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Abstract: A method is proposed for describing the dynamics of systems of interacting particles in1

terms of an auxiliary field, which in the static mode is equivalent to given interatomic potentials,2

and in the dynamic mode is a classical relativistic composite field. It is established that for3

interatomic potentials, the Fourier transform of which is a rational algebraic function of the wave4

vector, the auxiliary field is a composition of elementary fields that satisfy the Klein-Gordon5

equation with complex masses. The interaction between particles carried by the auxiliary field6

is nonlocal both in space variables and in time. The temporal non-locality is due to the dynamic7

nature of the auxiliary field and can be described in terms of functional-differential equations of8

retarded type. Due to the finiteness mass of the auxiliary field, the delay in interactions between9

particles can be arbitrarily large. A qualitative analysis of the dynamics of few-body and many-10

body systems with retarded interactions has been carried out, and a non-statistical mechanisms11

for both the thermodynamic behavior of systems and synergistic effects has been established.12
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1. Introduction16

Currently, theoretical studies of both thermodynamic properties and kinetic pro-17

cesses of many-body systems are carried out mainly on the basis of statistical mechanics18

in the framework of the non-relativistic approximation. In this approximation, the inter-19

action between particles is determined by the potential energy, which depends on the20

instantaneous configuration of the system. As a result, a system consisting of a finite21

number of particles has a finite number of degrees of freedom. The microscopic dynam-22

ics of such a system is described by the deterministic equations of classical mechanics, in23

which there is no difference between the past and the future. However, such a picture24

fundamentally contradicts the thermodynamic behavior of systems observed in reality.25

A variant of resolving this fundamental contradiction by introducing the concept of26

probability was proposed by Maxwell [1–3] and Boltzmann [4,5] within the framework27

of the kinetic theory of gases.28

The decisive contribution to the creation of statistical mechanics was made by29

Gibbs [6], who introduced probability measures in the phase space of many-particle30

Hamiltonian systems. The construction of the molecular-kinetic theory of Brownian31

motion by Einstein [7] and Smoluchowski [8] and its triumphant experimental confirma-32

tion cast aside “almost” all doubts about the applicability of the concept of probability33

in physics. However, here it is appropriate to mention the work [9], in which Ritz and34

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2022                   doi:10.20944/preprints202210.0400.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0002-7850-0086
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202210.0400.v1
http://creativecommons.org/licenses/by/4.0/


2 of 10

Einstein expressed mutually exclusive hypotheses about the nature of the irreversibility35

phenomenon: “Ritz considers the limitation in the form of retarded potentials as one36

of the sources of the second law of thermodynamics, while Einstein suggests that irre-37

versibility based solely on probabilistic grounds”. An encyclopedic article by P. Ehrenfest38

and T. Ehrenfest [10] played an exceptional role in the development of the statistical39

approach in mechanics. In this work, the methods for calculating probabilities and40

distribution functions were not so much justified as illustrated using a large number of41

examples.42

Note that the introduction of probabilistic representations into classical dynamics43

means that the solution of the Cauchy problem for a system of particles is not unique,44

which contradicts the well-known existence and uniqueness theorem for the Hamiltonian45

equations of motion of the system. To eliminate this contradiction, it is necessary to46

introduce an external source that has a non-mechanical nature and affects the dynamics47

of the system. At the end of the 19th – beginning of the 20th century, there were two48

mutually irreconcilable concepts containing such a source:49

• molecular-kinetic mechanistic theory, in which probabilistic assumptions serve as50

such a source (Maxwell, Boltzmann, Gibbs);51

• the concept of energeticism, in which the very existence of atoms was denied,52

and the real world is various manifestations of a single hidden substantial and53

dynamic fundamental principle of the world, called energy (Helm [11], Mach [12],54

Ostwald [13] , Duhem [14]).55

Note that both the probability in the kinetic theory and the mysterious unified56

energy in the concept of energeticism are equally hidden non-mechanical sources, and57

only the experimental proof of the existence of atoms [15] was the reason for the hasty58

rejection of the probability-free versions of the microscopic foundation of thermody-59

namics. Indeed, the existence of atoms does not in any way remove the contradiction60

between the exact results of classical mechanics (the invariance of dynamics with respect61

to time reversal t → −t, the Liouville theorem on the conservation of phase volume, the62

Poincaré recurrence theorem) and the laws of thermodynamics. Therefore, deterministic63

classical mechanics and the concept of probability without establishing the physical64

mechanism of system stochastization mutually exclude each other. In this regard, it65

is appropriate to note the words of R. Newton [16]: “It should be clear by now that66

Maxwell’s introduction of probabilities had opened a can of worms, but there was no67

way of getting them back into the can. ”68

The classical notion that interactions between particles can be described in terms69

of potential energy depending on the instantaneous positions of the particles is limited70

to the realm of non-relativistic physics.In the framework of the relativistic theory, the71

interaction between particles is carried out through the field, so the system of interacting72

particles actually consists of two substances: both particles and the field. Therefore, the73

dynamics of a system of interacting particles must contain:74

1. equations of motion of particles immersed in a field;75

2. equations of the dynamics of the field created by these particles.76

An example of a theory of this type is classical electrodynamics, in which the77

interaction between charged particles is carried out through a vector (electromagnetic)78

field: the field dynamics is described by Maxwell’s equations, and the particle dynamics79

is described by relativistic dynamics [17–19].80

The dynamics of a system of particles interacting through a field is fundamentally81

different from the dynamics of a system of particles with direct instantaneous interactions82

between them. The reasons for this difference are as follows.83

1. Particles and the field are two interconnected subsystems, within each of which84

there are no interactions. In the general case, a subsystem of a Hamiltonian system85

is non-Hamiltonian [20]. Although trajectories in the phase space of a subsystem86

of particles certainly exist, but both the Liouville theorem on the conservation of87
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phase volume and the Poincaré recurrence theorem for a subsystem of particles do88

not hold.89

2. Due to the limited speed of field propagation, the instantaneous forces acting on the90

particles of the system are determined not only by the instantaneous configuration91

of the particles of this system, but also by its entire prehistory. Thus, the field nature92

of interactions between particles leads to the phenomenon of system heredity.93

Starting from 1900 and until recently, several papers have appeared that investigate94

the dynamics of few-body model systems with signs of thermodynamic behavior. First95

of all, Lamb proposed a model of an oscillator attached to an infinite string [21,22] and96

showed that the oscillations of this oscillator are damped. From a modern point of view,97

the Lamb model is an oscillator immersed in a scalar field with an infinite number of98

degrees of freedom. The oscillator energy is irreversibly absorbed by this field.99

Further, in the papers [23–27], several models of two-body systems with delayed100

interactions between particles are investigated. The dynamics of such systems is de-101

scribed by functional-differential equations of retarded type. In all the studied models,102

the irreversibility of the dynamics was established.103

Finally, it was established in the paper [28] that the delay in interactions between104

particles leads to the impossibility of stationary free vibrations of a one-dimensional105

crystal lattice. Depending on the type of the model potential, only two variants of free106

vibrations of a one-dimensional lattice are possible.107

• Damping of oscillations of all atoms and transition of the system to the state of108

rest at large times t → ∞. In this case, in the presence of an alternating external109

field, stationary forced oscillations arise in the system and a dynamic equilibrium110

is reached between the system of atoms and the external field. In essence, such a111

state is nothing but a thermodynamic equilibrium between atoms and the field they112

create.113

• The amplitude of at least part of the oscillations increases indefinitely with time.114

This means the destruction of the lattice.115

Within the framework of this model, the relativistic effect of interaction delay is a non-116

statistical mechanism for establishing dynamic equilibrium in the system “particles +117

field created by them”. This state is identical to thermodynamic equilibrium.118

Thus, the dynamics of a classical system of particles within the framework of the119

field concept of interactions between particles contains the fundamental possibility120

of describing thermodynamic behavior without using probabilistic assumptions that121

cannot be verified in any way.122

2. Field-theoretical representation of interatomic interactions123

As is known, interatomic interactions are of electromagnetic origin and only in the
case of rest they can be described using instantaneous interatomic potentials. Let us
assume that interatomic interactions at rest are described by a two-body central scalar
potential v(r), which can be represented as a Fourier integral:

v(r) =
∫ dk

(2π)3 ṽ(k) ei k r, (1)

where r = |r|, k = |k|.124

2.1. Rational-algebraic model of interatomic potentials125

Assume that the function ṽ(k) for real values of k is bounded and is a rational
algebraic function of k2.

ṽ(k) =
Q2m(k)
P2n(k)

, (m < n), (2)
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where Q2m(k) and P2n(k) are polynomials of degree 2m and 2n, respectively:

P2n(k) =
n

∑
s=0

Cs k2s, Q2m(k) =
m

∑
s=0

Ds k2s, (3)

Cs, Ds are real coefficients.126

Since the function ṽ(k) is bounded for all k, it follows that the polynomial P2n(k)
has no real roots. We restrict ourselves to the case when the multiplicity of each of the
complex roots of this polynomial is equal to one. Then the expansion of the function ṽ(k)
into partial fractions has the form

ṽ(k) =
n

∑
s=1

gs

k2 + µ2
s

, (4)

where gs and µs are, generally speaking, complex parameters, and ±iµs are the roots of127

the polynomial P2n(k).128

The function (4) corresponds to the potential of the form

v(r) =
1

4πr

n

∑
s=1

gs e−µsr, Re µs > 0. (5)

The simplest special case, when all µs are real, was studied in [29]. In this case, all129

the coefficients gs of the expansion (5) are also real and the corresponding interatomic130

potentials v(r) can be represented as a linear combination of Yukawa potentials.131

Consider the general case when the imaginary parts of at least some of the µs are
nonzero

µ±
s = αs ± iβs, βs ̸= 0. (6)

Note that the reality of the potential v(r) implies that each pair of mutually conjugate
parameters µ+

s , µ−
s corresponds to a pair of mutually conjugate parameters g+s , g−s that

satisfy the condition
Im

{
g+s e−µ+

s r + g−s e−µ−
s r
}
= 0. (7)

Thus, the total contribution of each pair of mutually complex conjugate parameters µ+
s

and µ−
s to the total interatomic potential is real and has the form

vs(r) =
1

4πr
e−αsr(As cos(βsr) + Bs sin(βsr))

=

√
A2

s + B2
s

4πr
e−αsr sin(βsr + ψs),

(8)

where As and Bs are real parameters related to g±s by the relation

g±s =
1
2
(As ± iBs). (9)

In this case, at least some of the contributions to the total interatomic potential
are oscillating (sinusoidal) potentials whose amplitudes Cs decrease according to the
Yukawa law:

Cs =

√
A2

s + B2
s

4πr
e−αsr. (10)

Thus, the total static interatomic potential v(r), whose Fourier transform ṽ(k) is a
rational algebraic function of the square of the wave vector k2 = |k|2, can be represented
as a linear combination of elementary potentials vs(r):

vs(r) =
gs

4πr
e−µsr, Re µs > 0. (11)
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For Im µs = 0 the corresponding elementary potential vs(r) is a Yukawa potential. For
Im µs ̸= 0 the corresponding contribution to the total interatomic potential consists of
pairs of mutually complex conjugate elementary potentials of the form

v±s (r) = g±s e−(αs±iβs)r, g+s =
(

g−s
)∗. (12)

Each of the elementary potentials satisfies the equation(
∆ − µ2

s

)
vs(r) = 0. (13)

2.2. Transition from interatomic potentials to field equations132

In the paper [29] the notion of an auxiliary field φ(r, t) is introduced, which in the133

static case (i.e. for particles at rest) coincides with the interatomic potential v(r), and134

in the dynamic case describes the interaction between particles in terms of the classical135

relativistic field.136

The transition from the static field v(r) to the dynamic relativistic field φ(r, t) is
carried out in the field equations by replacing the Laplace operator ∆ to the d’Alembert
operator □ [29–31]

∆ =⇒ □ = ∆ − 1
c2

∂2

∂t2 . (14)

Applying this procedure to elementary potentials vs(r) leads to the Klein-Gordon-Fock
equation for elementary auxiliary fields φs(r, t)(

□− µ2
s

)
φs(r, t) = 0. (15)

Thus, the real auxiliary relativistic field, in terms of which the interaction between137

particles is described, is a linear combination of, generally speaking, complex elemen-138

tary fields φs(r, t), each of which is characterized by the complex parameter µs and is139

described by the corresponding equation (15).140

As a result, the system of interacting particles is a union of two subsystems.141

1. Subsystem consisting of particles between which there is no direct interaction. The142

impact of some particles on others is carried out only through the field created by143

them.144

2. A subsystem consisting of an auxiliary composite field without direct self-action.145

The influence of the field at some points on the field at other points is carried out146

only through particles. Regardless of the number of particles in the system, the147

auxiliary field has infinitely many degrees of freedom.148

2.3. Green’s functions of elementary fields and an abundance of interaction retardations149

The Green function of the Klein-Gordon operator L̂s = □− µ2
s is defined by the

equation (
□− µ2

s

)
Gs

(
r − r′, t − t′

)
= −δ

(
r − r′

)
δ
(
t − t′

)
(16)

and has the well-known form [32,33]

Gs
(
r − r′, t − t′

)
=

δ
(

t − t′ − |r−r′ |
c

)
4π|r − r′|

−θ

(
t − t′ − |r − r′|

c

)
cµs

J1

(
µs

√
c2(t − t′)2 − |r − r′|2

)
4π

√
c2(t − t′)2 − |r − r′|2

,

(17)

where θ(t) is the Heaviside step function, J1(x) is the Bessel function.150
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Hence follows the retarded potential of the Klein-Gordon field [33]

φs(r, t) =
∫

dr′
[

ρ
(

r′, t − |r−r′ |
c

)
4π|r − r′|

−µs

∞∫
0

ρ

(
r′, t − 1

c

√
ξ2 + |r − r′|2

)
J1(µsξ)

4π

√
ξ2 + |r − r′|2

dξ

]
,

(18)

where ρ(r, t) is the instantaneous microscopic density of the number of particles (atoms):

ρ(r, t) = ∑
a

δ(r − ra(t)). (19)

The formula (18) contains two types of interaction delays between the points r and r′.151

1. A uniquely defined delay that corresponds to a wave propagating at the speed of
light c

τ1 =
|r − r′|

c
. (20)

2. An infinite set of delays

τ2(ξ) =

√
ξ2 + |r − r′|2

c
≥ τ1, (0 < ξ < ∞), (21)

depending on the parameter ξ and corresponding to Klein-Gordon waves prop-152

agating with all velocities from 0 up to c. Note that the delay τ2(ξ) can take on153

arbitrarily large values, which means that the arbitrarily distant past of the system154

has a direct influence on its evolution at the current time.155

Thus, the connection between the evolution of the relativistic auxiliary field φ(r, t)156

and the dynamics of the system of particles generating this field is nonlocal both in space157

variables and in time. Therefore, the interaction between particles carried through the158

auxiliary field is also nonlocal. Temporal nonlocality is due to the dynamic nature of159

the auxiliary field and can be described in terms of functional-differential equations160

of retarded type. It is essential that, according to the relation (21), the delay time of161

interactions between particles can be arbitrarily large.162

Note that the system of particles with delayed interaction is not Hamiltonian.163

Therefore, many exact results of Hamiltonian mechanics (for example, the Liouville164

theorem on the conservation of the phase volume, the recurrence Poincaré theorem,165

etc.), which greatly simplify the qualitative analysis of Hamiltonian systems, do not166

take place in the dynamics of systems with retarded interactions. Moreover, even the167

Cauchy problem for the equations of dynamics of systems with delayed interactions is168

generally not correct, since the solution of this problem depends not only on the state of169

the system at the initial moment of time, but also on its entire prehistory (the hereditary170

effect). In this regard, it is relevant to analyze the qualitative properties of solutions to171

the equations of dynamics of systems with delayed interactions between particles.172

3. Qualitative analysis of system dynamics within the framework of the field form of173

interactions between particles174

3.1. Two body problem175

Consider a model of a system consisting of two particles interacting through the
Klein-Gordon field φ(r, t) with parameters

µ± = α ± iβ. (22)
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The static potential in this case has the form (8)

v(r) =
A

4πr
e−αr sin(βr + ψ) (23)

and has infinitely many minimum points separated from each other by maximum points.176

We restrict ourselves to an analysis of the one-dimensional dynamics of this system177

along the straight line connecting the particles. In the framework of the non-relativistic178

theory, each of the minimum points of the potential is a point of stable equilibrium. In179

sufficiently small neighborhoods of each of the minima of the potential, the dynamics of180

the system is "almost" harmonic stationary oscillations.181

In the framework of the relativistic theory, there are also infinitely many static182

equilibrium states in which the distances between particles coincide with the minimum183

points of the static potential (23). However, as shown in paper [27], in a system of two184

particles with delayed interactions between them, all equilibrium states are unstable.185

The fact is that the delay in the interaction between particles leads to the impossibility186

of stationary harmonic oscillations in the vicinity of a minimum point: infinitely many187

non-stationary oscillations appear in the system. In this case, the amplitude of at least188

part of these oscillations increases with time. Thus, the minimum point of the static189

interparticle potential, which in the framework of non-relativistic dynamics is a point190

of stable equilibrium, ceases to be such in the framework of the relativistic theory: an191

arbitrarily small initial perturbation at small times leads to the excitation of multiple192

harmonics with both increasing and decreasing amplitudes.193

The picture of the dynamics of a two-particle system with a multi-well static poten-194

tial of type (23) is incomparably more varied than that of a system with one minimum.195

Let, at the initial moment of time, the system be in the vicinity of some point of mini-196

mum of the static potential (23). In the vicinity of this point, there are infinitely many197

non-stationary oscillations with both increasing and decreasing amplitudes. In the case198

of a multi-well static potential of type (23), the system inevitably leaves the vicinity of199

the initial minimum point and ends up in the vicinity of the neighboring minimum.200

Note that the amplitude of spatial oscillations of the static potential (23)

C(r) =
A

4πr
e−αr (24)

is a monotonic function of the coordinate r, and the distances between the points of201

neighboring minima of the potential differ little from each other. Therefore, there is a202

predominant direction of jumps of the system between the points of minima of the static203

potential v(r): this is the removal of particles from each other, i.e. r → ∞.204

However, the situation changes significantly if the total static potential contains205

the sum of at least two potentials of type (23) with complex parameters µ±
1 and µ

pm
2206

(µ±
1 ̸= µ±

2 ), respectively. In this case, the distribution of points of minima of the static207

potential becomes rather irregular, and jumps between neighboring minima become208

chaotic-like. As an example, Figure 1 shows a qualitative view of a static potential, which209

is the sum of two elementary potentials of the form (23). The set of potential minima in210

this figure is divided into groups separated from each other by relatively high barriers.211

All jumps of the two-body system between the minima of one group occur more212

frequently than jumps between different groups. This leads to the appearance of a213

hierarchy of times in the dynamics of even a two-particle system and has signs of a214

synergistic effect.215

3.2. Dynamics of a one-dimensional crystal and the establishment of (thermo)dynamic216

equilibrium217

Similar phenomena take place in the dynamics of the harmonic model of a one-218

dimensional crystal with retarded interactions between particles [28]. In this crystal219

model, all frequencies of oscillations are complex, and therefore stationary free oscilla-220
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Figure 1. Qualitative representation of a static potential, which is the sum of two elementary
potentials of the form (23).

tions of the system are impossible. Therefore, within the framework of the relativistic221

dynamics of a harmonic crystal at t → ∞, only two scenarios of system evolution are222

possible.223

1. The amplitudes of all free oscillations tend to zero with time. In this case, the224

energy of the oscillating particles is transferred to the field through which the225

particles interact. In the absence of a boundary, the field vanishes to infinity, taking226

energy with it. All free vibrations stop. If the system of particles is placed in a box227

with impenetrable boundaries for the field, then the field returns to the particles228

as a force leading to forced stationary oscillations of the particles. This example229

illustrates a probability-free dynamic mechanism for establishing thermodynamic230

equilibrium in a system.231

2. Amplitudes of at least part of oscillations of the crystal increase. In this case,232

the crystal structure is rearranged, the description of which inevitably requires233

going beyond the limits of the harmonic model. This phenomenon has signs of a234

synergistic effect.235

3.3. A rather amusing example: is confinement possible in classical relativistic dynamics?236

Note that a function of the form (11) formally satisfies the equation (13) not only237

under the condition Re µs > 0, but also under the opposite condition Re µs < 0. The238

second option is usually not considered, assuming that the static inter-particle potential239

vs(r) must tend to zero as r → ∞. However, the concept of a potential that does not tend240

to zero at infinity is actively used, for example, in quantum chromodynamics to describe241

the phenomenon of quark trapping.242

Consider a static potential of the type (11) for Re µs < 0 as applied to the field form
of interactions in classical systems

v(r) =
C

4πr
eαr, α > 0. (25)

We note the attractive properties of this potential.243

• The dynamic field corresponding to this static potential satisfies the Klein-Gordon244

equation and is therefore relativistic.245
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• This field is capable of ensuring the stability of a complex consisting of a finite246

number of particles within the framework of the non-relativistic approximation.247

However, the direct use of this potential encounters very significant and yet unsur-248

mounted difficulties, which are as follows.249

• When studying the oscillations of a two-particle system in the framework of the250

relativistic theory, as is known, the complexity of the roots of the characteristic251

equation leads to the impossibility of stationary oscillations and the loss of stability252

of the system.253

• On the other hand, the infinite distance of particles from each other is hindered254

by the unlimited growth of the potential at r ≫ α−1. Unfortunately, a qualitative255

analysis of the behavior of the system under the condition r ≳ α−1 encounters256

obvious fundamental difficulties.257

4. Discussion and conclusion258

The main principles underlying this work are as follows.259

1. A rigorous microscopic substantiation of both thermodynamics and kinetic theory,260

based only on classical Newtonian mechanics, does not currently exist.261

2. Interatomic interactions are of field origin. Therefore, any real system consists262

of particles and a field generated by these particles and transmitting interactions263

between these particles.264

3. In the case of atoms at rest, the interaction between them can be described by265

interatomic potentials. But in the case of moving atoms, the interaction is described266

in terms of an auxiliary scalar relativistic field.267

4. The auxiliary scalar field is a superposition of elementary fields, each of which268

is characterized by its own generally speaking complex mass and satisfies the269

Klein-Gordon equation. Parameters of elementary fields are uniquely expressed270

through the characteristics of static interatomic potentials.271

5. Due to the finiteness of the masses of elementary fields, the propagation velocity272

of the Klein-Gordon fields can take on any values that are less than the speed of273

light. This leads to the fact that the delay of interactions between particles can reach274

arbitrarily large values.275

6. Retardation of interactions between particles is a real physical mechanism leading276

to the irreversibility of the dynamics of both many-body and few-body systems.277

Thus, there is no need to use any probabilistic assumptions for the microscopic278

justification of both thermodynamics and kinetics.279

Thus, the following are planned as future areas of research:280

• The development of a non-statistical dynamic mechanism of irreversible thermody-281

namic equilibrium in three-dimensional crystal structures is a generalization of our282

results [28] obtained for one-dimensional lattices.283

• Development of a mathematical apparatus for the theoretical study of the processes284

of restructuring of the structure of microheterogeneous condensed systems.285

• Search for methods for constructing microscopic thermodynamics and kinetics of286

small systems.287
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