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Abstract: Semantic communication is not obsessed with improving the accuracy of transmitted 
symbols, but is concerned with expressing the desired meaning that the symbol sequence exactly 
carried. However, the generation and measurement of semantic messages are still an open problem. 
Expansion combines simple things into complex systems and even generates intelligence, which 
is consistent with the evolution of the human language system. We apply this idea to semantic 
communication system, quantifying and transmitting semantics by symbol sequences, and investigate 
the semantic information system in a similar way as Shannon did for digital communication systems. 
This work was the first to propose the concept of semantic expansion and knowledge collision, which 
may provide a new paradigm for semantic communications. We believe that expansion and collision 
will be the cornerstone of semantic information theory.

Keywords: semantic information theory; semantic communications; information theory; 6G; game 
theory 12

1. Introduction and Overview 13

Shannon’s information theory [1] answers two fundamental questions in digital com- 14

munication theory [2]: the ultimate data compression rate (answer: the entropy H) and 15

the ultimate reliable transmission rate of communication (answer: the channel capacity 16

C). It addresses technical problems in communication systems, enabling it to receive the 17

same symbols as the sender. However, with the ever-increasing demand for intelligent 18

wireless communications, the communication architecture is evolving from only focusing 19

on technical level to intelligent interconnection of everything [3]. Weaver [4] categorized 20

communications into three levels about 70 years ago: 21

Level A. How accurately can the symbols of communication be transmitted? (The 22

technical problem.) 23

Level B. How precisely do the transmitted symbols convey the desired meaning? (The 24

semantic problem.) 25

Level C. How effectively does the received meaning affect conduct in the desired way? 26

(The effectiveness problem.) 27

Recently, semantic information theory including semantic communications has at- 28

tracted much attention. One reasonable and feasible measure of semantic messages is 29

still an open problem, which may be the greatest challenge for the new developments 30

of semantic communication (SC) systems. On the other hand, currently in 6G networks, 31

intelligent interconnections of everything will bring the conventional paradigm to the 32

communication mode with higher requirements of semantic interaction. In this regard, 33

finding a way to quickly reflect the semantic processing of messages from the sender and 34

the receiver will become one more promising pathway to the 6G intelligent networking 35

systems. 36
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This paper proposes a new communication system based on information framework 37

expansion and knowledge collision, by extending Shannon’s theory of communication 38

(Level A) to a theory of semantic communication (Level B). Our work is initially influenced 39

by Jinho and Jihong [5], with new contributions in the following: 40

• We generalize the work of Jinho and Jihong from single fixed semantic type to semantic 41

dynamically scaling up mode, referred to as expansion, and get the idea of knowledge 42

collision, which can reflect the asynchronous knowledge update process of the sender 43

and the receiver in some degree. In addition, we also take into account the effect of 44

channel noise on the model. 45

• We present a new measure related to the semantic communication system based on 46

semantic expansion and knowledge collision, called Measure of Comprehension and 47

Interpretation, which can measure the semantic entropy of discrete sources. 48

• We discuss the additional gains from expansion and demonstrate that knowledge 49

matching of its asynchronous scaling up plays a key role in semantic communications. 50

As a primary work, the system proposed in this paper only focuses on the discrete 51

cases and makes some drastic simplifications. Moreover, we are not concerned with the 52

effective problem (Lever C), which is beyond the scope of this paper. However, we believe 53

that these simplifications are necessary for us to focus on the "core" issues, and that even 54

this model may form a foundation for a general semantic information theory. To the best of 55

our knowledge, this is the first study to explore the semantic expansion and asynchronous 56

scaling up of semantic knowledge. The insights gained from this work may be of assistance 57

to the future intelligent semantic communication system and 6G. 58

The rest of this paper is organized as follows. Section 2 introduces the related work 59

of semantic communications. It summarizes key concepts and conclusions of Shannon’s 60

information theory and semantic information theory. In Section 3, we present the gener- 61

alized model of semantic communication from two aspects, one is trying to setup a close 62

relationship with Shannon communication model, and the other is trying to find the feasible 63

modification of the model so that it can exactly reflect the quickly surging of semantic 64

communications from the user requirements. In Section 4, we lay out the implementation 65

details of the simulation and discuss the experimental results. Finally, we conclude the 66

paper in Section 5. 67

2. Related Work 68

In this section, we introduce the framework of semantic information theory, especially 69

the key concept, semantic entropy. It will then go on to the work that we are concerned 70

with, semantic communication as a signaling game with correlated knowledge bases. 71

2.1. Preliminaries 72

Although Shannon’s information did not address the semantic problem of communi- 73

cations, it provided important insights on the message processing techniques associated 74

with the focus of both the sender and the receiver’s attention. Thus, in this subsection, we 75

briefly introduce the main concepts and theorems in Shannon’s information theory. 76

Entropy. It is a measure of the uncertainty of a random variable [2]. The entropy H(X)
of a discrete random variable X with probability distribution p(x), is defined as

H(X) = − ∑
x∈X

p(x) log p(x). (1)

Mutual information. It is a measure of the amount of information that one random
variable contains about another. Mutual information can be seen as the reduction in the
uncertainty of one random variable due to the knowledge of the other. Consider two
random variables X and Y with a joint probability mass function p(x, y) and marginal
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probability mass functions p(x) and p(y), the mutual information between X and Y is
defined as

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y)
p(x, y)

p(x)p(y)
. (2)

Channel capacity. The channel capacity is the maximum of mutual information with
given the conditional transit probability from X to Y, p(y|x). It is defined by

C = max
p(x)

I(X; Y), (3)

where X and Y are the input and output of the channel, respectively. 77

Source coding theorem. As N → ∞, N i.i.d. (independent identically distribution) 78

random variables with entropy H(X) can be compressed into more than NH(X) bits to 79

represent them completely, that is, the information loss can be negligible in the viewpoint of 80

Shannon’s information theory. Conversely, if they are compressed into fewer than NH(X) 81

bits to represent them, there will be a loss of information certainly. 82

Channel coding theorem. For a discrete memoryless channel, all rates below capacity 83

C are achievable. Conversely, any sequence of codes with negligible error must have obey 84

the rule, its transmission rate is not greater than the channel capacity, R ≤ C. 85

2.2. Semantic Information Theory 86

Carnap and Bar-Hillel [6] were the first to propose the concept of semantic information
theory, using logical probability rather than statistical probability to measure the semantic
entropy of a sentence. It’s necessary here to clarify exactly that we use p and m to denote
statistical probability and logical probability in this paper, respectively. The logical proba-
bility of a sentence is measured by the likelihood that the sentence is true in all possible
situations [7]. Then, the semantic information of the message e is defined as

HS(e) = − log2(m(e)), (4)

where m(e) is the logical probability of e. However, this metric led to a paradox that any 87

fact has an infinite amount of information when it contradicts itself, i.e., HS(e ∧ ¬e) = ∞. 88

Floridi [8] solved the paradox in Carnap and Bar-Hillel’s proposal [6], adopting the relative 89

distance of semantics to measure the amount of information. 90

Bao et al. [7] defined semantic entropy of a message x as

HS(x) = − log2(m(x)), (5)

where the logical probability of x is given by

m(x) =
µ(Wx)

µ(W)
=

∑
w∈W,w|=x

µ(w)

∑
w∈W

µ(w)
(6)

Here, W is the symbol set of a source, |= is the proposition satisfaction relation, and Wx is 91

the set of models for x. In addition, µ is a probability measure, ∑
w∈W

µ(w) = 1. 92

Besides logical probability, there are some definitions of semantic entropy based 93

on different backgrounds [9][10]. D’Alfonso [11] utilized the notion of truthlikeness to 94

quantify semantic information. Kolchinsky and Wolpert [12] defined semantic entropy 95

as the syntactic information that a physical system has about its environment which is 96

causally necessary for the system to maintain its own existence. Kountouris and Pappas 97

[13] advocated for assessing and extracting the semantic value of data at three different 98

granularity levels: microscopic scale, mesoscopic scale and macroscopic scale. 99

Analogous to Shannon’s information theory, some related theories at the semantic
level, such as semantic channel capacity, semantic rate distortion and information bottleneck
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[14], are also being explored. Based on (5), Bao et al. further proposed semantic channel
coding theorem [7]. For every discrete memoryless channel, the channel capacity

CS = sup
P(X|W)

{I(X; Y)− HKS ,IS(W|X) + HS;Kr ,Ir (Y)}, (7)

has the following property: For any ϵ > 0 and R ≤ CS, there is a block coding strategy such 100

that the maximal probability of semantic error is ≤ ϵ. I(X; Y) is the mutual information 101

between the input X of the channel and the output Y of the channel, HKS ,IS(W|X) is the 102

equivocation of the semantic encoder, given the sender’s local knowledge KS and inference 103

procedure IS. HS;Kr ,Ir (Y) = ∑y p(y)Hs(y) is the average information of received messages, 104

given the receiver’s local knowledge KS and inference procedure IS. 105

Moreover, H. Vincent Poor [15] formulated the rate-distortion in semantic communica-
tion as

R(Ds, Dw) = min I(W; X̂, Ŵ) (8)

where Ds is the semantic distortion between source, X, and recovered information, X̂, at the 106

receiver. Dw is the distortion between semantic representation, W, and received semantic 107

representation, Ŵ. 108

In recent years, the fusion of semantic communication algorithms and learning theory 109

[16–19] is also driving the continuous development of the communication architecture. 110

Although these explorations did not fully open the door to semantic communication, they 111

provided us important insights to move forward theoretically. 112

2.3. Semantic Communication as a Lewis Signaling Game with Knowledge Bases 113

Jinho and Jihong [5] proposed a SC model based on the Lewis signaling game, which 114

derived some interesting results. This work really gives us some motivations to conduct 115

this work in some degree. Further, we make a generalization of this model with adding the 116

asynchronous knowledge scaling up updates of the sender and the receiver, which may 117

close to the real semantic communications in the era of intelligent communication. Thus, 118

we briefly re-describe it. 119

Suppose there is a semantic communication system where Alice is the sender and Bob 120

is the receiver. Let T ∈ T denote the semantic type that includes semantic information or 121

messages. Alice wishes to transmit T to Bob by sending a signal S ∈ S , and Bob chooses 122

its response R ∈ R. Both Alice and Bob utilize their local knowledge bases KA and KB, 123

respectively. The semantic architecture can be described as 124

KA KB

↓ ↓
T → S → R (= T̂).

If R = T, one communication process can be successful. Moreover, the reward for one
communication is defined as:

u =

{
1, if R = T;

0, otherwise.
(9)

Our object is to maximize the average reward. We use the success rate of semantic agreement 125

(SRSA) to represent it. 126

The knowledge base can be regarded as the side information. Alice has her knowledge 127

base KA. The instance of Alice’s knowledge base at each time is KA ∈ KA, which affects 128

the generation of semantic types. On the other hand, Bob has his knowledge base KB and 129

its instance is KB ∈ KB. KB is the "core", used to infer the intended message together with 130

the received signal. 131

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2022                   doi:10.20944/preprints202210.0399.v1

https://doi.org/10.20944/preprints202210.0399.v1


5 of 13

Based on these foundations, Jinho and Jihong [5] derived some interesting results. 132

On the one hand, the similarity of the two knowledge instances plays a crucial role in 133

SC. With a limited bandwidth, the communication quality is regulated by I(KA; KB|S). 134

On the other hand, the SRSA is dependent on the similarity of the two communication 135

parties’ knowledge. However, it did not clearly setup the close relationship with Shannon’s 136

communication model. In this work, we will make a generalization of the model by adding 137

the asynchronous knowledge scaling up updates of the sender and the receiver, which 138

may closely reflect the quickly surging of semantic communications in many scenarios of 139

applications. 140

3. Semantic Communication Models 141

In this section, we will present the generalized model of semantic communication 142

from two different aspects, one is trying to setup a close relationship with Shannon com- 143

munication model, and the other is trying to find the feasible modification of the model so 144

that it can exactly reflect the quickly surging of semantic communications from the user 145

requirements. In this regard, we first setup a basic model, and then to extend it by adding 146

the knowledge base update functional mode with information framework expansion and 147

knowledge collision. 148

3.1. Motivation 149

Shannon’s communication system is concerned with the accurate transmission of 150

symbols over channels. However, it does not take into account the differences in the 151

knowledge backgrounds of two parties, which affect whether the communication can 152

convey the desired meaning. In other words, the matching of knowledge can also be 153

treated as another special channel, although it may not actually exist in an explicit form. 154

In this work, we denote it as a virtual channel. We want to fill this gap and propose an 155

intelligent communication system with coexistence of the real channel and virtual channel, 156

making information theory more complete. Thus, we consider not only the physical channel 157

for symbol transmission, but also the virtual channel for the transfer of knowledge between 158

two parties. Moreover, the knowledge of both parties is also evolving, so we take into 159

account the asynchronous knowledge scaling up updates and semantic expansion. 160

3.2. Basic Model 161

Let us first observe the channel, which is the physical medium of message exchange, 162

and play the key role in the model setup of a complete semantic communication system. A 163

communication channel is a system in which the output depends on probabilistically on its 164

input [2]. For simplification, we still use Alice and Bob as the two parties participating in 165

the communication. Suppose Alice and Bob are at opposite ends of a memoryless channel, 166

which can transmit physical signals. The channel is said to be memoryless if the probability 167

distribution of the output depends only on the input at that time and is conditionally 168

independent of previous inputs or outputs. That is, the output of the channel is only related 169

to the input at the current moment and no any feedback processing is considered here.. 170

We use S and Ŝ to represent the input and output of the channel. Under the interference 171

of the noise, the signal S becomes Ŝ through channel transmission. Specifically, Alice 172

observes the input S of the channel, and Bob observes the output Ŝ. Let KA and KB 173

represent the knowledge instance possessed by Alice and Bob, respectively. On the one 174

hand, Alice encodes S as T with KA. This means that Alice uses the knowledge instance 175

KA to process the signal S, resulting in the semantic type T, i.e., (S, KA)→ T. On the other 176

hand, Bob decodes Ŝ into the response R with KB, which can be expressed as (Ŝ, KB → R). 177

The architecture of this process can be expressed as 178
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T ← S
(a)−→ Ŝ → R (= T̂)

↑ ↑

KA
(b)
99K KB

(10)

We denote the process (S, KA)→ T as semantic encoding and (Ŝ, KB)→ T̂ as semantic 179

decoding. They indicate the understanding of meaning at the semantic level by both parties. 180

The definitions of symbols are summarized as: 181

• Semantic Types: T = tk, k = 1, . . . , |T |, is a random variable that is generated by Alice. 182

• Signals: S = sl , l = 1, . . . , |S|, is a signal that Alice sends to Bob. 183

• Responses: R = rn, n = 1, . . . , |R|, is a response that Bob chooses. 184

• Knowledge instances: KA ∈ KA and KB ∈ KB represent the knowledge instance used 185

by Alice and Bob when semantic encoding and decoding, respectively. 186

Under the knowledge instance KA and KB, the mutual information between T and T̂
is given by

I(T; T̂) = I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S) (11)

where I(KA; KB|S, Ŝ), I(S; KB|Ŝ) and I(Ŝ; KA|S) represent the conditional mutual informa- 187

tion. 188

Proof. Since (S, KA) → T and (Ŝ, KB) → T̂, we have H(T) = H(KA, S) and H(T̂) =
H(KB, Ŝ). By the characteristics of entropy and mutual information, it follows that

I(T; T̂) = H(T)− H(T|T̂) (12)

= H(KA, S)− H(KA, S|KB, Ŝ) (13)

= H(S) + H(KA|S)− H(S|KB, Ŝ)− H(KA|KB, S, Ŝ) (14)

= H(S)− H(S|KB, Ŝ) + H(KA|S)− H(KA|KB, S, Ŝ) (15)

= I(S; KB, Ŝ) + I(KA; KB, Ŝ|S) (16)

= I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S), (17)

which completes the proof. 189

The mutual information between T and T̂ reflects the effectiveness of communication. 190

It indicates the highest rate in bits per channel use at which information can be sent with 191

arbitrarily low probability of error. We note that I(T; T̂) consists of three terms: 192

1. I(S; Ŝ), the mutual information between the input and output of the channel. It 193

corresponds to the channel capacity in Shannon’s information theory. 194

2. I(KA; KB|S, Ŝ), the mutual information between KA and KB given S and Ŝ. It indicates 195

the amount of information that two knowledge instances contain about each other 196

when signals are known. 197

3. I(S; KB|Ŝ) + I(Ŝ; KA|S), the conditional mutual information between S and KB, Ŝ and 198

KA. 199

From Eq. (11), we know that if Bob wants to fully understand what Alice means, the 200

communication process needs to meet two conditions, one is the accuracy of the symbols 201

during channel transmission, and the other is the matching degree of the knowledge bases 202

of both parties. In other words, i) The transmission S→ Ŝ should be reliable. It indicates 203

the effect of channel noise on the signal. Moreover, the carrier of this process actually 204

exists, we call it an explicit channel. ii) The two knowledge instances should be similar. 205
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Although there is no actual transmission between KA and KB, we assume that there is a 206

virtual channel that reflects the probabilistic relationship between knowledge instances, 207

which we call an implicit channel. The explicit channel and implicit channel together form the 208

transmission medium of a communication system. Specifically, the characteristics of the 209

explicit channel determine the value of the first term in Eq. (11), and the implicit channel 210

determines the second term. In addition, the last term is affected by both explicit and 211

implicit channels. 212

If the communication system has only the explicit channel, it degenerates to the 213

Shannon case, and I(T; T̂) = I(S; Ŝ). Furthermore, We discuss three special cases. 214

I. The explicit channel is noiseless, i.e., S = Ŝ. In this setting, the formula (11) can be
simplified to

I(T; T̂) = H(S) + I(KA; KB|S), (18)

which is consistent with the conclusion in [5]. The mutual information between T and 215

T̂ is subjected to the entropy of the signal S and the conditional mutual information 216

between KA and KB given S. 217

II. The implicit channel is noiseless, i.e., KA = KB. This means that Alice and Bob have
the same knowledge instance, so the communication performance will not be affected
by the difference in the background of both parties. I(T; T̂) can be expressed as:

I(T; T̂) = I(S; Ŝ) + H(KA)− I(KA; S; Ŝ) (19a)

I(T; T̂) = I(S; Ŝ) + H(KB)− I(KB; S; Ŝ), (19b)

where I(KA; S; Ŝ) = I(KA; S)− I(KA; S|Ŝ) is the mutual information between KA, S
and Ŝ. If the implicit channel is noiseless, the mutual information between T and T̂
satisfies

I(S; Ŝ)
(a)
≤ I(T; T̂)

(b)
≤ I(S; Ŝ) + H(KA). (20)

Moreover, if KA is a function of S and Ŝ, the left equation (a) holds; if KA is indepen- 218

dent of the signal S or Ŝ, the right equation (b) holds. 219

Proof. Since the nonnegativity of mutual information, I(KA; S; Ŝ) ≥ 0. Thus, I(T; T̂)
can be upper bounded by I(S; Ŝ) + H(KA). By the fact that the mutual information is
lower than the entropy, we have H(KA)− I(KA; S; Ŝ) ≥ 0. Combining these results,
we obtain

I(S; Ŝ) ≤ I(T; T̂) ≤ I(S; Ŝ) + H(KA), (21)

which completes the proof of the bound of I(T; T̂). 220

III. Both explicit and implicit channels are noiseless, i.e., S = Ŝ, KA = KB. In this
setting, the mutual information between T and T̂ equals the entropy of T or T̂,

I(T; T̂) = H(T) = H(T̂). (22)

Eq. (22) indicates that Bob can perfectly understand the meaning of Alice when 221

channels are noiseless. That is, no information is lost. 222

The following result shows the bounds of SRSA, constrained by the characteristics of
the explicit and implicit channels. The SRSA satisfies

SRSA = Pr{T = T̂} ≤ 1− H(KA, S|KB, Ŝ)− 1
log |T | (23)
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Proof. Since (KB, Ŝ) can be seen as an estimator for (KA, S). Let Pe = Pr{T ̸= T̂}, then by
Fano’s Inequality, we obtain

Pe ≥
H(KA, S|KB, Ŝ)− 1

log |T | (24)

Since SRSA= 1− Pe, we can obtain Eq. (23), which completes the proof. 223

3.3. EXP-SC Model 224

Let S1 and S2 denote the input signals of the explicit channel, and Ŝ1 and Ŝ2 are their
corresponding output signals. Similarly, K1

A and K2
A represent Alice’s knowledge instances.

Alice encodes S1 as T1 with K1
A, and S2 as T2 with K2

A. On the other hand, Bob uses K1
B and

K2
B, decoding Ŝ1 and Ŝ2 into T̂1 and T̂2, respectively. In the basic model, the encoding and

decoding processes of the two transmissions are

S1, K1
A → T1 Ŝ1, K1

B → T̂1 (25a)

S2, K2
A → T2 Ŝ2, K2

B → T̂2 (25b)

Expansion combines simple things into complex systems and even generates intelli- 225

gence, which is consistent with the evolution of the human language system. We extend 226

the basic model proposed in Section 2.3, based on expansion. In this context, Alice wishes 227

to send an expansion of multiple signals to Bob. We first consider the case of two signals, 228

which can be generalized to more. Now, what Alice sends is expanded from S = S1 to 229

S = S1 ⊕ T2. We use ⊕ to denote semantic expansion. Specifically, the expansion of signals 230

only represents their combination. For instance, ’Carol published a paper’ expands to ’Carol 231

published a paper in IEEE Communications Letters’. 232

As known, expansion often implies collision and fusion. Similarly, the expansion
of signals corresponds to the collision of knowledge bases in this work. For Alice, we

use KA = K1
A

α
⊙K2

A to represent the collision process, where ⊙ denotes the collision and
α is the collision factor. Specifically, α is between 0 and 1, determined by the task. The
collision factor reflects the role of K2

A compared to K1
A when the collision occurs. It can

also be understood as the relative proportion of the contribution to the newly generated
knowledge instance. The process of collision represents the asynchronous knowledge

scaling up updates. Similarly, we use KB = K1
B

β
⊙K2

B to represent the knowledge collision
of Bob, where β is a collision factor. The expansion and collision process can proceed
continuously as follows:

S = S1 ⊕ S2 ⊕ S3 · · · ⊕ Sn (26a)

KA = K1
A

α1
⊙K2

A
α2
⊙K3

A · · ·
αn−1
⊙ Kn

A (26b)

KB = K1
B

β
⊙K2

B

β2
⊙K3

B · · ·
βn−1
⊙ Kn

B. (26c)

Without loss of generality, the one step expansion architecture of semantic communi- 233

cations is described as 234

S
(a)−→ Ŝ

⇑ ⇓
T ← S1 ⊕ S2 Ŝ1 ⊕ Ŝ2 → R (= T̂)

↑ (c) ↑ (d)

K1
A

α
⊙K2

A
(b)
99K K1

B

β
⊙K2

B

(27)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2022                   doi:10.20944/preprints202210.0399.v1

https://doi.org/10.20944/preprints202210.0399.v1


9 of 13

We named it EXP-SC. Moreover, H(S1⊕ S2, K1
A

α
⊙K2

A) is called the Measure of Compre- 235

hension and Interpretation (MCI), which reflects the generation and evolution of semantics. 236

It should be noted that T is not a simple logic combination of T1 and T2, i.e., T ̸= T1 ⊕ T2. 237

For example, T1 is ’Apple Inc.’, it is a company and S1 can be ’Apple’. T2 is ’the thirteenth 238

generation’, it is a number and S2 can be ’thirteen’. But their collision may give rise to a new 239

word called ’iphone’, which is a mobile communication product. In particular, T reflects the 240

result of S under the influence of knowledge collision. 241

Based on these definitions above, we get some new results. The mutual information
between T and T̂ is given by

I(T; T̂) = I(S; Ŝ) + I(K1
A

α
⊙K2

A; K1
B

β
⊙K2

B|S, Ŝ) + I(S; K1
B

β
⊙K2

B|Ŝ) + I(Ŝ; K1
A

α
⊙K2

A|S) (28)

Proof. It is similar to the proof of Lemma 3.2, we omit the proof. 242

Eq. (28) indicates that besides the characteristics of explicit and implicit channels, the 243

relationship between α and β also affects the performance of communication. 244

When the explicit channel is noiseless, the gain brought by semantic expansion is
given by

I(T; T̂)− I(T1; T̂1) = (1 + γ)(H(S)− H(S1)), (29)

where

γ =
I(K1

A
α
⊙K2

A; K1
B

β
⊙K2

B|S1 ⊕ S2)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
. (30)

Proof. We note that
I(T1; T̂1) = H(S1) + I(K1

A; K1
B|S1). (31)

Then,

I(T; T̂)− I(T1; T̂1)

H(S)− H(S1)
(32)

=
H(S) + I(K1

A
α
⊙K2

A; K1
B

β
⊙K2

B|S)− H(S1)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
(33)

= 1 +
I(K1

A
α
⊙K2

A; K1
B

β
⊙K2

B|S)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
, (34)

which completes the proof. 245

Lemma 3.3 shows that the asynchronous knowledge scaling up updates determine 246

the effect of semantic expansion. 247

When the explicit channel is noiseless, the mutual information between T and T̂ is
bounded by

1
2
(H(S1) + H(S2)) ≤ I(T; T̂) ≤ H(K1

A
α
⊙K2

A) + H(S) (35)

Proof. Since the fact that expansion would create more possibilities, leading to the increase
of uncertainty, we can get

H(S1 ⊕ S2) ≥ H(S1) H(S1 ⊕ S2) ≥ H(S2) (36)

Through the properties of non-negativity of entropy and conditioning reduces entropy, Eq. (35) 248

can be derived directly. We omit the proof. 249
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Figure 1. Binary symmetric channel.
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Figure 2. The simulation results of SRSA with the explicit channel error probability ϵ1 and the implicit
channel error probability ϵ2.

4. Experiment and Numerical Results 250

In this section, we use SRSA to measure the performance of SC, especially the impact 251

that asynchronous knowledge scaling up has on the system. 252

Basic Model. We use Q-learning in [20] to complete semantic encoding and decoding. 253

Let |S| = M = 2, |KA| = |KB| = L = 2, |T | = L2M2. In addition, S, KA and KB are 254

uniformly distributed. We would like to discuss the impact of the characteristics of the 255

explicit channel and implicit channel on SC. We use the binary symmetric channel (BSC) 256

to denote the explicit channel. The BSC is shown in Fig. 1, which shows the probabilistic 257

relationship between S and Ŝ, with the error probability ϵ1. 258

For the implicit channel, we assume the correlation between KA and KB satisfies that

KB =

{
KA, with probability 1− ϵ2

U, with probability ϵ2,

where U ∼ Unif{1, L} is an independent random variable. In Fig. 2, we show the SRSA 259

with ϵ1 ∈ [0, 0.5] and ϵ2 ∈ [0, 0.5]. When ϵ1 = ϵ2 = 0, SRSA reaches the maximum 1. As ϵ1 260

and ϵ2 increase, SASA will decrease in both directions. This indicates that two channels 261

jointly determine the quality of communication. For high quality SC, It is necessary to meet 262

the condition that Ŝ = S and KB = KA with a high probability. 263

EXP-SC Model. We want to explore how communication quality varies in the context 264

of different relationships between the receiver and the sender’s knowledge instance. For 265

simplicity, we assume that the explicit channel is noiseless, so we can focus on knowledge 266
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Figure 3. The simulation results of SRSA with the number of runs. We divide it into four cases. Case
I: K1

B = K1
A, K2

B = K2
A and β = α; II: K1

B ̸= K1
A (with error probability 0.5), K2

B = K2
A and β = α; III:

K1
B = K1

A, K2
B ̸= K2

A (with error probability 0.5) and β = α; IV: K1
B = K1

A, K2
B = K2

A and β = 1
2 α. (a)

the mean of SRSA. (b) the variance of SRSA.

updates. That is, SRSA varies with the relationship of K1
B, K2

B, β and K1
A, K2

A, α. We categorize 267

it into four cases. 268

• Case I: K1
B = K1

A, K2
B = K2

A and β = α. The implicit channel is noiseless. Bob has the 269

same asynchronous knowledge scaling up updates mode as Alice. That is, the receiver 270

has all the knowledge of the sender. 271

• Case II: K1
B ̸= K1

A (with error probability 0.5), K2
B = K2

A and β = α. The receiver has 272

partial knowledge of the sender. 273

• Case III: K1
B = K1

A, K2
B ̸= K2

A (with error probability 0.5) and β = α. The receiver has 274

partial knowledge of the sender. 275

• Case IV: K1
B = K1

A, K2
B = K2

A and β = 1
2 α. The collision factors do not equal. 276

Fig. 3 illustrates the simulation results of SRSA with the number of runs, where Fig. 277

3 (a) is the mean and (b) is the variance. In all four cases, the mean of SRSA gradually 278

converges to a stable region. Case I is close to 1, which implies that when the receiver has 279

all the knowledge of the sender, it can express exactly the same semantics as the sender. In 280

other words, Bob has the same asynchronous knowledge scaling up updates mode as Alice, 281

which facilitates the success of SC. The curve of case II and III are almost the same, but the 282

value of case II is always higher than that of case III. This is as expected because K1
A and K1

B 283

play a leading role in the collision compared to K2
A and K2

B. Case IV reflects the learning of 284

SRSA when Bob and Alice have different collision factors. The value of case IV is higher 285

than that of II and III, which indicates that the collision factor plays a smaller role than the 286

knowledge itself in SC. These results also show that learning can improve SC quality with 287

only partial background knowledge, but there is a limit. On the other hand, the variance of 288

case I keeps decreasing, and the other three cases also stabilize after peaking quickly. This 289

further suggest that learning can evolve continuously with full knowledge, but there is an 290

upper limit to learning with partial or no knowledge. 291

5. Conclusion 292

In this paper, we presented the concept of semantic expansion and knowledge collision 293

in SC. It represents the combination and superposition of information by the sender. Based 294

on semantic expansion, we further proposed a semantic communication system called 295

EXP-SC. Moreover, the semantic expansion corresponds to knowledge collision, which 296

provides possibility for the evolution and upgrading of communication systems. On the 297

other hand, we reached some conclusions for semantic information theory in the context of 298

asynchronous knowledge scaling up updates, getting some bounds for SC. Specifically, the 299
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receiver’s understanding of the knowledge collision and updates determines the effect of 300

communication. 301

Semantic communication is evolving towards intelligence. The insights gained from 302

this work may be of assistance to the future semantic communication system and 6G. It is 303

also expected to pave the way for the design of next-generation real-time data networking 304

and will provide the foundational technology for a plethora of socially useful services, 305

including autonomous transportation, consumer robotics, VR/AR and metaverse. 306
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Appendix A Proof of the mutual information for three special channel cases 318

I. The explicit channel is noiseless. Since S = Ŝ, we have I(S; Ŝ) = H(S) and
I(KA; KB|S, Ŝ) = I(KA; KB|S). Moreover, S is a function of Ŝ, it follow that I(S; KB|Ŝ) =
0. Similarly, Ŝ is also a function of S, we obtain I(Ŝ; KA|S) = 0. Thus, the formula (11)
can be simplified to

I(T; T̂) = H(S) + I(KA; KB|S), (A1)

II. The implicit channel is noiseless. Since KA = KB, the mutual information between T
and T̂ is written

I(T; T̂) = I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S) (A2)

= I(S; Ŝ) + H(KA|S, Ŝ) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A3)

= I(S; Ŝ) + H(KA)− I(KA; S, Ŝ) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A4)

= I(S; Ŝ) + H(KA)− I(KA; S)− I(KA; Ŝ|S) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A5)

= I(S; Ŝ) + H(KA)− I(KA; S) + I(KA; S|Ŝ) (A6)

= I(S; Ŝ) + H(KA)− I(KA; S; Ŝ). (A7)

It can also be expressed as

I(T; T̂) = I(S; Ŝ) + H(KB)− I(KB; S; Ŝ). (A8)

III. Both explicit and implicit channels are noiseless, i.e., S = Ŝ, KA = KB. In this
setting, we have I(KA; KB|S) = H(KA|S). Thus, Eq. (18) is written

I(T; T̂) = H(S) + H(KA|S) = H(KA, S) = H(T). (A9)

Similarly, we also obtain I(T; T̂) = H(T̂). 319
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