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Abstract: Delayed cancer detection is one of the common causes of poor prognosis in case of many  
cancers including the cancers of the oral cavity. Despite improvement and development of new and 
efficient gene therapy treatments, very little has been done to algorithmically assess the impedance 
of these carcinomas. In this work, we attempt to annotate viable attributes in  oral cancer gene da-
tasets for identification of gingivobuccal cancer (GBC). We further apply supervised and unsuper-
vised machine learning methods to the gene datasets revealing key candidate attributes for GBC 
prognosis. Our work highlights the importance of automated identification of key genes responsible 
for GBC  that could perhaps be easily replicated to other forms of oral cancer detection.  
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Introduction  
Oral cavity cancer (OCC) is the tenth most common malignant tumor in the world 

and the third most common in southeast Asia. The common subsite recorded in OCC in 
third world countries, especially in Indian communities is gingivobuccal cancer (GBC) 
constituting about 40% of all cases, whereas the cases diagnosed in the western world are 
about 10% (1). They are usually associated with delayed clinical detection, poor prognosis, 
absence of specific biomarkers for the disease, and expensive therapeutic alternatives (2). 
The GBC comprises buccal mucosa, gingivobuccal sulcus, alveolus, and retromolar area 
cancers and is commonly seen in younger patients.  While certain precancerous condi-
tions and lesions such as submucous fibrosis, leukoplakia, and erythroplakia are known 
causes, the dietary deficiencies such as iron, Vitamins A, C, and E are associated with oral 
cancers.  The processes such as segregation of chromosomes, genomic copy number, loss 
of heterozygosity, telomere stabilities, regulations of cell-cycle checkpoints, DNA damage 
repairs, and defects in Notch signaling pathways are involved in causing oral cancer (3). 
Malignant odontogenic tumors emanate de novo within jawbones, from epithelium con-
tained within cyst linings, or from malignant transformation of benign odontogenic tu-
mors. The lesions most commonly are the primary intraosseous carcinomas and include 
the mucoepidermoid carcinoma arising within the bone, and the ameloblastic carcinoma 
(4).  The WHO classification of odontogenic carcinoma dissects malignant ameloblas-
toma from primary intraosseous carcinoma (5). As diagnosis is entrenched by a biopsy of 
the jaw lesion, the definitive analysis prospective is of a usually poor outcome. Early signs 
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and symptoms include soreness or pain in jaws which could extend through chew-
ing/swallowing followed by loosening of teeth and bleeding from mouth. While a good 
examination is heralded by visualization in the buccal mucosa, the current high end tran-
soral robotic surgeries (TORS) besides vaccines have been in use (6).  

Over the last decade, several treatments have been put in use with consistent use of 
effective gene therapies. New discoveries about how changes in the DNA of cells in the 
oral cavity and oropharynx cause these cells to become cancerous are being applied to 
experimental treatments intended to reverse these changes. For example, clinical trials are 
testing whether it is possible to replace abnormal tumor suppressor genes (such as the p53 
gene) of oral cancer cells with a normal copy, to restore normal growth control (7). Ma-
chine learning is a computational method that improves performance to make accurate 
predictions when data analysis and statistical methods do not have enough information 
about the underlying distribution of data (8). Furthermore from our previous experience, 
machine learning algorithms have been applied to various fields in genomics (9), 
healthcare (10), computer vision (Malik et al. 2021) etc.  As the applications of these meth-
ods have assisted precision medicine scale, this would eventually bridge the gaps in oral 
squamous cell carcinoma (12). Ahmed et al have earlier investigated these methods from 
the AI dental imaging perspective. The metadata constituting characteristics, study and 
control groups were extracted for feature selection paradigms which resulted in under-
standing the implications of the OSCC. Nevertheless,  AI could predict failures to assess 
the clinical performance in such carcinomas (13). Through the use of statistical methods, 
the variables (weights) in the algorithm undergo systematic updates representing the dis-
tribution of the training data during the training phase. The test phase presents unique 
unseen data to the same algorithm weights and makes a classification/prediction for this 
new data point.  As these algorithms can help uncover key insights within data mining 
projects, subsequent decision-making drives can ideally impact key growth metrics. In the 
present work, we employed a mixture of supervised and unsupervised algorithms and 
attempted to understand key attributes for prognosis of oral cancer. While supervised 
methods are much simpler and straightforward to use for our study, we wanted to briefly 
touch upon the usefulness of unsupervised methods for motivating further research with 
this combination of data. A detailed gist of results employing Support Vector Machine 
(SVM), Naïve Bayes, Decision trees, Multi Layer Perceptron, Logistic Regression and K 
Means (unsupervised) are discussed.  

Materials and Methods 
Datasets and transformation  

We used datasets for four genes related to oral cancer: PIK3CA, KRAS, TP53 and Gin-
gival. The dataset has the following five features: (i) name, (ii) gene(s), (iii) protein change, 
(iv) condition(s), clinical significance (Last reviewed). TP53 and Gingival have an addi-
tional Review Status feature. Number of samples vary for each dataset: PIK3CA has 544 
instances, KRAS has 330 instances, TP53 has 2186 instances and Gingival has 2107 in-
stances (Table S1). 
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Figure 1: Machine Learning pipeline used for our analysis. 

We transformed alphanumeric features into categorical features for application of the 
following Machine Learning Algorithms (as given below in section Classifier design and 
training). The first instance of data values of protein change, condition(s), clinical signifi-
cance (last reviewed) and review status was used. Then data values of features such as 
gene(s), protein change, condition(s), clinical significance (last reviewed) and review sta-
tus were converted into numeric keys using Preprocessing and Transformation classes in 
scikit-learn. Binary and numeric weightages were assigned to each of the features includ-
ing protein change, condition(s), clinical significance (last reviewed) and review status to 
evaluate the performance based on data annotations. 

Experiments 
We performed four experiments for PIK3CA and KRAS datasets, and six experiments 

for TP53 and Gingival using different combinations of features. The following six experi-
ments separately used one of the following four features: (i) all the features in a dataset, 
(ii) only binary features, (iii) only non-binary features, (iv) all features except review status 
(for datasets (TP53, Gingival) that contains review status as a feature) (v) only non-binary 
features with no review status (for datasets (TP53, Gingival) that contains review status 
as a feature), (vi) only binary features with no review status (for datasets (TP53, Gingival) 
that contains review status as a feature) 

Classifier design and training 
We used six major classifiers to train and test the model: (i) Support Vector Machine 

(ii) Naïve Bayes (iii) Decision trees (iv) Perceptron (v) Logistic Regression and (vi) K 
Means (unsupervised). We randomly split the dataset to use 80% for training and 20% for 
testing. We used off-the-shelf algorithms implemented in scikit-learn for these experi-
ments and used other libraries like numpy, pandas, and matplotlib available in Python. 
While unsupervised algorithms are hard to implement on such data, we used only K 
Means for a flavor of unsupervised learning. Further analyses with algorithms like K Me-
doids, PCA, etc. are left for future work. 

Performance evaluation 
Evaluating the performance of learning algorithms is a central aspect of machine 

learning. We used an 80-20 train-test split to test the performance of the predictive and 
classification models. To mitigate the overfitting problem, the following measures were 
used to evaluate the performance six classifiers based on accuracy which is defined as the 
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percentage of correct predictions for the test data. It can be calculated by dividing the 
number of correct predictions by the number of total predictions. The measure is defined 
as follows: 

Accuracy = (TP + TN) / (TP + FN + FP + TN) 
where TP: True Positives (positive samples classified correctly as positive), TN: True 

Negatives (negative samples classified correctly as negative), FP: False Positives (negative 
samples predicted wrongly as positive) and FN: False Negatives (positive samples pre-
dicted wrongly as negative). The precision and recall were achieved with inherent accu-
racy.  

Results and Discussion 
PIK3CA among the select genes with highest accuracy  

One of the interesting findings that we attempted in our study was to identify those 
gene datasets that are significantly enriched from machine learning heuristics. We observe 
that there is a significant amount of attribute fitting with instances taken up from all da-
tasets.  While all  instances were used and compared across all the algorithms, to further 
gain insights into this, the accuracies were tabulated accordingly ( Figure 2; supplemen-
tary table 1). For PIK3CA,  experiment (i) accuracy varies between 78% (decision tree) 
and 48% (Naïve Bayes). For experiment (ii) accuracy varies between 67% (MLP) and 41% 
(Naïve Bayes).  For experiment (iii) accuracy varies between 77% (decision tree) and 44% 
(Naïve Bayes). On the other hand, for KRAS, experiment (i) accuracy varies between 62% 
(decision tree) and 27% (K Means). For experiment (ii) accuracy varies between 62% (de-
cision tree) and 17% (Naïve Bayes). For experiment (iii) accuracy varies between 53% (de-
cision tree) and 18% (Naïve Bayes). Whereas TP53 showed  variable changes, for experi-
ment (i) accuracy varies between 61% (MLP) and 35% (K Means). For experiment (ii) ac-
curacy varies between 56% (SVM, MLP and decision tree) and 35% (K Means). For exper-
iment (iii) accuracy varies between 55% (MLP) and 8% (Naïve Bayes). For experiment (iv) 
accuracy varies between 57% (MLP) and 34% (K Means). and for experiment (v) accuracy 
varies between 50% (decision tree) and 21 (K Means). For experiment (vi) accuracy varies 
between 51% (decision tree, logistic regression, MLP, SVM) and 35% (K Means). For gin-
gival datasets, experiment (i) accuracy varies between 63% (MLP) and 29% (K Means), for 
experiment (ii) accuracy varies between 49% (MLP) and 29% (K Means), for experiment 
(iii) accuracy varies between 63% (decision tree) and 29% (K Means), for experiment (iv) 
accuracy varies between 54% (MLP) and 29% (K Means), for experiment (v) accuracy var-
ies between 52% (MLP) and 29% (K Means) and for experiment (vi) accuracy varies be-
tween 40% (decision tree, logistic regression, MLP, SVM) and 30% (K Means clustering). 
From above results it is evident that only experiment (i) is shown to have highest accuracy 
when compared with other experiments from (ii) to (vi) (Table 1) 

Table 1: ML Accuracies for each Oral Cancer Genes. 

  
ML Algorithms (Accuracies %) 

SVM MLP Logistic re-
gression 

Naïve 
Byes 

Decision 
Tree 

K-means Unsu-
pervised 

Genes 

PIK3CA 71 66 56 48 78 48 
KRAS 41 55 39 17 62 27 
TP53 56 63 54 48 58 29 

Gingival 53 61 42 54 53 35 
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Figure 2:  Machine Learning accuracies for vivid datasets exploited using various experiments  

What we aimed to achieve from our pilot study is to employ gene selection and ask 
whether or not the lesser known changes in attributes can by choice be ignored for further 
prognosis. In other words, in nature, are there any genes that are repetitively expressed 
with inherent changes, attempted in our machine learning heuristics (15).  The virtual 
experiments on ML heuristics which we employed sets a base for oral cancer prognosis, 
however there is a dearth of well annotated or informative attributes which is a major 
limitation of our work.  Theoretically, with more instances and genes segregated from 
the attributes, we could have gotten a better performance and overcome the overfitting 
problem albeit the fact that our finding the relevant four genes augments the hypothesis 
that it may not always be true.  Our experiments and framework can further be extended 
for revealing the effects of key attributes from genetic data, and be applied to predict out-
comes like the chances of survival, recurrence, etc. On the other hand, some work has been 
seen around survival risk stratification (16), and survival prediction (17) using similar 
machine learning based methods. Majority of these works have patient datasets collected 
for several years even as these yield bona fide results, they could be prone to biases. We 
found the application of Principal Component Analysis (PCA) and other techniques for 
data reduction to be prevalent in multiple studies.  

Initially, we ran the experiments with the same data splits and the same machine 
learning algorithms using the java-based package Weka (18,19). While we found the re-
sults to be clearly overfitting to our data, we speculate that Weka assigns every non-nu-
meric instance to be a unique key and processes them individually. For example, when A-
B was arranged as B-A in the dataset (without ordering-sensitive features), Weka is unable 
to break them and considers them as two keys instead of one. A clear limitation for this 
approach is indicative of  certain data types, as it also relies heavily on data annotation. 
Having data annotated (manually and programatically) to account for such orderings, we 
find that our models do not overfit and perform better which could be the plausible reason 
why many annotated cancer datasets have. This is also in agreement with the fact that the 
scarcity of publicly available image datasets may impede early patho-significant diagno-
ses for cancers taking the machine learning paradigm (20). On the other hand, to over-
come the overfitting and failed model as we postulated, deep learning models  could 
bring great promise for accurate prognosis, if in case the datasets have tumorigenic data, 
infiltrating lymphocytes and multiclass labeling which can herald predicting disease 
states (13). Such data could then be divided into risk groups and then differentiate the 
data from good to poor prognosis. Having said this, deep learning clubbed with precise 
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detection may then be used to identify oral cancer datasets albeit the fact that there must 
be high-end computability to identify multidimensional datasets. 

Given the success of multimodal algorithms (21), we believe our analysis can be fur-
ther strengthened by using microscopic images of cells from the buccal cavity alongside 
annotated genetic data. Using electron microscopy and image segmentation algorithms, 
it is now possible to segment the image upto cellular level, precisely pinpointing the areas 
of carcinoma. Such precise positions can help prevent the pitfalls of annotation errors, 
making our analysis more robust. We speculate that such analysis can also aid in the pre-
diction of early onset of cancers (22, 14). 

Conclusions  
Oral cancer prognosis is one of the burgeoning problems and our work employing 

machine learning heuristics could lay emphasis in piloting candidate biomarkers. As di-
agnosis could be better aided for prognosis and theranostics, survival and therapies must 
be in place and despite strategic improvements in these areas, this is still in infancy. Ma-
chine learning and artificial intelligence (AI) aided methods have enhanced early detec-
tion in reducing  mortality and morbidity. Indefatigably, there are not many metadata 
based machine learning heuristics assessing the impedance of these carcinomas. In sum-
mary, we presented a machine learning based approach to predict the gene dataset which 
reveals key candidate attributes for GBC prognosis. We have attempted to fill these gaps 
by performing and labeling classes, accurate identification of viable attributes for such 
cancers. Furthermore, we found that deterministic methods perform well with limited 
data, while non-deterministic methods excel in performance with large datasets wherein 
supervised learning methods perform better than unsupervised methods. Nonetheless, 
our experiments had more supervised methods than unsupervised ones, which we 
wanted to establish the use case for such an analysis. We argue that a multitude of unsu-
pervised and semi-supervised methods might be able to better model these data distribu-
tions which seldom have accurate annotations.  However, this may be due to the lack of 
machine learning heuristics which could be used as models and vice versa for a better  
modeled framework.  
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