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Abstract: Semantic communication is not obsessed with improving the accuracy of transmitted 1
symbols, but is concerned with expressing the desired meaning that the symbol sequence exactly =
carried. However, the generation and measurement of semantic messages are still an open problem. s
Expansion combines simple things into complex systems and even generates intelligence, which 4
is consistent with the evolution of the human language system. We apply this idea to semantic s
communication system, quantifying and transmitting semantics by symbol sequences, and investigate o
the semantic information system in a similar way as Shannon did for digital communication systems. 7
This work was the first to propose the concept of semantic expansion and knowledge collision, which =
may provide a new paradigm for semantic communications. We believe that expansion and collision
will be the cornerstone of semantic information theory. 10

Keywords: semantic information theory; semantic communications; information theory; 6G; game 11
theory 12

1. Introduction and Overview 13

Shannon’s information theory [1] answers two fundamental questions in digital com- 1
munication theory [2]: the ultimate data compression rate (answer: the entropy H) and s
the ultimate reliable transmission rate of communication (answer: the channel capacity s
C). It addresses technical problems in communication systems, enabling it to receive the 17
same symbols as the sender. However, with the ever-increasing demand for intelligent 1.
wireless communications, the communication architecture is evolving from only focusing 1
on technical level to intelligent interconnection of everything [3]. Weaver [4] categorized 20

communications into three levels about 70 years ago: 21
Level A. How accurately can the symbols of communication be transmitted? (The =2
technical problem.) 2
Level B. How precisely do the transmitted symbols convey the desired meaning? (The 2«
semantic problem.) 25
Level C. How effectively does the received meaning affect conduct in the desired way? 26
(The effectiveness problem.) 27

Recently, semantic information theory including semantic communications has at-  2s
tracted much attention. One reasonable and feasible measure of semantic messages is 20
still an open problem, which may be the greatest challenge for the new developments 3o
of semantic communication (SC) systems. On the other hand, currently in 6G networks, s
intelligent interconnections of everything will bring the conventional paradigm to the
communication mode with higher requirements of semantic interaction. In this regard, s
finding a way to quickly reflect the semantic processing of messages from the sender and s
the receiver will become one more promising pathway to the 6G intelligent networking s
systems. 36
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This paper proposes a new communication system based on information framework 7
expansion and knowledge collision, by extending Shannon’s theory of communication s
(Level A) to a theory of semantic communication (Level B). Our work is initially influenced 3o
by Jinho and Jihong [5], with new contributions in the following: 40

¢ We generalize the work of Jinho and Jihong from single fixed semantic type to semantic =~
dynamically scaling up mode, referred to as expansion, and get the idea of knowledge 4=
collision, which can reflect the asynchronous knowledge update process of the sender 43
and the receiver in some degree. In addition, we also take into account the effect of 4.
channel noise on the model. 45
*  We present a new measure related to the semantic communication system based on 46
semantic expansion and knowledge collision, called Measure of Comprehension and 47
Interpretation, which can measure the semantic entropy of discrete sources. 48
*  We discuss the additional gains from expansion and demonstrate that knowledge 4
matching of its asynchronous scaling up plays a key role in semantic communications. so

As a primary work, the system proposed in this paper only focuses on the discrete s
cases and makes some drastic simplifications. Moreover, we are not concerned with the s
effective problem (Lever C), which is beyond the scope of this paper. However, we believe s
that these simplifications are necessary for us to focus on the "core" issues, and that even s
this model may form a foundation for a general semantic information theory. To the best of  ss
our knowledge, this is the first study to explore the semantic expansion and asynchronous  se
scaling up of semantic knowledge. The insights gained from this work may be of assistance 7
to the future intelligent semantic communication system and 6G. 58

The rest of this paper is organized as follows. Section 2 introduces the related work  se
of semantic communications. It summarizes key concepts and conclusions of Shannon’s e
information theory and semantic information theory. In Section 3, we present the gener- &
alized model of semantic communication from two aspects, one is trying to setup a close e
relationship with Shannon communication model, and the other is trying to find the feasible s
modification of the model so that it can exactly reflect the quickly surging of semantic s
communications from the user requirements. In Section 4, we lay out the implementation s
details of the simulation and discuss the experimental results. Finally, we conclude the s
paper in Section 5. 67

2. Related Work o8

In this section, we introduce the framework of semantic information theory, especially
the key concept, semantic entropy. It will then go on to the work that we are concerned 7
with, semantic communication as a signaling game with correlated knowledge bases. 7

2.1. Preliminaries 72

Although Shannon’s information did not address the semantic problem of communi- 7
cations, it provided important insights on the message processing techniques associated 7
with the focus of both the sender and the receiver’s attention. Thus, in this subsection, we s
briefly introduce the main concepts and theorems in Shannon’s information theory. 76

Entropy. It is a measure of the uncertainty of a random variable [2]. The entropy H(X)
of a discrete random variable X with probability distribution p(x), is defined as

H(X) =— ) p(x)logp(x). 1)

xeX

Mutual information. It is a measure of the amount of information that one random
variable contains about another. Mutual information can be seen as the reduction in the
uncertainty of one random variable due to the knowledge of the other. Consider two
random variables X and Y with a joint probability mass function p(x,y) and marginal
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probability mass functions p(x) and p(y), the mutual information between X and Y is
defined as

Y) = pvy)

Channel capacity. The channel capacity is the maximum of mutual information with
given the conditional transit probability from X to Y, p(y|x). It is defined by

C=maxI(X;Y), ©)]
p(x)
where X and Y are the input and output of the channel, respectively. 77

Source coding theorem. As N — co, N i.i.d. (independent identically distribution) s
random variables with entropy H(X) can be compressed into more than NH(X) bitsto
represent them completely, that is, the information loss can be negligible in the viewpoint of s
Shannon'’s information theory. Conversely, if they are compressed into fewer than NH(X) s
bits to represent them, there will be a loss of information certainly. 82

Channel coding theorem. For a discrete memoryless channel, all rates below capacity s
C are achievable. Conversely, any sequence of codes with negligible error must have obey s
the rule, its transmission rate is not greater than the channel capacity, R < C. o

2.2. Semantic Information Theory 86

Carnap and Bar-Hillel [6] were the first to propose the concept of semantic information
theory, using logical probability rather than statistical probability to measure the semantic
entropy of a sentence. It’s necessary here to clarify exactly that we use p and m to denote
statistical probability and logical probability in this paper, respectively. The logical proba-
bility of a sentence is measured by the likelihood that the sentence is true in all possible
situations [7]. Then, the semantic information of the message e is defined as

Hs(e) = —log,(m(e)), )

where m(e) is the logical probability of e. However, this metric led to a paradox that any &

fact has an infinite amount of information when it contradicts itself, i.e., Hs(e A —e) = 0. ss

Floridi [8] solved the paradox in Carnap and Bar-Hillel’s proposal [6], adopting the relative s

distance of semantics to measure the amount of information. %
Bao et al. [7] defined semantic entropy of a message x as

Hs(x) = —log, (m(x)), ®)

where the logical probability of x is given by

X pu(w)
ﬂ(Wx) weW,wk=x
m(x) = = (6)
=) = T uw)
weW
Here, W is the symbol set of a source, |= is the proposition satisfaction relation, and Wy is &
the set of models for x. In addition, y is a probability measure, Y. u(w) =1. 92
weW

Besides logical probability, there are some definitions of semantic entropy based s
on different backgrounds [9][10]. D’Alfonso [11] utilized the notion of truthlikeness to  os
quantify semantic information. Kolchinsky and Wolpert [12] defined semantic entropy s
as the syntactic information that a physical system has about its environment which is s
causally necessary for the system to maintain its own existence. Kountouris and Pappas o
[13] advocated for assessing and extracting the semantic value of data at three different s
granularity levels: microscopic scale, mesoscopic scale and macroscopic scale. 99

Analogous to Shannon’s information theory, some related theories at the semantic
level, such as semantic channel capacity, semantic rate distortion and information bottleneck
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[14], are also being explored. Based on (5), Bao et al. further proposed semantic channel
coding theorem [7]. For every discrete memoryless channel, the channel capacity

Cs = sup {I(X;Y) — Hk,1s(WIX) + Hsk,,1, (Y) }, @)
P(X|W)

has the following property: For any € > 0 and R < Cg, there is a block coding strategy such 100
that the maximal probability of semantic error is < €. I(X;Y) is the mutual information o
between the input X of the channel and the output Y of the channel, Hg, 1, (W|X) is the 102
equivocation of the semantic encoder, given the sender’s local knowledge Kg and inference  1os
procedure Is. Hs, 1,(Y) = ¥, p(y)Hs(y) is the average information of received messages, 1os

given the receiver’s local knowledge Kg and inference procedure Is. 105
Moreover, H. Vincent Poor [15] formulated the rate-distortion in semantic communica-
tion as
R(Ds, Dy) = min I[(W; X, W) (8)

where D is the semantic distortion between source, X, and recovered information, X, at the 106
receiver. Dy, is the distortion between semantic representation, W, and received semantic 1o
representation, W. 108

In recent years, the fusion of semantic communication algorithms and learning theory 1o
[16-19] is also driving the continuous development of the communication architecture. 110
Although these explorations did not fully open the door to semantic communication, they 11

provided us important insights to move forward theoretically. 112

2.3. Semantic Communication as a Lewis Signaling Game with Knowledge Bases 113

Jinho and Jihong [5] proposed a SC model based on the Lewis signaling game, which 114
derived some interesting results. This work really gives us some motivations to conduct s
this work in some degree. Further, we make a generalization of this model with adding the 116
asynchronous knowledge scaling up updates of the sender and the receiver, which may 117
close to the real semantic communications in the era of intelligent communication. Thus, 1
we briefly re-describe it. 110

Suppose there is a semantic communication system where Alice is the sender and Bob 120
is the receiver. Let T € T denote the semantic type that includes semantic information or 121
messages. Alice wishes to transmit T to Bob by sending a signal S € S, and Bob chooses 122
its response R € R. Both Alice and Bob utilize their local knowledge bases K4 and Kp, 123

respectively. The semantic architecture can be described as 124
Ka Kp
+ +

T - S — R(=1).

If R = T, one communication process can be successful. Moreover, the reward for one
communication is defined as:
1, ifR=T;
u= )

0, otherwise.

Our object is to maximize the average reward. We use the success rate of semantic agreement — 12s
(SRSA) to represent it. 126

The knowledge base can be regarded as the side information. Alice has her knowledge 12
base KC 4. The instance of Alice’s knowledge base at each time is K4 € K4, which affects  12s
the generation of semantic types. On the other hand, Bob has his knowledge base Kp and 120
its instance is Kp € Kp. Kp is the "core", used to infer the intended message together with 130
the received signal. 131
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Based on these foundations, Jinho and Jihong [5] derived some interesting results. 1s2
On the one hand, the similarity of the two knowledge instances plays a crucial role in 133
SC. With a limited bandwidth, the communication quality is regulated by I(K4; Kp|S). 13s
On the other hand, the SRSA is dependent on the similarity of the two communication 1ss
parties” knowledge. However, it did not clearly setup the close relationship with Shannon’s 136
communication model. In this work, we will make a generalization of the model by adding 137
the asynchronous knowledge scaling up updates of the sender and the receiver, which 1ss
may closely reflect the quickly surging of semantic communications in many scenarios of 139
applications. 140

3. Semantic Communication Models 141

In this section, we will present the generalized model of semantic communication s
from two different aspects, one is trying to setup a close relationship with Shannon com- 14
munication model, and the other is trying to find the feasible modification of the model s0 144
that it can exactly reflect the quickly surging of semantic communications from the user 1ss
requirements. In this regard, we first setup a basic model, and then to extend it by adding 14
the knowledge base update functional mode with information framework expansion and 147
knowledge collision. 148

3.1. Motivation 149

Shannon’s communication system is concerned with the accurate transmission of s
symbols over channels. However, it does not take into account the differences in the s
knowledge backgrounds of two parties, which affect whether the communication can s
convey the desired meaning. In other words, the matching of knowledge can also be s
treated as another special channel, although it may not actually exist in an explicit form. 1sa
In this work, we denote it as a virtual channel. We want to fill this gap and propose an  1ss
intelligent communication system with coexistence of the real channel and virtual channel, 1se
making information theory more complete. Thus, we consider not only the physical channel s
for symbol transmission, but also the virtual channel for the transfer of knowledge between  1ss
two parties. Moreover, the knowledge of both parties is also evolving, so we take into  1se
account the asynchronous knowledge scaling up updates and semantic expansion. 160

3.2. Basic Model 161

Let us first observe the channel, which is the physical medium of message exchange, 1s:
and play the key role in the model setup of a complete semantic communication system. A  ies
communication channel is a system in which the output depends on probabilistically on its  1es
input [2]. For simplification, we still use Alice and Bob as the two parties participating in  1es
the communication. Suppose Alice and Bob are at opposite ends of a memoryless channel, 166
which can transmit physical signals. The channel is said to be memoryless if the probability e
distribution of the output depends only on the input at that time and is conditionally ies
independent of previous inputs or outputs. That is, the output of the channel is only related 160
to the input at the current moment and no any feedback processing is considered here.. 170

We use S and S to represent the input and output of the channel. Under the interference 171
of the noise, the signal S becomes $ through channel transmission. Specifically, Alice 17
observes the input S of the channel, and Bob observes the output S. Let K4 and Kz 173
represent the knowledge instance possessed by Alice and Bob, respectively. On the one 17
hand, Alice encodes S as T with K4. This means that Alice uses the knowledge instance 175
K4 to process the signal S, resulting in the semantic type T, i.e., (S,K4) — T. On the other 76
hand, Bob decodes $ into the response R with Kp, which can be expressed as (§, Kg — R). 17
The architecture of this process can be expressed as 178
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T« s Y ¢ R(=T)
T T (10)
(b)
KA -—=> KB

We denote the process (S,K4) — T as semantic encoding and (S, Kg) — T as semantic 17
decoding. They indicate the understanding of meaning at the semantic level by both parties. 1s0

The definitions of symbols are summarized as: 181
e Semantic Types: T = ty,k =1,...,|T|, is a random variable that is generated by Alice. 1s2
e Signals: S =s;,1=1,...,|S], is a signal that Alice sends to Bob. 183
®  Responses: R =ry,,n=1,...,|R|,is a response that Bob chooses. 184
*  Knowledge instances: K4 € K4 and Kg € Kp represent the knowledge instance used  ies
by Alice and Bob when semantic encoding and decoding, respectively. 186

Under the knowledge instance K4 and Kp, the mutual information between T and T
is given by

I(T;T) = 1(S;S) + I(K4;Kp|S, S) + I(S; Kp|S) + 1(S; K4|S) (11)

where I(K4;Kg|S,$), I(S; Kg|S) and I($; K4|S) represent the conditional mutual informa-  1s7
tion. 188

Proof. Since (S,K4) — T and ($,Kg) — T, we have H(T) = H(K4,S) and H(T) =
H(Kp, S). By the characteristics of entropy and mutual information, it follows that

[(T;T) = H(T) — H(T|T) (12)
= H(K4,S) — H(K4,S|Kg,S) (13)
= H(S) + H(K4|S) — H(S|K,5) — H(K4|K3, S, 5) (14)
= H(S) — H(S|Kg,S) + H(K4|S) — H(K4|K3,S,S) (15)
= I1(S;Kp, S) + I(Ka; K, S|S) (16)
=1(S;S8) + I(K4;Kg|S,S) + I(S; Kp|S) + I(S; K4]S), (17)
which completes the proof. [ 189

The mutual information between T and T reflects the effectiveness of communication. 1so
It indicates the highest rate in bits per channel use at which information can be sent with 1
arbitrarily low probability of error. We note that I(T; T') consists of three terms: 102

1. I(S;$), the mutual information between the input and output of the channel. Tt 10
corresponds to the channel capacity in Shannon’s information theory. 194

2. I(K4;Kg|S, §), the mutual information between K 4 and Kg given S and $. It indicates 105
the amount of information that two knowledge instances contain about each other 106
when signals are known. 197

3. I(S;Kg|S) + I(5;K4|S), the conditional mutual information between S and Kp, S and 106
Ky4. 190

From Eq. (11), we know that if Bob wants to fully understand what Alice means, the 200
communication process needs to meet two conditions, one is the accuracy of the symbols 201
during channel transmission, and the other is the matching degree of the knowledge bases 202
of both parties. In other words, i) The transmission S — § should be reliable. It indicates 203
the effect of channel noise on the signal. Moreover, the carrier of this process actually 2o
exists, we call it an explicit channel. ii) The two knowledge instances should be similar. zos
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Although there is no actual transmission between K4 and Kp, we assume that there is a
virtual channel that reflects the probabilistic relationship between knowledge instances,
which we call an implicit channel. The explicit channel and implicit channel together form the
transmission medium of a communication system. Specifically, the characteristics of the
explicit channel determine the value of the first term in Eq. (11), and the implicit channel
determines the second term. In addition, the last term is affected by both explicit and
implicit channels.

If the communication system has only the explicit channel, it degenerates to the

Shannon case, and I(T; T) = I(S; ). Furthermore, We discuss three special cases.

L

IL.

III.

The explicit channel is noiseless, i.e., S = S. In this setting, the formula (11) can be
simplified to

I(T;T) = H(S) + 1(Ka; Kp|S), (18)
which is consistent with the conclusion in [5]. The mutual information between T and

T is subjected to the entropy of the signal S and the conditional mutual information
between K4 and Kp given S.

The implicit channel is noiseless, i.e.,, K4 = Kp. This means that Alice and Bob have
the same knowledge instance, so the communication performance will not be affected
by the difference in the background of both parties. I(T; T) can be expressed as:

;8) + H(K4) — 1(K4;S; ) (19a)
(S;S) + H(Kp) — I(Kg; S; S), (19b)

where I(K4;S;5) = I(K4; S) — I(K4; S|S) is the mutual information between K4, S
and $. If the implicit channel is noiseless, the mutual information between T and T
satisfies

1(S;$) (%) I(T;T) (2 1(S;8) + H(K,). (20)

Moreover, if K4 is a function of S and S, the left equation () holds; if K4 is indepen-
dent of the signal S or $, the right equation (b) holds.

Proof. Since the nonnegativity of mutual information, I(Ky4; S; S ) > 0. Thus, I(T; T)
can be upper bounded by I(S; S) + H(K,). By the fact that the mutual information is
lower than the entropy, we have H(K4) — I(Ky; S; S ) > 0. Combining these results,
we obtain

1(5;8) < I(T; T) < I(S;$) + H(Ky), (21)

which completes the proof of the bound of I(T; T). O

Both explicit and implicit channels are noiseless, i.e.,, S = S,K4 = Kg. In this
setting, the mutual information between T and T equals the entropy of T or T,

A

I(T;T) = H(T) = H(T). (22)

Eq. (22) indicates that Bob can perfectly understand the meaning of Alice when
channels are noiseless. That is, no information is lost.

The following result shows the bounds of SRSA, constrained by the characteristics of

the explicit and implicit channels. The SRSA satisfies

H(Ky4,S|Kg,S) —1

SRSA =Pr{T =TV <1—
nr="1)< log 7]

(23)

218

222
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Proof. Since (Kp, S) can be seen as an estimator for (K4, S). Let P, = Pr{T # T}, then by
Fano’s Inequality, we obtain

H(Ky4,S|Kg,S) —1

P
‘ log |T|

AV

(24)

Since SRSA= 1 — P,, we can obtain Eq. (23), which completes the proof. [ 223

3.3. EXP-SC Model 224

Let S; and S, denote the input signals of the explicit channel, and $; and S, are their
corresponding output signals. Similarly, K}, and K? represent Alice’s knowledge instances.
Alice encodes Sq as T1 with K}4, and S, as T, with Ki. On the other hand, Bob uses K]lg and
K3, decoding S; and S, into T; and T, respectively. In the basic model, the encoding and
decoding processes of the two transmissions are

S,KYy =Ty $,Ky =T (25a)
$,K4 =Ty $3,K3— T (25b)

Expansion combines simple things into complex systems and even generates intelli- 225
gence, which is consistent with the evolution of the human language system. We extend 226
the basic model proposed in Section 2.3, based on expansion. In this context, Alice wishes 2z
to send an expansion of multiple signals to Bob. We first consider the case of two signals, zzs
which can be generalized to more. Now, what Alice sends is expanded from S = 51 to 22
S =51 @ T,. We use @ to denote semantic expansion. Specifically, the expansion of signals 20
only represents their combination. For instance, ‘Carol published a paper” expands to ‘Carol = 231
published a paper in IEEE Communications Letters’. 232

As known, expansion often implies collision and fusion. Similarly, the expansion
of signals corresponds to the collision of knowledge bases in this work. For Alice, we

use Ky = K4 (% K3, to represent the collision process, where © denotes the collision and
a is the collision factor. Specifically, « is between 0 and 1, determined by the task. The
collision factor reflects the role of K4 compared to K; when the collision occurs. It can
also be understood as the relative proportion of the contribution to the newly generated
knowledge instance. The process of collision represents the asynchronous knowledge

B
scaling up updates. Similarly, we use Kz = K} ® K3 to represent the knowledge collision
of Bob, where f is a collision factor. The expansion and collision process can proceed
continuously as follows:

S=51®S5®5®S, (26a)
o o o

Koa=K QKA GK - & K, (26b)
BB B

Kp =K, OKZGKS - © Kb, (260)

Without loss of generality, the one step expansion architecture of semantic communi- 233

cations is described as 234
s g
i I
T« $186S; $19S — R(=1) (27)
T T (@

« (b) B
KhoK, --» KoK}


https://doi.org/10.20944/preprints202210.0399.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2022

90f13

We named it EXP-SC. Moreover, H(S1 & Sy, K}, 6 K?) is called the Measure of Compre-
hension and Interpretation (MCI), which reflects the generation and evolution of semantics.
It should be noted that T is not a simple logic combination of Ty and Ty, i.e., T # T1 & T>.
For example, Tj is "Apple Inc.’, it is a company and S can be "Apple’. T, is 'the thirteenth
generation’, it is a number and S, can be ‘thirteen’. But their collision may give rise to a new
word called “iphone’, which is a mobile communication product. In particular, T reflects the
result of S under the influence of knowledge collision.

Based on these definitions above, we get some new results. The mutual information
between T and T is given by

. . B . By
[(T;T) = 1(S;8) + I(KY, & K3; Ky ® K3[S, 8) + 1(S; KL & K3|9) + 1(§; KL O KA|S) (28)

Proof. It is similar to the proof of Lemma 3.2, we omit the proof. [

Eq. (28) indicates that besides the characteristics of explicit and implicit channels, the
relationship between « and 8 also affects the performance of communication.

When the explicit channel is noiseless, the gain brought by semantic expansion is
given by

(T;T) — I(Ty; Ty) = (14 ) (H(S) — H(S1)), (29)
where
a B
. I(KY ©K3; KL ©K3[51 @ Sy) — I(KY; KE[Sq) (30)
H(51®S2) — H(S1) '
Proof. We note that
I(Ty; Ty) = H(Sy) + I(KY; K3|Sy). (31)
Then,
I(T;T) — I(Ty; Th)
32
H(S) — H(S) 2
« B
_ H(S) + (K}, © K3; Ky © K§[S) — H(S1) — I(K}; K}|S1) 33)
H(S1®S) — H(S1)
a B
o MKL O KK O KRIS) — 1(K); K}[S1) -

H(S1 & S;) — H(S1) '
which completes the proof. [

Lemma 3.3 shows that the asynchronous knowledge scaling up updates determine
the effect of semantic expansion.
When the explicit channel is noiseless, the mutual information between T and T is

bounded by

%(H(Sl) + H(Sy)) < (T; T) < H(KY & K3) + H(S) (35)

Proof. Since the fact that expansion would create more possibilities, leading to the increase
of uncertainty, we can get

H(S1@®S2) = H(S1) H(S1©S2) = H(S2) (36)

Through the properties of non-negativity of entropy and conditioning reduces entropy, Eq. (35)
can be derived directly. We omit the proof. [J
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Figure 1. Binary symmetric channel.
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Figure 2. The simulation results of SRSA with the explicit channel error probability €; and the implicit
channel error probability 5.

4. Experiment and Numerical Results 250

In this section, we use SRSA to measure the performance of SC, especially the impact 25
that asynchronous knowledge scaling up has on the system. 252

Basic Model. We use Q-learning in [20] to complete semantic encoding and decoding. 2ss
Let |S| = M = 2, |Ka| = |[Kp| = L =2, |T| = L2M?. In addition, S, K4 and Kg are 2s
uniformly distributed. We would like to discuss the impact of the characteristics of the 2ss
explicit channel and implicit channel on SC. We use the binary symmetric channel (BSC)  2s6
to denote the explicit channel. The BSC is shown in Fig. 1, which shows the probabilistic  2s7
relationship between S and S, with the error probability €;. 256

For the implicit channel, we assume the correlation between K4 and Kp satisfies that

Ko — K4, with probability 1 — €3
B U, with probability €3,

where U ~ Unif{1, L} is an independent random variable. In Fig. 2, we show the SRSA s
with €1 € [0,0.5] and €; € [0,0.5]. When €; = €; = 0, SRSA reaches the maximum 1. As €] 20
and €, increase, SASA will decrease in both directions. This indicates that two channels  ze:
jointly determine the quality of communication. For high quality SC, It is necessary to meet 22
the condition that $ = S and Kz = K4 with a high probability. 263

EXP-SC Model. We want to explore how communication quality varies in the context zes

of different relationships between the receiver and the sender’s knowledge instance. For zes
simplicity, we assume that the explicit channel is noiseless, so we can focus on knowledge =ze6
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Figure 3. The simulation results of SRSA with the number of runs. We divide it into four cases. Case
I K%; = K}“, K% = KIZq and g = a; II: Kllg #* K}q (with error probability 0.5), K% = KIZL1 and B = w; IIL:
Ké = K}q, KZB # K124 (with error probability 0.5) and B = «; IV: K%; = K}4, K% = K% and § = %Dé. (@)
the mean of SRSA. (b) the variance of SRSA.

updates. That is, SRSA varies with the relationship of K}, K3, B and K}, K%, a. We categorize ze7
it into four cases. 268

. Case: K} = K}q, K% = KE‘ and B = a. The implicit channel is noiseless. Bob has the zes
same asynchronous knowledge scaling up updates mode as Alice. That is, the receiver 270

has all the knowledge of the sender. 211
e  Casell: K} # K, (with error probability 0.5), K3 = K3 and B = a. The receiver has 27
partial knowledge of the sender. 273
e Caselll: K, = K, K} # K3 (with error probability 0.5) and B = «. The receiver has 27
partial knowledge of the sender. 275
e CaselV:K}L = Ki, K% = Ki and B = %oc. The collision factors do not equal. 276

Fig. 3 illustrates the simulation results of SRSA with the number of runs, where Fig. 2+
3 (a) is the mean and (b) is the variance. In all four cases, the mean of SRSA gradually =7
converges to a stable region. Case I is close to 1, which implies that when the receiver has 27
all the knowledge of the sender, it can express exactly the same semantics as the sender. In  2s0
other words, Bob has the same asynchronous knowledge scaling up updates mode as Alice, 262
which facilitates the success of SC. The curve of case II and III are almost the same, but the zs:
value of case II is always higher than that of case III. This is as expected because K}, and K} ze3
play a leading role in the collision compared to K4 and K3. Case IV reflects the learning of  zss
SRSA when Bob and Alice have different collision factors. The value of case IV is higher zss
than that of II and III, which indicates that the collision factor plays a smaller role than the s
knowledge itself in SC. These results also show that learning can improve SC quality with  2e7
only partial background knowledge, but there is a limit. On the other hand, the variance of 2ss
case I keeps decreasing, and the other three cases also stabilize after peaking quickly. This zee
further suggest that learning can evolve continuously with full knowledge, but there is an 200
upper limit to learning with partial or no knowledge. 201

5. Conclusion 202

In this paper, we presented the concept of semantic expansion and knowledge collision  zes
in SC. It represents the combination and superposition of information by the sender. Based 204
on semantic expansion, we further proposed a semantic communication system called 205
EXP-SC. Moreover, the semantic expansion corresponds to knowledge collision, which 206
provides possibility for the evolution and upgrading of communication systems. On the 27
other hand, we reached some conclusions for semantic information theory in the context of 208
asynchronous knowledge scaling up updates, getting some bounds for SC. Specifically, the 200
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receiver’s understanding of the knowledge collision and updates determines the effect of 300
communication. 301

Semantic communication is evolving towards intelligence. The insights gained from  so:
this work may be of assistance to the future semantic communication system and 6G. Itis sos
also expected to pave the way for the design of next-generation real-time data networking  sos
and will provide the foundational technology for a plethora of socially useful services, sos
including autonomous transportation, consumer robotics, VR/AR and metaverse. 306

Author Contributions: Conceptualization, PF. and G.X.; methodology, PF. and G.X,; software, G.X.; 307
formal analysis, PF. and G.X.; writing—original draft preparation, G.X.; writing—review and editing, sos
PF. and G.X;; visualization, PF. and G.X.; supervision, P.F. All authors have read and agreed to the 300
published version of the manuscript. 310

Funding: This work was supported by the National Key Research and Development Program of = s11

China (Grant NO.2021YFA1000504). 312
Institutional Review Board Statement: Not applicable 313
Informed Consent Statement: Not applicable 314
Data Availability Statement: Not applicable 315
Acknowledgments: We thank Prof. Jinho for the help and source code in [5]. 316
Conflicts of Interest: The authors declare no conflict of interest. 317
Appendix A Proof of the mutual information for three special channel cases 318

I. The explicit channel is noiseless. Since S = S, we have I(S;$) = H(S) and

I(K4;K3g|S,S) = I(K4;Kp|S). Moreover, S is a function of $, it follow that I(S; K3|$) =

0. Similarly, $ is also a function of S, we obtain I(S5; K4|S) = 0. Thus, the formula (11)
can be simplified to

I(T;T) = H(S) + I(K4; K3|S), (A1)

II. The implicit channel is noiseless. Since K4 = K, the mutual information between T
and T is written

I(T;T) = 1(S;8) + I(K4;Kg|S,S) + I(S;Kg|S) + 1(S5;K4|S) (A2)
=1(S;S) + H(K4lS,S) + I(S;Ka|S) + 1(S;KalS) (A3)
=1(S;8) + H(Ks) — I(Ka;S,8) + I(S; Ka|S) + I(S;K4|S) (A4)
=1(S;8) + H(K4) — I(K4;S) — I(K4;8|S) + I(S; KalS) + I($;K4|S) (A5)
=1(5;8) + H(Ka) — I(Ka; )+1(I<A,S\S) (A6)
=1(S;8) + H(K4) — I(K4;S; 9). (A7)

It can also be expressed as
I(T;T) = I(S;S) + H(Kg) — I(Kp; S; S). (A8)

III. Both explicit and implicit channels are noiseless, i.e.,, S = S,K4 = Kg. In this
setting, we have I(K; Kg|S) = H(K4|S). Thus, Eq. (18) is written

I(T;T) = H(S) + H(K4|S) = H(K4,S) = H(T). (A9)
Similarly, we also obtain I(T; T) = H(T). 310
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