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Abstract: We investigate some of the fundamental features of the interaction of mixed kaleidoscope
states, namely, particular statistical mixtures of coherent states, with two-level atoms in the Jaynes-
Cummings model framework. We begin our analysis by calculating the von Neumann entropy of the
field which is determined with help of the virtual atom method. Oscillations appear in this entropy
that indicate a state of purity greater than the initial state, it i.e., a purification of the initial state is
achieved. In this oscillatory region, we obtain the field Wigner function that resembles Schrodinger’s
cats.
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1. Introduction

Schrödinger cat [1–3] states, or superpositions of coherent states, have attracted the
attention of researchers due to their fundamental features. Of particular interest is the case
of the superposition of two (or more) coherent states [4,5]. Where, because of quantum inter-
ference, their properties are very different from the properties of constituent coherent states,
as well as from incoherent superposition or statistical mixtures of such states. For example,
the superposition exhibits statistics for subpoissonian photon compression, higher-order
compression, and oscillations in the photon number distribution [5], and these properties
clearly differentiate the state of superposition and statistical mixing from two coherent
states [4]. Because superpositions of macroscopically distinguishable states (or Schrödinger
cat-like states) may be produced by using coherent states, the problem is important for the
quantum theory of measurement. Several schemes have already been proposed to produce
a superposition of coherent states, for instance the non-linear interaction of the field in
a coherent state with a Kerr-like medium can produce their superposition [1]. Another
possible way would be through the interaction between quantized fields, initially prepared
in coherent states, with two-level atoms [4,5] or ion laser interactions.

One of the main tasks in the present manuscript is to calculate the entropy of the field
for kaleidoscope states or a statistical mixture of coherent states, in the Jaynes-Cummings
framework, which we will do with the aid of the Araki-Lieb inequality [6]. Because we
will consider mixtures as initial states [7], in principle, it will not be possible to use the
Araki-Lieb inequality to calculate the entropies, especially the field entropy. However via
purification of the mixed density matrix of the quantized field [8], we will be able to use
such inequality in order to calculate the field von Neumann entropy even in the case of
initial statistical mixtures, either for the atom or the field.

In the next section, we define the Kaleidoscope states or initial mixed states for the field,
used as initial states in their interaction with a two-level atom. Section 3 deals precisely
with this interaction and there we calculate the field entropies and their Wigner functions
[9], and finally, in section 4 we summarize our conclusions.
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2. Kaleidoscope states

Kaleidoscope states are a particular superposition of n coherent states, and are defined
in reference [10], as

√
λ1α|ψ1α〉√
λ2α|ψ2α〉√
λ3α|ψ3α〉

...√
λnα|ψnα〉

 =
1
n


1 1 1 · · · 1
1 ω∗ ω∗ 2 · · · ω∗ (n−1)

1 ω∗ 2 ω∗ 4 · · · ω∗ 2(n−1)

...
...

...
. . .

...
1 ω∗ (n−1) ω∗ 2(n−1) · · · ω∗ (n−1)(n−1)




|α〉
|ωα〉
|ω2α〉

...
|ω(n−1)α〉

 , (1)

where
√

λkα are normalization constants, ω = exp
(

i
2π

n

)
and ωk is the nth root of unity,

for 1 ≤ k ≤ n, with n, k integers.

We can observe that the Vandermonde matrix that transforms the vectors in equation
(1) is proportional to the so-called discrete Fourier transform, also known as the quantum
Fourier transform [11]. On the other hand, an initial statistical mixture of n coherent states
density of the electromagnetic field may be written as

ρ̂F(0) =
1
n

n

∑
k=1
|ω(k−1)α〉〈ω(k−1)α| . (2)

This density matrix can be diagonalized by the virtual atom method [8], where the impor-
tant issue is to establish a connection between the virtual (V) pure state,

|ψV〉 =
|α〉√

n
|a1〉+

|ωα〉√
n
|a2〉+

|ω2α〉√
n
|a3〉+ · · ·+

|ω(n−1)α〉√
n

|an〉 , (3)

with the state |ω(k−1)α〉 used to obtain the density (2). Here

|a1〉 =


1
0
0
...
0

 , |a2〉 =


0
1
0
...
0

 , |a3〉 =


0
0
1
...
0

 , · · · , |an〉 =


0
0
0
...
1

 . (4)

In order to do that, from equation (1) we obtain that
|α〉/
√

n
|ωα〉/

√
n

|ω2α〉/
√

n
...

|ω(n−1)α〉/
√

n

 =
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ω(n−1)

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)





√
λ1α|ψ1α〉√
λ2α|ψ2α〉√
λ3α|ψ3α〉

...√
λnα|ψnα〉

 , (5)

and substituting equation (5) into equation (3) and so we have

|ψV〉 =
√

λ1α|ψ1α〉|A1〉+
√

λ2α|ψ2α|A2〉+
√

λ3α|ψ3α〉|A3〉+ · · ·+
√

λnα|ψnα〉|An〉, (6)

where 
|A1〉
|A2〉
|A3〉

...
|An〉

 =
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ω(n−1)

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)




|a1〉
|a2〉
|a3〉

...
|an〉

 , (7)
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which are the virtual atom basis {|Ak〉} for k = 1, .., n. After tracing the density operator
|ψV〉〈ψV |, over the virtual atom states {|Ak〉}, we obtain the diagonal density

ρ̂F(0) =
n

∑
k=1

λkα|ψkα〉〈ψkα| , (8)

where

λkα =
e−|α|

2

n

n

∑
m=1

ω∗m(k−1) exp
(

ωm|α|2
)

. (9)

Similarly, by tracing the density |ψV〉〈ψV |, over the field states we obtain the virtual atom
(VA) density

ρ̂VA =
1
n


1 〈α|ωα〉∗ 〈α|ω2α〉∗ · · · 〈α|ω(n−1)α〉∗

〈α|ωα〉 1 〈α|ωα〉∗ · · · 〈α|ω(n−2)α〉∗
〈α|ω2α〉 〈α|ωα〉 1 · · · 〈α|ω(n−3)α〉∗

...
...

...
. . .

...
〈α|ω(n−1)α〉 〈α|ω(n−2)α〉 〈α|ω(n−3)α〉 · · · 1

 , (10)

and taking into account that 〈α|ωkα〉 = 〈α|ω(n−k)α〉∗ and 〈α|ωkα〉 = exp(−|α|2) exp(ωk|α|2),
equation (10) may be rewritten as

ρ̂VA =
exp(−|α|2)

n


exp(|α|2) exp(ω∗|α|2) exp(ω∗ 2|α|2) · · · exp(ω∗ (n−1)|α|2)

exp(ω∗ (n−1)|α|2) exp(|α|2) exp(ω∗|α|2) · · · exp(ω∗ (n−2)|α|2)
exp(ω∗ (n−2)|α|2) exp(ω∗ (n−1)|α|2) exp(|α|2) · · · exp(ω∗ (n−3)|α|2)

...
...

...
. . .

...
exp(ω∗|α|2) exp(ω∗ 2|α|2) exp(ω∗ 3|α|2) · · · exp(|α|2)

 . (11)

Finally from (7) we write

|Ak〉 =
1√
n



1
ω(k−1)

ω2(k−1)

ω3(k−1)

...
ω(n−1)(k−1)


, (12)

by noting that |Ak〉 is an eigenvector of ρ̂VA, whose eigenvalue is represented by (9).

3. Interaction of kaleidoscope states with a two-level atom

The interaction between a quantized field and a two-level atom (under rotating wave
approximation) is given by the Jaynes-Cumming interaction Hamiltonian [12] (for simplic-
ity we have set h̄ = 1)

ĤI = λ
(

â†σ− + âσ+
)

, (13)

where we have considered on-resonance conditions (equal field and atomic transition
frequencies). In the above equation, λ is the coupling constant, and â and â† and the anni-
hilation and creation operators, respectively, and σ+ and σ− are the raising and lowering
Pauli matrices, respectively. The evolution operator, Û = exp(−iĤI t), in the 2× 2 basis is
given by

Û =

 cos
(

λt
√

ââ†
)

−i V̂ sin
(

λt
√

â† â
)

−i V̂† sin
(

λt
√

ââ†
)

cos
(

λt
√

â† â
)

 , (14)
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with V̂ and V̂† the London phase operator [13].

If we consider the atom initially prepared in the state |e〉 and the field is a statistical
mixture of n coherent states, i.e, the system is initially prepared in, ρ̂(0) = ρ̂F(0)|e〉〈e|, with
ρ̂F(0) defined by (2). Then the time evolution density matrix is given by

ρ̂ =


n

∑
k=1
|Ck〉〈Ck| |Cn〉〈S1|+

n

∑
k=2
|Ck−1〉〈Sk|

|S1〉〈Cn|+
n

∑
k=2
|Sk〉〈Ck−1|

n

∑
k=1
|Sk〉〈Sk|

 (15)

where

|Ck〉 = e−
|α|2

2

+∞

∑
m=0

αnm+k√
(nm + k)!

cos
(

λt
√

nm + k + 1
)
|nm + k〉 , (16)

|Cn〉 = e−
|α|2

2

+∞

∑
m=0

αnm√
(nm)!

cos
(

λt
√

nm + 1
)
|nm〉 , (17)

|Sk〉 = −i e−
|α|2

2

+∞

∑
m=0

αnm+k−1√
(nm + k− 1)!

sin
(

λt
√

nm + k
)
|nm + k〉 , (18)

whereas the equation (16) is valid whenever k = 1, 2, · · · n− 1; and for equation (18), k
satisfying the condition k = 1, 2, · · · n.

Therefore, tracing over the field states and over the atomic states, we obtain the
reduced density matrix for the atom and the field respectively as,

ρ̂A =


n

∑
k=1
〈Ck|Ck〉 0

0
n

∑
k=1
〈Sk|Sk〉

 , (19)

ρ̂F =
n

∑
k=1
|Ck〉〈Ck|+

n

∑
k=1
|Sk〉〈Sk| . (20)

As two coherent states are sufficiently apart when α ≈ 2, they may be considered orthogo-
nal. On the other hand, the Kaleidoscope-States are orthogonal for any α > 0, and ρ̂A will
be diagonalize as was shown in equation (19).

Within the present formalism, it is straightforward to calculate the atomic von Neu-
mann entropy as,

SA = −
(

n

∑
k=1
〈Ck|Ck〉

)
ln

(
n

∑
k=1
〈Ck|Ck〉

)
−
(

n

∑
k=1
〈Sk|Sk〉

)
ln

(
n

∑
k=1
〈Sk|Sk〉

)
, (21)

and by using the method of the virtual atom as has been proposed in Ref. [8] the field
entropy can be written as,

SF = −
n

∑
k=1

λ+
k ln λ+

k −
n

∑
k=1

λ−k ln λ−k (22)

where the eigenvalues are

λ±k =
1
2
(〈Ck|Ck〉+ 〈Sk|Sk〉)±

1
2

√
(〈Ck|Ck〉 − 〈Sk|Sk〉)2 + 4|〈Ck|Sk〉|2 , (23)
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where k satisfying the condition k = 1, 2, · · · n. And also

〈Cn|Cn〉 = e−|α|
2
+∞

∑
m=0

|α|2nm

(nm)!
cos2

(
λt
√

nm + 1
)

,

〈Cn|Sn〉 = −i α∗e−|α|
2
+∞

∑
m=0

|α|2n(m+1)−2

(n(m + 1)− 1)!
√

n(m + 1)
cos
(

λt
√

n(m + 1) + 1
)

sin
(

λt
√

n(m + 1)
)

,

〈Sn|Sn〉 = e−|α|
2
+∞

∑
m=0

|α|2n(m+1)−2

(n(m + 1)− 1)!
sin2

(
λt
√

n(m + 1)
)

,

〈Ck|Ck〉 = e−|α|
2
+∞

∑
m=0

|α|2nm+2k

(nm + k)!
cos2

(
λt
√

nm + k + 1
)

, (24)

〈Ck|Sk〉 = −i α∗e−|α|
2
+∞

∑
m=0

|α|2nm+2k−2

(nm + k− 1)!
√

nm + k
cos
(

λt
√

nm + k + 1
)

sin
(

λt
√

nm + k
)

,

〈Sk|Sk〉 = e−|α|
2
+∞

∑
m=0

|α|2nm+2k−2

(nm + k− 1)!
sin2

(
λt
√

nm + k
)

,

which are valid whenever k = 1, 2, · · · n− 1.

Figure 1. The evolution of the field entropy of Kaleidoscope-States as a function of the scaled time λt
and different values of statistical mixture of coherent states n = 1, 2, 4, 8 and 16, with α = 6.0.

The field entropy is plotted as a function of the scaled time λt in figure 1, for Kaleidoscope-
States with different values of statistical mixture of coherent states n = 1, 2, 4, 8 and 16, and
α = 6.0. It may be seen that the entropy has similar behaviour, namely, each one possesses
a global minimum of about λt ≈ 19, for all values of n before commenting. In this region
and in each case, the field becomes purer than its initial state and oscillations appear for
n ≥ 2. Note that for all values of n the entropy reaches its maximum value quickly due to
the interaction with the atom, and the coherence between the n coherent states is lost, and a
maximal mixed of a statistical mixture state will be the new state of the field.
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Figure 2. Wigner function for Kaleidoscope-State with α = 6.0 for several values of the time λt and n.
For λt = 0: (a) n = 2, (b) n = 4 and (c) n = 8; for λt = 19.15: (d) n = 2, (e) n = 4 and (f) n = 8.

Here a question arises: What will be the form of the above-mentioned purer states for
different values of a statistical mixture of coherent states n about λt ≈ 19? In order to ask
the above question in Fig. 2 (d), (e), and (f) we show the field Wigner function correspond-
ing to the Kaleidoscope-State with n = 2, 4 and 8 respectively when the field would become
a purer state at time λt = 19.15. These Wigner functions resemble an Schrödinger cat state
of 2, 4 and 8 components, where we note the characteristic interference structure. We clearly
see the formation of the quantum interference structure halfway between the n humps. The
frequency of the interference structure increases with the separation distance α increases
[14]. For example, setting α = 4 and n = 2, we see that the entropy has a similar behaviour
as in figure 1, but now its minimum is around λt ≈ 12.5, and its corresponding field Wigner
function has interference structure with a lower frequency as it is shown in figure 3. Finally,
when the time goes to λt ≈ 19, the initial Kaleidoscope States, (as we showed in figure 2
(a), (b), and (c)), gain purity as was suggested by the entropy behaviour, and the negativity
of the field Wigner function are an indicator of the non-classical properties of the state at
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λt ≈ 19.15.

Figure 3. Wigner function for Kaleidoscope-State with α = 4.0 for the time λt = 12.59 and n = 2.

4. Conclusions

We have shown that the Jaynes-Cummings interaction with an initial Kaleidoscope
mixture may be modeled by the virtual Hamiltonian method by extending the atomic
Hilbert space such that a virtual pure state mya be associated as initial wavefunction. In
particular, we have seen that the purification procedure takes us from a mixed field density
matrix to a pure wave function that involves a virtual 2n-level atom, as we can see in the
2n term in equation (22). Finally, we should mention that the effects presented in the field
entropy for the initial field state given by a statistical mixture of constituent states, are
reflected in the appearence of which produces Wigner functions resembling Schrödinger’s
cats.

Conflicts of Interest: The authors declare no conflict of interest.
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