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Abstract

Spherically symmetric solution in 4D Einstein—Gauss—Bonnet grav-
ity coupled to modified logarithmic nonlinear electrodynamics (Mod-
LogNED) is found. This solution at infinity possesses the charged
black hole Reissner—Nordstrom behavior. We study the black hole
thermodynamics, entropy, shadow, energy emission rate and quasi-
normal modes. It was shown that black holes can possess the phase
transitions and at some range of event horizon radii black holes are
stable. The entropy has the logarithmic correction to the area law.
The shadow radii were calculated for variety of parameters. We found
that there is a peak of the black hole energy emission rate. The real
and imaginary parts of the quasinormal modes frequencies were cal-
culated. We investigate energy conditions of ModLogNED.

Keywords: Einstein—Gauss—Bonnet gravity; nonlinear electrodynamics;
Hawking temperature; entropy; heat capacity; black hole shadow; energy
emission rate; quasinormal modes

1 Introduction

At low energy the action of the heterotic string theory includes higher order
curvature terms [1, 2, 3, 4, 5]. Therefore, it is of interest to study grav-
ity action with the Gauss—Bonnet (GB) part which possesses higher order
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curvature terms. The GB term is a topological invariant in four dimen-
sion (4D) and before regularization does not contribute to the equation of
motion. But it was shown by Glavan and Lin [6] that re-scaling the cou-
pling constant, after regularization, GB term contributes to the equation of
motion. The 4D Einstein-GB (EGB) theory, that includes the Einstein—
Hilbert action plus GB term, is a particular case of the Lovelock theory. It
represents the generalization of Einstein’s general relativity for higher di-
mensions and EGB theory gives covariant second-order field equations. The
Glavan and Lin approach was discussed in [7, 8, 9, 10, 11, 12, 13, 14, 15].
The consistent theory of 4D EGB gravity was proposed in [13, 14, 15].
It is in agreement with the Lovelock theorem [20] and possesses two dy-
namical degrees of freedom breaking the temporal diffeomorphism invari-
ance. It is worth noting that the [13, 14, 15] theory, in the spherically-
symmetric metrics, gives the solution which is a solution in the framework
of [6] scheme (see [16]). Some aspects of 4D EGB gravity were considered in
(17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].
Here, we study the black hole thermodynamics, entropy, shadow, energy
emission rate and quasinormal modes in the framework of the 4D EGB grav-
ity coupled to ModLogNED proposed in [38]. The black hole quasinormal
modes, deflection angles, shadows and the Hawking radiation were studied
in [39, 40, 41, 42, 43, 44, 45].

The structure of the paper is as follows. In Sect. 2, we obtain the spher-
ically symmetric solution of black holes in the 4D EGB gravity coupled to
ModLogNED. At infinity the Reissner—Nordstrom behavior of the charged
black holes takes place. The black hole thermodynamics is studied in Sect. 3.
We calculate the Hawking temperature, the heat capacity and the entropy.
At some parameters second order phase transitions occur. The entropy in-
cludes the logarithmic correction to Bekenstein-Hawking entropy. In Sect.
4 the black shadow is investigated. We calculate the photon sphere, the
event horizon, and the shadow radii. The black hole energy emission rate
is investigate in Sect. 5. In Sect. 6 we study quasinormal modes and find
complex frequencies. Section 7 is a summery. In Appendix energy conditions
of ModLogNED are investigated.
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2 4D EGB model

The action of EGB gravity coupled to nonlinear electrodynamics (NED) in
D-dimensions is given by

I:/dDm\/—_g

where G is the Newton’s constant, o has the dimension of (length)?. The
Lagrangian of ModLogNED, proposed in [38], is given by

1
167G

(R+ aLlap) + ﬁNED] ; (1)

2F
Lyep = —\8/;111 (14—6@) , (2)

where we use Gaussian units. The parameter 5 (f > 0) possesses the di-
mension of (length)?*, F,, = 9,A, — 9,4, is the field strength tensor, and
F = (1/4)F,, F* = (B* — E*)/2, where B and F are the induction mag-
netic and electric fields, correspondingly. Making use of the limit 5 — 0 in
Eq. (2), we arrive at the Maxwell’s Lagrangian £y, = —F/(4xw). The GB
Lagrangian has the structure

Lop = R"PR,,05 —AR™R,, + R%. (3)

By varying action (1) with respect to the metric we have EGB equations

1
R, — EQ’WR +aH,, = -8rGT,,, (4)

1
Hyu =2 (RRyy = 2RyaR% — 2Ry0s R — Ryuapn RO7) — 5Languw,  (5)

where T}, is the stress (energy-momentum) tensor. We consider magnetic
black holes with the spherically symmetric metric in D dimension
dr?
ds* = —f(r)dt* + ——
f(r)
The d2%_, is the line element of the unit (D — 2)-dimensional sphere. By
following [6] we replace @ by a — a/(D —4) and taking the limit D — 4. We
study the magnetic black holes and find F = ¢*/(2r?), where ¢ is a magnetic
charge. Then the magnetic energy density becomes [38]

p:T()O:—c:‘/?ln(Hﬂ\/ﬁ): qu ln<1+5q>. (7)

+7r2dQ3, . (6)
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At the limit D — 4 and from Eq. (4) we obtain
raf(r) —r* —2a)f (r) — (r* + af(r) —2a)f(r) + r* —a = 2r*Gp. (8)
By virtue of Eq. (7 ) one finds

47r/07"7~2pdr:mM—1—2qﬁ [rln (1—1—63) — 24/fBqarctan (%ﬂﬁ_q)] , (9

B © , g Bq\ ,  wg*?
mM—47r/0 rpdr—zﬁln<1+r2>dr—2\/ﬁ, (10)
where m; is the black hole magnetic mass. Making use of Egs. (9) and (10)
we obtain the solution to Eq. (8)

«

h(r) :mM+i [rln (1+f§> — 24/Pq arctan <\/f_q>1 , (11)

f(r):1+;2 (li\/l—l—Sff(m—i—h(r)),

20
where m is the constant of integration (the Schwarzschild mass) and the
total black hole mass is M = m + mj; which is the ADM mass. It is
worth mentioning that for spherically symmetric D-dimensional line element
(6), the Weyl tensor of the D-dimensional spatial part becomes zero [16].
Therefore, solution (11) corresponds to the consistent theory [13, 14, 15]. By
introducing the dimensionless variable = r//Bq, Eq. (11) is rewritten in

the form
f(z) = 1+Cx2j:0\/x4+m(A—Bg(a7)), (12)
where
_ 8aGM _ 4aG ~ Pq B 1 1
A= (Bg)72 B = 5 C= 50y’ g(x) = 2arctan <$> xln (1—|— $2> .
(13)

We will use the negative branch in Egs. (11) and (12) with the minus sign
of the square root to have black hokes without ghosts [17]. As r — oo the
metric function f(r) (11), for the negative branch, becomes

f(r)y=1- ——tg O(r=?), (14)

showing, at infinity, the Reissner—Nordstrom behavior of the charged black
holes. The plot of function (12) is depicted in Fig. 1. According to Fig. 1
there can be two horizons or one (the extreme) horizon of black holes.

4
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Figure 1: The plot of the function f(z) for A =15,C = 1.

3 The black hole thermodynamics
To study the black hole thermal stability we will calculate the Hawking tem-
perature

f'(r) fr=r,

At '

where 7, is the event horizon radius (f(r;) = 0). From Egs. (12) and (15)
one finds the Hawking temperature

Tu(ry) = (15)

1 2C22 — 1+ BC?*22 ¢/ (x,)
T = + +I 1
nlvs) = 5 ( 27, (1+ C22) ’ (16)
"(zy)=—In {1+ S
g\Ty) = xa_ .
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Here, parameter A was substituted into Eq. (15) from equation f(xy) = 0.
The plot of the dimensionless function Ty (24 )+/Bq versus x is represented
in Fig. 2. Figure 2 shows that the Hawking temperature is positive for some
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Figure 2: The plot of the function Ty (x4 )v/Bq at C' = 1.

interval of event horizon radii. We will calculate the heat capacity to study
the black hole local stability

C,(,) = T ( (17)

05) _ OM (z) _ OM (z4)/0x
@TH q 8TH(x+) 8TH(:17+)/6:U+’

where M (x4 ) is the black hole gravitational mass as a function of the event
horizon radius. Making use of equation f(xy) = 0 we obtain the black hole

mass (Ba)? 2
1+2Cx
SZzG < 2z, =+ Bg(x+)> : (18)

M(zy) =

d0i:10.20944/preprints202210.0329.v1
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With the help of Eqs. (16) and (18) one finds

OM(zy)  (Bg)¥? (2Cx% —1 .
or,  8aG C24% + By'(x4) |, (19)
0Ty (xy) _ 1 (5C'm2+ —2C%z2 +1
Ovy 8my/Bg\ 23 (1+Ca})?
BC?¢g'(x4)(1 = C22) + 249" (x4)(1 + Ca?)]
* 3 ) (20)
L+ Ca2 )2
oy 2
N

In accordance with Eq. (17) the heat capacity has a singularity when the
Hawking temperature possesses an extremum (07Ty(z4)/0xy = 0). Equa-
tions (16) and (17) show that at one point, z; = x;, the Hawking temper-
ature and heat capacity becomes zero and the black hole remnant mass is
formed. In another point z, = xo with 0Ty (z,)/0x = 0, the heat capacity
possesses a singularity where the second-order phase transition occurs. Black
holes in the range zo > x, > x; are locally stable but at z; > x5 black holes
are unstable. Making use of Egs. (17), (19) and (20) the heat capacity is
depicted in Fig. 3. The Hawking temperature and heat capacity are positive
in the range x5 > x, > x; and locally stable.

From the first law of black hole thermodynamics dM (xy) = Ty (xy)dS +
¢dq we obtain entropy at the constant charge [46)]

dM ( 1 M(
S = / (z+) / OM(zs) (21)
TH x+ TH .’L'+ a$+
From Egs. (16), (19) and (21) one finds the entropy
m(Bq)? 14 Czi 2 47 Ty
S = dry = 1 — Const. 22
SIIE o T, e + o o T + Const., (22)
with the integration constant C'onst.. The integration constant can be chosen
in the form 5
2T mq
Const. = ——In 23
ons e ( e ) (23)
Then making use of Egs. (22) and (23) we obtain the black hole entropy
2
S =S+ %O‘ In (Sp) , (24)

7
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Figure 3: The plot of the function C,(z,)aG/(8*¢*) at C = 1.

with Sy = 773 /G being the Bekenstein-Hawking entropy and with the log-
arithmic correction but without the coupling 5. Same entropy (24) one can
find in other models [47, 48, 49].

4 Black holes shadows

The light gravitational lensing leads to the formation of black hole shadow
and a black circular disk. The Event Horizon Telescope collaboration [50] ob-
served the image of the super-massive black hole M87*. A neutral Schwarzschild
black hole shadow was studied in [51]. We will consider photons moving in the
equatorial plane, ¥ = /2. With the help of the Hamilton—Jacobi method
one obtains the equation for the photon motion in null curves

L 1 E_ E? 72 _
H = 59 Pubv = 92 <T2 f(?“) + f(?“)) 07 (25>

8
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where p, is the photon momentum (# = 0H/Jp,). The photon energy and
angular momentum are constants of motion, and they are £ = —p; and
L = p,, correspondingly. We can represent Eq. (25) as
L? E?
o f(r))
The photon circular orbit radius 7, can be found from equation V(r,) =
V'(1r)jp=r, = 0. Making use of Eq. (26) we find

L Tp

E™ [f(n,)

where ¢ is the impact parameter. For a distant observer as ro — oo, the
shadow radius becomes 3 = 1,/1/f(rp) (rs = &). By virtue of Eq. (12) and
equation f(ry) =0 we obtain parameters A, B and C versus x

V+7?=0, sz(r)( (26)

£= f'(rp)rp —2f(r,) =0, (27)

1+ 2Cx? AC?x, — 2022 — 1
A=—"—""*1B B = + +
22 + /2t + 2. (A — Bg(x
o - Tt yrt oA By(ay) 28)

2+ (A — Bg(z4))
with z, = r, /v/Bq. The functions (28) plots are depicted in Fig. 4. In
accordance with Fig. 4, Subplot 1, event horizon radius x, increases when
parameter A increases and Subplot 2 indicates that if parameter B increases,
the event horizon radius decreases. According to Subplot 3 of Fig. 4, when
parameter C increases the event horizon radius x, also increases.

The photon sphere radii (z,), the event horizon radii (z ), and the shadow
radii (z,) for A =15 and C' = 1 are presented in Table 1. It is worth noting
that the null geodesics radii x,, correspond to the maximum of the potential
V(r) (V" < 0) and belong to unstable orbits. Table 1 shows that when

parameter B increases the shadow radius x4 decreases. As xy > x, shadow
radii are defined by r, = x41/3q.

5 Black holes energy emission rate

The black hole shadow, for the observer at infinity, is connected with the
high energy absorption cross section [53, 41]. At very high energies the

9
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Figure 4: The plot of the functions A(z,), B(xy), C(zy)

absorption cross-section o ~ mr? oscillates around the photon sphere. The
energy emission rate of black holes is given by

PE(w) 2m3w3r? (20)
dtdw — exp (w/Ty(ry)) — 1’

where w is the emission frequency. By using dimensionless variable z, =
r+/+/Pq the black hole energy emission rate (29) becomes

3,2

PE(w) 2m3 w3 z?
e S P .

with Ty (z4) = v/BqTu(x,) and @ = /Bqw. The radiation rate versus the
dimensionless emission frequency w for C' = 1, A = 15 and B = 9,14, 19,

is depicted in Fig. 5. Figure 5 shows that there is a peak of the black hole

10
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Table 1: The event horizon, photon sphere and shadow dimensionless radii
for A=15, C=1

B 9 13.5 14 15 16.5 17.5 18 19

ry 6.763 6.365 6.317  6.219 6.063 5953 5896  5.777
z, 10313 9.806 9.746 9.623 9.431 9.298 9.229  9.088
rs 18311 17.677 17.603 17.451 17.216 17.054 16.971 16.802

energy emission rate. When parameter B increases, the energy emission rate
peak becomes smaller and corresponds to the lower frequency. The black
hole has a bigger lifetime when parameter B is bigger.

6 Quasinormal modes

The stability of BHs under small perturbations are characterised by quasi-
normal modes (QNMs) with complex frequencies w. When Im w < 0 modes
are stable but if Im w > 0 modes are unstable. Re w, in the eikonal limit, is
linked with the black hole radius shadow [54, 55]. Around black holes, the
perturbations by scalar massless fields are described by the effective potential

barrier
1), W2 0), -

r r2

Vi) = 1)
with [ being the multipole number [ = 0, 1, 2.... Equation (31) can be rewrit-

ten in the form )
f'(x) . I+ 1)) ' (32)

x 2

V(x)Bq = f(x) (

The dimensionless variable V' (z)3q is depicted in Fig. 6 for A = 15, B = 10,
C =1 (Subplot 1) and for A = 15, C' = 1, [ = 5 (Subplot 2). According
to Figure 6, Subplot 1, the potential barriers of effective potentials possess
maxima. For [ increasing the height of the potential increases. Figure 6,
Subplot 2, shows that when the parameter B increases the height of the
potential also increases. The quasinormal frequencies are given by [54, 55]

Rew= L= f” S UG RIS

11
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Figure 5: The plot of the function Bqdiﬂ(f) vs. w for B =9,14,19, A = 15,
C=1.

where 7, is the black hole shadow radius, r, is the black hole photon sphere
radius, and n = 0,1, 2, ... is the overtone number. The frequencies, at A = 15,
C =1, n=05,1= 10, are given in Table 2. As the imaginary parts of
the frequencies in Table 2 are negative, modes are stable. The real part
Re w gives the oscillations frequency. In accordance with Table 2 when
parameter B increasing the real part of frequency \/BgRe w increases and
the absolute value of the frequency imaginary part | v/Sqlm w | decreases.
Therefore, when the parameter B increases the scalar perturbations oscillate
with greater frequency and decay lower.

12
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Figure 6: The plot of the function V(x)8q for A =15, C' = 1.

7 Summery

The exact spherically symmetric solution of magnetic black holes is obtained
in 4D EGB gravity coupled to ModLogNED. We studied the thermodynamics
and the thermal stability of magnetically charged black holes. The Hawking
temperature and the heat capacity were calculated. The phase transitions
occur when the Hawking temperature has an extremum. Black holes are
thermodynamically stable at some range of event horizon radii when the
heat capacity and the Hawking temperature are positive. The heat capacity
has a discontinuity where the second-order phase transitions take place. The
black hole entropy was calculated which has the logarithmic correction. We
calculated the photon sphere radii, the event horizon radii, and the shadow
radii. It was shown that when the model parameter B increases the black

13
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Table 2: The real and the imaginary parts of the frequencies vs the parameter
Batn=51=10,A=15C=1

B 14 15 16.5 17.5 18 19
VBqRew  0.568 0.573 0.581 0.586 0.589  0.595
—vBqlm w 0.2853 0.2852 0.2849 0.2845 0.2842 0.2835

hole energy emission rate decreases and the black hole possesses a bigger
lifetime. We show that when the parameter B increases the scalar pertur-

bations oscillate with greater frequency and decay lower. Other solutions in
4D EGB gravity coupled to NED were found in [47, 48, 49].

Appendix

With the spherical symmetry the symmetrical energy-momentum tensor
possesses the property 7, = T,.". Then, the radial pressure p, = —T." = —p.
The tangential pressure p; = —T,” = —T¢¢ is given by [56]

,
PL=—pP— 5:0/(7”)7 (A1)
with the prime being the derivative with respect to the radius r. The Weak
Energy Condition (WEC) is valid when p > 0 and p+p; > 0 (k=1,2,3) [57],
and then the energy density is positive. According to Eq. (7) p > 0. Making

use of Eq. (7) we obtain

/ q a3 q°
=——hn(l+—=]| - ————-<0. A2
pr) pr3 n( +r2> r3(r2 4+ Bq) ~ (42)
Therefore WEC, p > 0, p+p, > 0, p+ p1 > 0, is satisfied. The Dominant
Energy Condition (DEC) take place if and only if [57] p > 0, p+ pr > 0,
p — pr > 0, that includes WEC. One needs only to check the condition
p—p1r > 0. By virtue of Egs. (7), (A1) and A(2) one finds

8 g
p—mzwqﬂ [ln<1+3~2>_r2q+5q]' (A3)

One can verify that p — p, > 0 for any parameters. DEC is satisfied and
therefore the sound speed is less than the speed of light. The Strong Energy

14
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Condition (SEC) is valid when p + Y3_, pr > 0 [57]. From Egs. (8)-(10) we
obtain

3
p+> pk=p+pL+p =pL <O. (A4)
k=1

In accordance with Eq. (A4) SEC is not satisfied.
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