented for either outdoor environments, such as the above s
ones, or indoor environments as in [31]. Not being applicable for both indoor and outdoor s
datasets can be regarded as a drawback of these methods. Another problem of these o7
methods is that they suffer from low accuracy. o8

2.2. Supervised Depth Estimation Methods %

The inputs to these methods are only images and they use either DD maps or SD maps 100
as targets. This group can be categorized into DD-based and SD-based methods. Of these 102
two, DD-based ones need DD maps during their training. DD-based methods, like AdaBins 12
[14] and BTS [15], learn based on the error between predicted depth maps and DD maps. 10
The main disadvantage of these methods is their need to DD maps for training. 108

Unlike DD-based methods, SD-based ones use SD maps only. Training data are not os
an issue for these methods because current robots and mapping systems can capture both 106
images and SD maps simultaneously. The distance between predictions and SD maps are 1o
used as loss functions [32-34]. These methods are also known as semi-supervised [35]. 108

2.3. Functionally Adaptive Neural Networks 109

Neural networks are called adaptive when they can adapt themselves to unseen 1o
environments i.e., new inputs [36,37]. There are different techniques for designing adaptive 11
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networks, among which weight modification and functional adaptation can be mentioned. 112
The former optimizes the network weights for new inputs while the latter modifies the 11
slope and shape of the activation functions usually through a relatively few number of 114
additional parameters [36]. Functional adaptation can be categorized under activation s
response optimization methods [38—41], in which the aim is to update activation responses 116
while the network weights are fixed. The reason behind keeping the network weights 11
fixed is to preserve the semantics learned by the network during the training process. 11
On the other hand, one or several activation responses are modified to optimize the 110
performance on inevitable unseen objects and scenes so that the network maintains its 1z
proficient performance in constantly-changing environments [19]. 121

The adaptation process can happen in either the training stage [20] or the inference 122
stage for some tasks like interactive segmentation or SLAM that some ground truth (even 12s
though sparse) is available on the fly [37]. In addition, the networks can adapt to a 12s
sequence of images or a single image. In single-image adaptation, core merit is to optimize 125
the prediction for a specific image or even an object and the adaptation is discarded for the 126
next image [37]. Thus, single-image adaptation can be beneficial specially when scenes are 127
prone to varying significantly. 126

Inspired from the biological neurons, some investigations have been conducted on the 12
adaptive activation functions such as PReLU, which shows that adaptation behaviour in 130
such activation functions can improve the accuracy and generalization of neural networks = 1s:
[20]. In [19], some parameters are introduced to adapt the activation functions to user is:
clicks during the inference of the interactive segmentation task. An adaptive instance 1ss
normalization layer is proposed in [21] that enables the style transfer networks to adapt to 134

arbitrary new styles with adding negligible computational cost. 135
3. Theoretical Background 136

In this section, some theoretical background needed for understanding the proposed 1
scheme is provided. 138
3.1. Delaunay-based Interpolation 130

The first step of the interpolation is to conduct triangulation. Considering that there 140
are many different triangulations for a given point set, we should obtain an optimal 1
triangulation method avoiding poorly shaped triangles. Delaunay triangulation method  1s2
has proved to be the most robust and widely-used triangulation approach. This method 14
connects all the neighboring points in a Voronoi diagram to obtain a triangulation [42]. 148

To find the value of any new point by interpolation, its corresponding triangle in which 1as
it lies should be identified. Suppose P(x,y) is a new point that belongs to a triangle with 14
vertices of Pj(x1,y1), P2(x2,y2) and Ps(x3,y3) with the values of z1, zp and z3, respectively. e
To linearly interpolate the value z of P, we should fit a plane (Equation (1)) to the vertices 1as
Pl/ Pz and P3. 149

z=ax+by+c 1)

By inserting the known points (x1,y1,21), (X2,Y2,22) and (x3,y3,23) in Equation (1) 1so
and solving a linear system of equations, the unknown coefficients (a, b, c) of the plane are s
estimated. Finally, applying Equation (1) and having (a, b, ¢), the value z for any arbitrary is:
point P(x,y) is interpolated within the triangle (Figure 2). 153
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Figure 2. Delaunay-based interpolation on a set of points. First, a Delaunay triangulation is done on
the points. Then a plane is fitted to each triangle, and finally the value for points on each of them is
obtained based on the fitted plane.

3.2. PSO 154

PSO is a population-based stochastic optimization technique inspired by the social 1ss
behavior of birds within a flock or fish schooling [22]. PSO has two main components which  1se
need to be specifically defined for each application. One component is the introduction of  1s7

particles, and the other is an objective function for particle evaluation. 158
Each particle has the potential of solving the problem; this means they must contain  1s
all the arguments needed for the problem in question. 160

The velocity and position of each particle are calculated using Equation (2) and e
Equation (3), respectively [22]. Optimum values of unknown parameters are iteratively ie

updated using the position equation, which is itself dependent on the velocity. 163
Vi(t+1) = wVi(t) + crri (£) [pbest; (t) — Xi(H)] + cara(8) [ghesti(t) — Xi(H)]  (2)
Xi(t+1) = Xi(t) + Vi(t +1) ®)

In Equation (2), V;(t) is the velocity of a particle i at time ¢, and pbest;(t) and gbest;(t) 1es
are personal and global best positions found by the particle i and all the particles by the 1es
iteration ¢, respectively. The w parameter is an inertia weight scaling the previous time step 166
velocity. Parameters c; and ¢, are two acceleration coefficients that scale the influence of 167
pbest (t) and gbest(t), respectively. In addition, parameters r; and r; are random variables s
between 0 and 1 obtained from a uniform distribution. The next position of each particle 160
(X;(t+ 1)) can be calculated using Equation (3). 170

4. Proposed Method e

Supervised depth estimation methods suffer from the generalization problem. In other 172
words, they usually need to be retrained for achieving a proficient performance on an 17
unseen dataset. To alleviate this, a double-stage adaptive refinement scheme (DARS) is pro- 17
posed to equip pre-trained depth estimation networks with an inference-time optimization 17
for improving the performance on both seen and unseen datasets. The proposed scheme 176
(Figure 3) consists of several components including a deep baseline model, a correction 177
module which applies the first stage of refinement, and an activation optimization as the 17s
second stage. The tasks and details of each, and the overall proposed scheme are brought 17
in below. In the following subsections s and d superscripts respectively indicate that depth  1s0
maps are sparse or dense. 181
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Figure 3. The proposed scheme.

4.1. Baseline 182

Given an input monocular RGB image I € R¥**3, we rely on a depth estimation  1s3
network F : [ — Dg to provide us with an initial depth map Dg € RY*"" The proposed 1s
scheme can utilize any monocular depth estimation network. In this study, Monodepth2  1ss
[23] has been selected as the baseline, as one of most widely used depth estimation networks. 1es
The baseline is pre-trained and the weights are kept fixed. 167

4.2. Correction 188

The depth map Dg predicted by the baseline lacks sufficient accuracy, especially for iee
an unseen input. Thus, Dd is not a proper initial value for the optimization stage. Asa 10
solution, in the first stage of the proposed refinement scheme, a sliced Delaunay correction 10
(SDC) C : R*! y R js used to correct Dg, using the available sparse depth map D°. In 102
SDC, first a correction value 6d° € AD? for any available depth pixel d° € D® is calculated: 103

od° = d5 — d° )

where d§ € Di are the pixels in Df corresponding to the ones in D°. Then the 1os
sparse correction map AD?® is divided into three overlapped slices (see Figure 4). Because 195
neighboring pixels are intuitively assumed to share a similar error pattern, and slices can 106
represent a simplistic segmentation based on the error pattern. 197

Delaunay-based
interpolation
AD* —_—

(2)

Delaunay-based s

B Merging
interpolation 3
—_—

ADS Slicing slices

(b)

Figure 4. (a) Delaunay correction (DC), and (b) sliced Delaunay correction (SDC). In DC, the Delaunay-
based interpolation is conducted on the whole sparse correction map. While in SDC, each SD map
is first divided into three slices with overlap, then the correction value (AD?) is interpolated using
Delaunay-based interpolation in each of them, independently. In the overlapped areas, the average
of the values coming from the two slices is taken.

In each slice, a Delaunay-based interpolation (see 3.1) | : R? + R is utilized to 1es
estimate a dense correction map AD? = J(AD?), given the sparse one AD?. For the pixels 100
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in overlapped areas (see Figure 4), the average of the values coming from two adjacent zoo
slices is considered as the final depth correction value. As a result of this stage, a corrected 201
depth D? = D& + AD? is generated, yet with marginal errors. 202

4.3. Activation Optimization 203

Given the initial value from the first stage (correction), the core part of network adap- 204
tation is conducted in the second stage. The technique chosen for the network adaptation 205
is to modify an intermediate set of activation outputs [36]. This is usually done by freezing 206
the weights and optimizing some auxiliary parameters. This way, not only are the valuable 2o
learned semantics preserved, but also the network can adapt itself to inputs. Inspired from  zos
works like f-BRS [19] in interactive segmentation field, we apply channel-wise scale and 200
bias parameters on intermediate features of the baseline network. The scales are initialized =210
to ones and biases to zeros; they are then optimized based on a cost function. To describe 211
the algorithm of the optimization module better, the overall scheme, i.e., from baseline to 212
optimization module is explained, followed by some details about the optimizer. 213

4.3.1. Overall Scheme 214

Given an input RGB image I € R¥*/*3, denote the intermediate feature set as G(I) € s
R™*1x¢ where G : RY*" s R"*"%¢ is the network body and m, 1, and c are respectively 2
width, height, and number of channels. The auxiliary parameters, scales S € R and a1
biases B € R° are applied on G(I), and the depth D4 = H(S ® G(I) @ B) is predicted, =
where H : R"*"%¢ s R®* jg the network head, and @ and @ represent channel-wise =1
multiplication and addition. Afterwards, the correction module C : R¥*/ s R¥*" carries 220

out the first refinement stage on Dd and returns D?: 221
D? = c(Dg, D*) (5)

The auxiliary parameters X € R2¢ i.e, channel-wise scales and biases, are learnable. 222

Therefore, the following optimization problem can be formulated as: 223
L(D*(I,X + AX),D%) — min.. (6)

where AX is the corrections applied to the parameters and L is the cost function given 224

to the optimizer. 225

4.3.2. Optimizer 226

The above optimization problem can be given to any type of optimizers. The default 227
optimizer of f-BRS is limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [43,44].  22s
This optimizer , due to its local gradient-based nature, is trapped in local optima. To =2z
overcome this problem, L-BFGS is replaced with PSO [22]. PSO iteratively updates scale 230

and bias parameters in each particle based on the below distance loss: 231
L= 4 i Hlog(ds) — log(ds)||, @)
=
where T is the total number of pixels with depth values in D". 232
5. Experiments 233

In this section, we first briefly describe the datasets used in the experiments. Secondly, =234
the metrics are introduced and after that an ablation study is brought to show the effective- 235
ness of each module. Finally, the results by the proposed scheme are compared with those 236
of the state of the art. 237
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5.1. Datasets 238

Two datasets are used in the experiments, KITTI [45] and NYUv2 [46]. KITTIis a =30
well-known outdoor dataset, on which the baseline is trained. While NYUv2 is an indoor 240
benchmark dataset and the adaptation performance of the scheme is highlighted through 24
testing on that. 242

5.1.1. KITTI 243

KITTI dataset [45] consists of stereo RGB images and corresponding SD and DD 24
maps of 61 outdoor scenes acquired by 3D mobile laser scanners. The RGB images have a 245
resolution of 1241x376 pixels, while the corresponding SD maps are of very low density 246
with lots of missing data. The dataset is divided into 23,488 train and 697 test images, 2a
according to [47]. For testing, 652 images associated with DD maps are selected from the 245
test split. A sample data has been brought in Figure 5 for KITTI dataset. 240

5.1.2. NYUv2 250

NYUv2 dataset [46] contains 120,000 RGB and depth pairs having a size of 640x480 25
pixels acquired as video sequences using a Microsoft Kinect from 464 indoor scenes. The 252
official train/test split contains 249 and 215 scenes, respectively. Given that NYUv2 does  2s3
not contain any SD maps, SD maps with 80% sparsity have been randomly synthesized zs
from DD maps for the experiments of the proposed method. Sample data for NYUv2  zss
dataset, including the synthetic SD maps are illustrated in Figure 5. 256

KITTI

RGB

DD

Figure 5. A sample of used datasets.

5.2. Assessment Criteria 257

Assessment criteria proposed by [47] include error and accuracy metrics. The error 2ss
metrics are root mean square error (RMSE), logarithmic RMSE (RMSE,), absolute relative s
error (Abs Rel), and square relative error (Sq Rel), whereas the accuracy rate metrics contain  ze0

6 < 1.25! where t = 1,2, 3. These criteria are formulated as follows: 261
1
RMSE = \/f Y I[d; —df'|2, ®
ieT
1 t
RMSEpg = [ = 3 |llog(di) — log(df") ||, ©)
ieT
1 d;—d¥
AbsRel = — Z L, (10)
T icT d‘,gt
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1 [d; — |2
SqRel = = Y ———1— and (11)
T ieT dft
a8t
accuracies = % of d; subject to max(?lt, j) =4 (12)
ds i

where d; and d;q " are the predicted and target (ground truth) depth respectively at the  ze2
pixel indexed by i, and T is the total number of pixels in all the evaluated images. 263

5.3. Network Architecture 264

As the proposed scheme is by design model agnostic, the network architecture is not  zes
the focus of this study. Thus, we used the standard monocular version of Monodepth2 [23]  ze6
model with the input size of 640 x 192 x 3. 267

5.4. Implementation Details 268

We have used monocular Monodepth?2 pre-trained on KITTI as our baseline. The input  zee
images were resampled to 640 x 192 and then were fed to the network. The weights were 270
fixed and network was run in inference mode. In SDC, the number of slices were 3 and the 27
overlap between was set to 50%. Moreover, PSO paramters, i.e., ¢c1, cp, number of particles, 27
and number of iterations were respectively set to 0.5, 0.3, 10, and 30 in all the experiments. 273
Also, all the implementations were conducted in PyTorch [48]. 274

5.5. Ablation Studies 275

This ablation study aims to prove the effectiveness of different stages and modules 276
in the proposed scheme. To do this, starting from the baseline, we have enabled the =277
correction and optimization modules in several steps (see Table 1). First of all, the result of 27
Monodepth2 [23] without any kind of post-processing is reported as our baseline. It means 279
that the baseline results are without median scaling by target DD maps. As a result, they 2s0
suffer from scale ambiguity and low accuracy. In addition, DC is introduced to show the  ze:
efficacy of slicing in our proposed SDC as the correction module. The difference between  zs:
SDC and DC is that, in the latter, Delaunay interpolation and correction are carried out on  2s:
the entire depth maps instead of separately on each slice. For the sake of brevity, these two  2e4
methods have just been surveyed for KITTL 285

Table 1. Ablation Study on KITTI and NYUv2.

Dataset Modules Lower is better Higher is better
Baseline  Correction Optimizer AbsRel RMSE RMSE),, 6125 01052 0105
Monodepth?2 - - 0.996 19.324 5.715 0.000 0.000 0.000
Monodepth2  DC - 0.864 16.888 3.149 0.183 0.330 0.447
KITTI Monodepth2  SDC - 0.046 1.676 0.091 0.976 0.991 0.995
Monodepth2  SDC L-BFGS 0.046 1.676 0.091 0.976 0.991 0.995
Monodepth2  SDC PSO 0.024 1.440 0.071 0.985 0.993 0.996
Monodepth2  SDC - 0.018 0.766 0.747 0.972 0.974 0.975
NYUv2  Monodepth2 SDC L-BFGS 0.018 0.766 0.747 0.972 0.974 0.975
Monodepth2  SDC PSO 0.017 0.109 0.044 0.993 0.996 0.999

From Table 1, the worst results on KITTI in terms of all the metrics was recorded by  2e6
the baseline, which was expected because of scale ambiguity. Using DC as the correction ze7
module improved the results by 13% in terms of RMSE, while SDC showed a significantly 2es
higher improvement over the baseline by 91%. This not only proves the contribution of 2ss
the correction module but also indicates the effectiveness of the slicing process in SDC. 200
Moreover, this observation supports the assumption that adjacent pixels in depth maps  zs:
share a similar error pattern. First because adjacent pixels usually belong to same objects. 202
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Second, the error in LiDAR sensor has a correlation with distance from sensor , and as a
result pixels which are in an approximately equal distance to the sensor are likely to have
close error magnitudes. From another perspective, the proposed slicing proved to be a
simplistic segmentation based on the error pattern and was able to remarkably contribute
to the correction stage.

According to Table 1, the results obtained when using L-BFGS as the optimizer are
equal to ones without optimization on both KITTI and NYUv2 datasets. This means that
L-BEGS could not improve the results because, unlike PSO, it does not have the capability
for global search. In better words, it seems that it was trapped in local optima, i.e, the
depth provided by SDC. Therefore, due to the identical performances and for the sake of
conciseness, just one row is dedicated to both SDC and L-BFGS in Figure 6 and Figure 7.
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Figure 6. Visual results related to ablation study of KITTI dataset. Numbers on the right side of error
patterns are in meters.

In the meanwhile, PSO improved the results significantly in terms of all metrics and
on both KITTI and NYUv2 datasets. For instance, PSO showed nearly 50% enhancement in
AbsRel and 14% in RMSE on KITTI and 6% and 86% respectively in terms of AbsRel and
RMSE on NYUv2.

If we compare the improvement of PSO over L-BFGS on KITTI and that on NYUv2, it
can be observed that the improvement was more remarkable on NYUv2. Thus, considering
that the baseline was trained on KITTI, one can conclude that the optimization module with
PSO as its optimizer, plays a significant role in the adaptation process. This observation
also demonstrated the capability and efficacy of the activation optimization used in the
proposed scheme.

To conclude, both of the proposed correction and optimization stages in DARS, i.e.,
SDC and activation optimization using PSO, proved to be effective and led to considerable
improvements. Moreover, DARS proved its capability in network adaptation, given its
performance on NYUv2.
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As is clear from error patterns in Figure 6, related to KITTI and Figure 7 pertaining to s
NYUv2, the introduction of PSO has led to considerable improvements. The improvements sz
can be specifically observed in more distant pixels which are usually of a higher error sz
magnitude. 322

=0.5
{0.5,1]
W (1,21
[2!5]
=5
=0.5
I (0.5,1]

N (1,2]

L (2]
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Figure 7. Visual results related to ablation study of NYUv2 dataset. Numbers on the right side of
error patterns are in meters.

5.6. Comparison with SOTA 323

As is clear from Table 2, DARS outperformed competing methods in terms of almost sz
all assessment criteria except for 6; 552 and J; 553. From the perspective of these two criteria, 25
the performance of our method was not as good as the second-place rival. However, DARS sz
led to better performance in terms of 135, which is the primary criterion for accuracy ez
assessment. Although DARS utilizes a self-supervised baseline, Monodepth2, it outper- 2s
formed its supervised rivals by a 39% margin in terms of RMSE on KITTL This confirms sze
the superiority of the proposed DARS even over supervised approaches and in dealing sso
with harder scenes in a seen dataset. 331
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Table 2. Comparative Study on KITTL
[49] 0.120 0.789 4.755 0.177 0.856 0.961 0.987
[28] 0.132 0.994 5.240 0.193 0.833 0.953 0.985
[26] 0.114 0.898 4.935 0.206 0.861 0.949 0.976
[23] 0.090 0.545 3.942 0.137 0.914 0.983 0.995
[50] 0.090 0.424 3.419 0.133 0.916 0.984 0.996
[51] 0.060 0.231 2.642 0.094 0.958 0.994 0.999
[14] 0.058 0.190 2.360 0.088 0.964 0.995 0.999
DARS 0.024 0.137 1.442 0.071 0.985 0.993 0.996

Regarding the second dataset, NYUv2, DARS outperformed the competing methods a2
in terms of all criteria according to Table 3. In terms of AbsRel and RMSE, DARS reached  ss:
improvements of respectively 83% and 70% with respect to the best competing method. s34
Furthermore, this table indicates how the proposed method successfully adapted to an  s3s
unseen dataset. Note that unlike DARS, the other methods in Table 3 have been trained  sse
on NYUv2. Hence, one can deduce that DARS not only could adapt a network to an a7
unseen dataset but also outperformed the methods trained on the exact same dataset. Also, s3s
it suggests DARS as a possible alternative to supervised approaches which suffer from s
complicated generalization problems in practice. This adaptation capability is extremely a0
advantageous in applications with constantly-changing environments such as SLAM, where 34
the scenes are of an unlimited variety and sparse LIDAR maps are available on the fly. 342

Table 3. Comparative Study on NYUv2.

Method Lower is better Higher is better

AbsRel RMSE RMSEjog 0105 01052 01058

[47] 0.158 0.641 - 0.769 0.950 0.988

[15] 0.110 0.392 0.047 0.885 0.978 0.994

[51] 0.107 0.373 0.046 0.893 0.985 0.997

[14] 0.103 0.364 0.044 0.903 0.984 0.997
DARS 0.017 0.109 0.044 0.993 0.996 0.999

6. Conclusion 343

This paper deals with one of the main problems of available deep learning-based :s
depth estimation networks, which is their limited generalization capability. This problem s«
specifically restricts the practical usage of such models in applications with a constantly- sas
changing environment, such as SLAM. To alleviate this problem, a new double-stage s
adaptive refinement scheme for depth estimation networks, namely, DARS based on the s
combination of f-BRS and PSO is proposed in this paper. DARS, here, is injected into s
Monodepth2 as the baseline and adapts the pre-trained network to each input during sso
inference. Experimental results on KITTI and NYUv2 datasets, demonstrated the efficacy of s
the proposed scheme not only for KITTI but also for NYUv2, while the baseline model was  s:
pre-trained only on KITTIL. Although our approach is model agnostic by design, this paper sss
did not explore the effects of using different baselines. In future work, we will therefore sss
replace our unsupervised baseline with other networks, ranging from unsupervised to s
supervised to investigate the effectiveness of our proposed scheme on different baselines.  se
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