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Abstract: Delayed cancer detection is one of the common causes of poor prognosis in case of many
cancers including the cancers of the oral cavity. Despite improvement and development of new and
efficient gene therapy treatments, very little has been done to algorithmically assess the impedance
of these carcinomas. In this work, we attempt to annotate viable attributes in oral cancer gene da-
tasets for identification of gingivobuccal cancer (GBC). We further apply supervised and unsuper-
vised machine learning methods to the gene datasets revealing key candidate attributes for GBC
prognosis. Our work highlights the importance of automated identification of key genes responsible
for GBC that could perhaps be easily replicated to other forms of oral cancer detection.
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Introduction

Oral cavity cancer (OCC) is the tenth most common malignant tumor in the world
and the third most common in southeast Asia. The common subsite recorded in OCC in
third world countries, especially in Indian communities is gingivobuccal cancer (GBC)
constituting about 40% of all cases, whereas the cases diagnosed in the western world are
about 10% (1). They are usually associated with delayed clinical detection, poor prognosis,
absence of specific biomarkers for the disease, and expensive therapeutic alternatives (2).
The GBC comprises buccal mucosa, gingivobuccal sulcus, alveolus, and retromolar area
cancers and is commonly seen in younger patients. While certain precancerous condi-
tions and lesions such as submucous fibrosis, leukoplakia, and erythroplakia are known
causes, the dietary deficiencies such as iron, Vitamins A, C, and E are associated with oral
cancers. The processes such as segregation of chromosomes, genomic copy number, loss
of heterozygosity, telomere stabilities, regulations of cell-cycle checkpoints, DNA damage
repairs, and defects in Notch signaling pathways are involved in causing oral cancer (3).
Malignant odontogenic tumors emanate de novo within jawbones, from epithelium con-
tained within cyst linings, or from malignant transformation of benign odontogenic tu-
mors. The lesions most commonly are the primary intraosseous carcinomas and include
the mucoepidermoid carcinoma arising within the bone, and the ameloblastic carcinoma
(4). The WHO classification of odontogenic carcinoma dissects malignant ameloblas-
toma from primary intraosseous carcinoma (5). As diagnosis is entrenched by a biopsy of
the jaw lesion, the definitive analysis prospective is of a usually poor outcome. Early signs
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and symptoms include soreness or pain in jaws which could extend through chew-
ing/swallowing followed by loosening of teeth and bleeding from mouth. While a good
examination is heralded by visualization in the buccal mucosa, the current high end tran-
soral robotic surgeries (TORS) besides vaccines have been in use (6).

Over the last decade, several treatments have been put in use with consistent use of
effective gene therapies. New discoveries about how changes in the DNA of cells in the
oral cavity and oropharynx cause these cells to become cancerous are being applied to
experimental treatments intended to reverse these changes. For example, clinical trials are
testing whether it is possible to replace abnormal tumor suppressor genes (such as the p53
gene) of oral cancer cells with a normal copy, to restore normal growth control (7). Ma-
chine learning is a computational method that improves performance to make accurate
predictions when data analysis and statistical methods do not have enough information
about the underlying distribution of data (8). Furthermore from our previous experience,
machine learning algorithms have been applied to various fields in genomics (9),
healthcare (10), computer vision (Malik et al. 2021) etc.  As the applications of these meth-
ods have assisted precision medicine scale, this would eventually bridge the gaps in oral
squamous cell carcinoma (12). Ahmed et al have earlier investigated these methods from
the Al dental imaging perspective. The metadata constituting characteristics, study and
control groups were extracted for feature selection paradigms which resulted in under-
standing the implications of the OSCC. Nevertheless, Al could predict failures to assess
the clinical performance in such carcinomas (13). Through the use of statistical methods,
the variables (weights) in the algorithm undergo systematic updates representing the dis-
tribution of the training data during the training phase. The test phase presents unique
unseen data to the same algorithm weights and makes a classification/prediction for this
new data point. As these algorithms can help uncover key insights within data mining
projects, subsequent decision-making drives can ideally impact key growth metrics. In the
present work, we employed a mixture of supervised and unsupervised algorithms and
attempted to understand key attributes for prognosis of oral cancer. While supervised
methods are much simpler and straightforward to use for our study, we wanted to briefly
touch upon the usefulness of unsupervised methods for motivating further research with
this combination of data. A detailed gist of results employing Support Vector Machine
(SVM), Naive Bayes, Decision trees, Multi Layer Perceptron, Logistic Regression and K
Means (unsupervised) are discussed.

Materials and Methods
Datasets and transformation

We used datasets for four genes related to oral cancer: PIK3CA, KRAS, TP53 and Gin-
gival. The dataset has the following five features: (i) name, (ii) gene(s), (iii) protein change,
(iv) condition(s), clinical significance (Last reviewed). TP53 and Gingival have an addi-
tional Review Status feature. Number of samples vary for each dataset: PIK3CA has 544
instances, KRAS has 330 instances, TP53 has 2186 instances and Gingival has 2107 in-
stances (Table S1).
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Figure 1: Machine Learning pipeline used for our analysis.

We transformed alphanumeric features into categorical features for application of the
following Machine Learning Algorithms (as given below in section Classifier design and
training). The first instance of data values of protein change, condition(s), clinical signifi-
cance (last reviewed) and review status was used. Then data values of features such as
gene(s), protein change, condition(s), clinical significance (last reviewed) and review sta-
tus were converted into numeric keys using Preprocessing and Transformation classes in
scikit-learn. Binary and numeric weightages were assigned to each of the features includ-
ing protein change, condition(s), clinical significance (last reviewed) and review status to
evaluate the performance based on data annotations.

Experiments

We performed four experiments for PIK3CA and KRAS datasets, and six experiments
for TP53 and Gingival using different combinations of features. The following six experi-
ments separately used one of the following four features: (i) all the features in a dataset,
(ii) only binary features, (iii) only non-binary features, (iv) all features except review status
(for datasets (TP53, Gingival) that contains review status as a feature) (v) only non-binary
features with no review status (for datasets (TP53, Gingival) that contains review status
as a feature), (vi) only binary features with no review status (for datasets (TP53, Gingival)
that contains review status as a feature)

Classifier design and training

We used six major classifiers to train and test the model: (i) Support Vector Machine
(ii) Naive Bayes (iii) Decision trees (iv) Perceptron (v) Logistic Regression and (vi) K
Means (unsupervised). We randomly split the dataset to use 80% for training and 20% for
testing. We used off-the-shelf algorithms implemented in scikit-learn for these experi-
ments and used other libraries like numpy, pandas, and matplotlib available in Python.
While unsupervised algorithms are hard to implement on such data, we used only K
Means for a flavor of unsupervised learning. Further analyses with algorithms like K Me-
doids, PCA, etc. are left for future work.

Performance evaluation

Evaluating the performance of learning algorithms is a central aspect of machine
learning. We used an 80-20 train-test split to test the performance of the predictive and
classification models. To mitigate the overfitting problem, the following measures were
used to evaluate the performance six classifiers based on accuracy which is defined as the
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percentage of correct predictions for the test data. It can be calculated by dividing the
number of correct predictions by the number of total predictions. The measure is defined
as follows:

Accuracy = (TP+TN) / (TP + FN + FP + TN)

where TP: True Positives (positive samples classified correctly as positive), TN: True
Negatives (negative samples classified correctly as negative), FP: False Positives (negative
samples predicted wrongly as positive) and FN: False Negatives (positive samples pre-
dicted wrongly as negative). The precision and recall were achieved with inherent accu-
racy.

Results and Discussion
PIK3CA among the select genes with highest accuracy

One of the interesting findings that we attempted in our study was to identify those
gene datasets that are significantly enriched from machine learning heuristics. We observe
that there is a significant amount of attribute fitting with instances taken up from all da-
tasets. Whileall instances were used and compared across all the algorithms, to further
gain insights into this, the accuracies were tabulated accordingly ( Figure 2; supplemen-
tary table 1). For PIK3CA, experiment (i) accuracy varies between 78% (decision tree)
and 48% (Naive Bayes). For experiment (ii) accuracy varies between 67% (MLP) and 41%
(Naive Bayes). For experiment (iii) accuracy varies between 77% (decision tree) and 44%
(Naive Bayes). On the other hand, for KRAS, experiment (i) accuracy varies between 62%
(decision tree) and 27% (K Means). For experiment (ii) accuracy varies between 62% (de-
cision tree) and 17% (Naive Bayes). For experiment (iii) accuracy varies between 53% (de-
cision tree) and 18% (Naive Bayes). Whereas TP53 showed variable changes, for experi-
ment (i) accuracy varies between 61% (MLP) and 35% (K Means). For experiment (ii) ac-
curacy varies between 56% (SVM, MLP and decision tree) and 35% (K Means). For exper-
iment (iii) accuracy varies between 55% (MLP) and 8% (Naive Bayes). For experiment (iv)
accuracy varies between 57% (MLP) and 34% (K Means). and for experiment (v) accuracy
varies between 50% (decision tree) and 21 (K Means). For experiment (vi) accuracy varies
between 51% (decision tree, logistic regression, MLP, SVM) and 35% (K Means). For gin-
gival datasets, experiment (i) accuracy varies between 63% (MLP) and 29% (K Means), for
experiment (ii) accuracy varies between 49% (MLP) and 29% (K Means), for experiment
(iif) accuracy varies between 63% (decision tree) and 29% (K Means), for experiment (iv)
accuracy varies between 54% (MLP) and 29% (K Means), for experiment (v) accuracy var-
ies between 52% (MLP) and 29% (K Means) and for experiment (vi) accuracy varies be-
tween 40% (decision tree, logistic regression, MLP, SVM) and 30% (K Means clustering).
From above results it is evident that only experiment (i) is shown to have highest accuracy
when compared with other experiments from (ii) to (vi) (Table 1)

Table 1: ML Accuracies for each Oral Cancer Genes.

ML Algorithms (Accuracies %)
Logistic re- Naive Decision K-means Unsu-

SVM  MLP

gression Byes Tree pervised
PIK3CA 71 66 56 48 78 48
Genes KRAS 41 55 39 17 62 27
TP53 56 63 54 48 58 29

Gingival 53 61 42 54 53 35
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Figure 2: Machine Learning accuracies for vivid datasets exploited using various experiments

What we aimed to achieve from our pilot study is to employ gene selection and ask
whether or not the lesser known changes in attributes can by choice be ignored for further
prognosis. In other words, in nature, are there any genes that are repetitively expressed
with inherent changes, attempted in our machine learning heuristics (15). The virtual
experiments on ML heuristics which we employed sets a base for oral cancer prognosis,
however there is a dearth of well annotated or informative attributes which is a major
limitation of our work. Theoretically, with more instances and genes segregated from
the attributes, we could have gotten a better performance and overcome the overfitting
problem albeit the fact that our finding the relevant four genes augments the hypothesis
that it may not always be true. Our experiments and framework can further be extended
for revealing the effects of key attributes from genetic data, and be applied to predict out-
comes like the chances of survival, recurrence, etc. On the other hand, some work has been
seen around survival risk stratification (16), and survival prediction (17) using similar
machine learning based methods. Majority of these works have patient datasets collected
for several years even as these yield bona fide results, they could be prone to biases. We
found the application of Principal Component Analysis (PCA) and other techniques for
data reduction to be prevalent in multiple studies.

Initially, we ran the experiments with the same data splits and the same machine
learning algorithms using the java-based package Weka (18,19). While we found the re-
sults to be clearly overfitting to our data, we speculate that Weka assigns every non-nu-
meric instance to be a unique key and processes them individually. For example, when A-
B was arranged as B-A in the dataset (without ordering-sensitive features), Weka is unable
to break them and considers them as two keys instead of one. A clear limitation for this
approach is indicative of certain data types, as it also relies heavily on data annotation.
Having data annotated (manually and programatically) to account for such orderings, we
find that our models do not overfit and perform better which could be the plausible reason
why many annotated cancer datasets have. This is also in agreement with the fact that the
scarcity of publicly available image datasets may impede early patho-significant diagno-
ses for cancers taking the machine learning paradigm (20). On the other hand, to over-
come the overfitting and failed model as we postulated, deep learning models could
bring great promise for accurate prognosis, if in case the datasets have tumorigenic data,
infiltrating lymphocytes and multiclass labeling which can herald predicting disease
states (13). Such data could then be divided into risk groups and then differentiate the
data from good to poor prognosis. Having said this, deep learning clubbed with precise
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detection may then be used to identify oral cancer datasets albeit the fact that there must
be high-end computability to identify multidimensional datasets.

Given the success of multimodal algorithms (21), we believe our analysis can be fur-
ther strengthened by using microscopic images of cells from the buccal cavity alongside
annotated genetic data. Using electron microscopy and image segmentation algorithms,
it is now possible to segment the image upto cellular level, precisely pinpointing the areas
of carcinoma. Such precise positions can help prevent the pitfalls of annotation errors,
making our analysis more robust. We speculate that such analysis can also aid in the pre-
diction of early onset of cancers (22, 14).

Conclusions

Oral cancer prognosis is one of the burgeoning problems and our work employing
machine learning heuristics could lay emphasis in piloting candidate biomarkers. As di-
agnosis could be better aided for prognosis and theranostics, survival and therapies must
be in place and despite strategic improvements in these areas, this is still in infancy. Ma-
chine learning and artificial intelligence (AI) aided methods have enhanced early detec-
tion in reducing mortality and morbidity. Indefatigably, there are not many metadata
based machine learning heuristics assessing the impedance of these carcinomas. In sum-
mary, we presented a machine learning based approach to predict the gene dataset which
reveals key candidate attributes for GBC prognosis. We have attempted to fill these gaps
by performing and labeling classes, accurate identification of viable attributes for such
cancers. Furthermore, we found that deterministic methods perform well with limited
data, while non-deterministic methods excel in performance with large datasets wherein
supervised learning methods perform better than unsupervised methods. Nonetheless,
our experiments had more supervised methods than unsupervised ones, which we
wanted to establish the use case for such an analysis. We argue that a multitude of unsu-
pervised and semi-supervised methods might be able to better model these data distribu-
tions which seldom have accurate annotations. However, this may be due to the lack of
machine learning heuristics which could be used as models and vice versa for a better
modeled framework.
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