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Abstract: Renewable Energy Communities (RECs) are emerging as an effective concept and model
to empower the active participation of citizens on the energy transition, not only as energy consum-
ers, but also as promoters of environmentally friendly energy generation solutions. This paper aims
to contribute to the management and optimization of individual and community Distributed Energy
Resources (DER). The solution follows a price and source-based REC management program, in
which consumers day-ahead flexible loads (Flex Offers) are shifted according to electricity genera-
tion availability, prices and personal preferences, to balance the grid and incentivize user participa-
tion. The heuristic approach used in the proposed algorithms allows the optimization of energy
resources in a distributed edge and fog approach with a low computational overhead. The simula-
tions performed using real world energy consumption and flexibility data of a REC with 50 dwell-
ings show an average cost reduction of 10.6% and an average increase of 11.4% in individual self-
consumption. Additionally, the case-study demonstrates promising results regarding grid load bal-
ancing and the introduction of intra-community energy trading.
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1. Introduction

Traditional energy grids have been heavily dependent on the burning of fossil fuels,
like coal or natural gas, to generate electricity. This type of electricity production has there-
fore a negative impact on the environment while also posing geopolitical challenges for
countries that must rely upon others for obtaining these vital resources. Additionally, en-
ergy generation at plants distant from consumers cause losses in its distribution infra-
structure, diminishing efficiency and increasing running costs [1].

Renewable Energy Sources (RES) emerge as a green, reliable, and economically via-
ble solution for electricity production. Given the replenishable nature of its sources, such
as the sun and wind, RES enable citizens and governments to become more self-sufficient
as the energy can be produced individually in a distributed manner. Distributed Energy
Resources (DER) are closer to consumers, which also substantially reduces traditional dis-
tribution losses. As a result, renewable energy has undertaken a significant increase in
adoption, with its growth forecast to speed up in the next five years [2]. Households, office
dwellings and factories also play an increasingly prominent role in this transition [3], by
installing photovoltaic panels and injecting their surplus production into the grid. Such
kind of end-users are now being designated as prosumers, as they take on the role of both
producers and consumers of energy simultaneously.

However, the high penetration of RES poses new difficulties to grid operators in
managing and maintaining the necessary grid balance, as there is a time imbalance be-
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tween peak demand and RES production and due to the highly fluctuating operation char-
acteristic of these sources. In addition, at certain times of the year, namely Spring and
Summer, there is an over generation risk which may force grid operators to curtail RES or
implement negative electricity prices to force demand upwards, leading to higher operat-
ing costs and thus reducing both the environmental and economic benefits of renewable
sources.

Energy Flexibility Management offers a partial solution to this problem, minimizing
the impact of the introduction of RES in energy grids and preserving its economic and
environmental benefits. Renewable Energy Communities (REC) offer a powerful frame-
work in which energy sharing between members is possible and where Flexibility Man-
agement can be further explored. In this context, Flexigy [4], the project in which this re-
search work has been conducted, aimed to develop an integrated platform for managing
the energy flexibility of consumers and prosumers belonging to REC.

This paper builds on the 3-Level smart-grid architecture for REC management intro-
duced in [5] detailing the developed algorithms to schedule the energy flexibility of home
appliances, considering the member preferences and the appliances” consumption pro-
files. The scheduling is performed, at each one of three architecture Levels: (i) prosumer
Level (on a single house or office dwelling), (ii) REC Level (to which the prosumer be-
longs) and (iii) at grid Level. Our approach focuses on delivering fast and scalable algo-
rithms that do not use excessive computing resources, so that they can be applied closer
to the end user in an edge and fog low-cost implementation.

The proposed method is validated using a dataset composed of energy flexibility
profiles, consumption, and production of fifty dwellings. The data was collected on real-
world appliances during the project. In the end, results are presented, and the benefits of
the solution thoroughly analyzed.

This paper is organized into multiple sections. Section 2 presents the state-of-the-art
concepts and projects related to demand side response and energy flexibility. Section 3
overviews the developed system model. Section 4 details the flex offer scheduling algo-
rithms. Section 5 presents and discusses the results obtained from a real-world simulation.
Section 6 addresses the main conclusions and future work.

2. State of the Art

Traditionally the energy grid supplies electricity to consumers through a unidirec-
tional flow originated from very large energy production facilities, centrally controlled.
However, with the introduction and evolution of DERs, like photovoltaic panels at
prosumers households, demand response (DR) and Energy Flexibility Management have
emerged as viable alternatives to manage these energy resources efficiently, helping to
shape future smart grids.

The authors in [6] present a comprehensive review of technologies, data manage-
ment, cybersecurity and how different pricing modalities can be applied in a modernized
power grid. Moreover, [7], [8] study and formulate peer-to-peer energy trading in smart
grids, analyzing energy routing algorithms, discussing blockchain as an enabling technol-
ogy and identifying future work, such as implementing a unified messaging framework.

There are also numerous works reviewing the state of the art of DR in the literature.
For example, [9] examined the benefits of DR in smart grids, while [10] focused on the
developments of energy scheduling and communication technologies for DR. [11] pre-
sents a systematic literature review of the history, definitions, programs, and future de-
velopment opportunities in DR. Additionally, the authors discuss the introduction of
smart energy communities as a new DR participant with considerable load flexibility.

In fact, RECs, a type of smart energy communities, are groups of geographically close
citizens participating in distributed energy generation as a strategy to reduce costs (self-
production and sharing), but also as a novel approach to offer grid balance resources, by
taking advantage of the flexibility of several electrical appliances (e.g., water heaters,
HVAC systems, dishwashers), and storage. In the Flexigy project, RECs are considered as
a group of prosumers connected to the same local medium- to low-voltage transformer.
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Several studies focused on small scale demand flexibility through the scheduling of home
appliances. For example, [12] introduces a nonlinear optimization model for the schedul-
ing of typical home appliances with a time-of-use electricity tariff, while [13] assesses the
impacts of time-of-use tariffs on residential electricity demand and peak shifting.

Additionally, [14] approaches residential day-ahead energy scheduling for demand
response in smart grids by formulating an optimization problem that, based on the service
provider's electricity prices given-ahead of time, presents a solution with the desired
trade-off between cost and comfort. However, the report only tests six appliances (3-
schedulable and 3-non-schedulable), leading to concerns of solution applicability in real-
world energy communities with hundreds of scheduling devices which result in major
computational and time requirements to solve the optimization problem. This has been
one of our main concerns for the proposed algorithms. Moreover, the authors in [15] pro-
pose an adaptive day-ahead load optimization and control solution with an edge and fog
Internet of Things (IoT) architecture.

Domestic thermal loads such as thermal accumulators HVAC systems have also the
target of research as flexible resources for DR used in RECs. These devices can be used to
store excess electricity production as thermal energy considering the limits of user comfort
and appliances’ capacity. The authors in [13] present a peak shaving solution that predicts
water usage profiles from dwelling load patterns, computes thermal losses to determine
the water temperature in the tank, and consequently forecasts an optimal consumption
profile. Moreover, [16] applies a fuzzy adaptive competitive algorithm as a load control
model for scheduling AC units while minimizing the user's thermal comfort, while [17],
[18] introduce a model predictive control (MPC) algorithm to schedule a dwellings AC
units considering variable weather, occupancy, and electricity prices.

As reviewed, various works have addressed small demand flexibility scheduling.
However, most of them rely on heavy optimization algorithms that require large compu-
ting resources and may take long computing time when scheduling real-world energy
communities with hundreds or thousands of devices. As such, our work focuses on deliv-
ering an integrated platform for the management and optimization of renewable energy
communities, unifying dwelling-Level DR, user energy flexibility and peer-to-peer com-
munity energy sharing, while maintain a distributed edge and fog architecture with low
computational needs.

3. System Model and Architecture

Consider a REC where a set of prosumers can share the excess production energy
between themselves and the utility grid, to promote renewable energy consumption and
minimize overall costs. As described in detail in [5] at each prosumer house, there are
smart devices capable of switching on/off some appliances and recording its consumption
in 15-minute time slices (TSs), or smaller. These devices communicate with an edge or
cloud device where scheduling decisions are taken to optimize local consumption accord-
ing to i) each prosumer profile/strategy; ii) the energy flexibility of the monitored appli-
ances and, iii) the electricity prices for the day ahead.

The next sections present the energy flexibility and Flex-Offer (FO) concepts and an
overview of the prosumer profiles, which were the basis for the development of the algo-
rithms. Additionally, the system architecture is reviewed.

3.1. Energy Flexibility

Energy flexibility, which is the capability to shift the activation of certain loads (ap-
pliances) thus changing the overall consumption profile of a facility (home) is the key
concept behind the development of the scheduling algorithms.

By taking advantage of these algorithms, the platform can schedule the activation of
certain loads in order to optimize the usage of the locally generated energy in individual
and collective terms.

3.1.1 Flex Offer Concept
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This work is based on the Flex-Offer (FO) concept, which was introduced in [19]. In
its simplest form, a FO is a standardized model to represent a generic energy flexibility
abstraction expressing an amount of energy or an energy profile, a duration, a price, the
earliest start time, and the latest start time. Three FO examples follow:

e  "Consumption of 5 kWh during 3 hours between 01:00 and 05:00, for a price of

0.25 €/kWh";

e  “Consumption follows the energy profile in Figure 1, no price specified”.

In these cases, the FO represent flexible electric loads (e.g., charging electric vehicles,
heat pumps, equipment for domestic use) and production units (e.g., discharging batter-
ies, photovoltaic panels).

A FO can be formally defined as a tuple:

f_def = ([testis] (st 52 ..., 55, (1)

Where:

st = [a;ninta;nax]

In equation 1, ts represents the earlier start time and ti represents the latest start time
for the FO. The second parameter is a list that contains a sequence of slices s that represent
the energy profile of the device. Each one of these slices s’ is an energy range between a/min
and a'max, usually represented in kWh which can be positive if the device consumes energy
or negative if the device produces energy. We assume that the duration of each slice is a
1-time unit, adjustable to multiple sampling frequencies. In our use-case power consump-
tion/production is sampled at 15 min intervals and defined by TimeSliceSize.

The main interest of a FOs is on having it scheduled using some criteria. The main
result is that scheduled FO will also have its scheduling, i.e. the time at which the device
should be turned on #s.

Consequently, equation 1 can be updated as follows in equation 2:

f_sch = ([tos,tis tscn), (1,52 ., 55)) (2)

Figure 1 displays a visual representation of a FO energy profile and respective sched-
uling with the ts and the #is defining a time flexibility interval. The FO energy requirements
are represented by energy slices (si). The slice energy flexibility is detailed by the differ-
ence between the aimin and amax. The tson represents the time at which the FO was scheduled.

Time Flexibility

Energy Profile

Flex Offer Profile
S Time Flexibility Interval
— Minimum Energy Required

Slice Energy Flexibility

Les tsen bis

Figure 1. FO Example

3.1.2. Device Flexibility and Flex Offers Types
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In terms of flexibility, devices can be categorized according to two factors, present in
Figure 1: (i) slice energy flexibility and (ii) time flexibility. More specifically, three distinct
kinds of devices are defined, originating the three different types of FO used in this work:
e  Fixed Devices are devices whose consumption period and amount of energy con-

sumed cannot be modified (e.g., televisions and lights). Fixed FOs are used to trans-

late these devices in the system. A Fixed FO can be formally restricted by:

— i, — olpnl
tsch - tes and s Amin = S Amax (3)

e  Shiftable Devices are time flexible devices, meaning that the consumption time can
be shifted within certain limits without modifying the load profile (e.g., washing ma-
chine, dishwasher). These devices offer an opportunity to optimize grid load man-
agement. Shiftable FOs translate shiftable devices into the system. A Shiftable FO is
subject to:

[ A
tes < tsen < tigand s'an,i, = S'Amax 4)

e Elastic Devices are the most flexible, being fully adjustable in terms of usage time
and instantaneous power consumption (e.g., heater, electric car). Similar to shiftable
devices, elastic devices provide grid load management capabilities to a greater extent.
Elastic FOs translate elastic devices into the system. An Elastic FO is restricted by:

tes < tsch < tls (5)

3.2. Prosumer Profiles

Prosumer profile introduced in [5] are defined so that each prosumer can customize
its objectives according to what best fits his goals and beliefs when participating on a REC.
From an energy consumption point of view, there are three distinct profiles from which a
prosumer can choose:

e  Bold Profile the consumer only wants to maximize its renewable energy consump-
tion regardless of the electricity price;

e  Cautious Profile the consumer wants to buy energy always at the lowest total cost
possible, whatever its source;

¢ Local Community Supporter Profile the consumer maximizes REC consumption ir-
respective of its price.

From the energy production side, whose strategy for selling the prosumer excess pro-
duction can be one of the following:
¢  Go-Ahead Profile the producer wants to sell all his renewable electricity generation.
e  Tactical Profile the producer only wants to sell its surplus of renewable generation

after optimizing self-consumption.

3.3. System Architecture

As stated before, the developed algorithms follow a three-level approach introduced
on [5]. This architecture aims to integrate prosumer profiles in the scheduling solution
while allowing a distributed edge and fog implementation of the community energy man-
agement. The levels of this architecture are the following:

e Level 1 - Prosumer level: executed for each prosumer to minimize the energy costs
and maximize the individual renewable energy self-consumption.

e Level 2 - Local community level: executed at the REC level to minimize overall en-
ergy costs and optimize the renewable energy-based supply via peer-to-peer energy
trading and collective renewable self-consumption.

e Level 3 - Grid level: groups small-scale flex-offers at the REC level or between RECs
to respond to specific market requests from different stakeholders.
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Figure 2. Three Level Architecture [5]

Figure 2 presents the system architecture from a logical point of view. Level 1, de-
picted in green in Figure 2 represents each prosumer dwelling with energy consumption
from multiple home appliances, and, eventually, energy self-production from PV panels
or other renewable sources. At this level the system collects the flexibility of different ap-
pliances on the prosumer premises and expresses this flexibility as FOs and optimizes
individual self-consumption according to prosumer profiles. The algorithm can be run
directly at the prosumer house (e.g.: IoT hub) in an edge computation approach, retaining
data confidentiality and effectively distributing computing, as it does not need to be run
on the cloud. FOs left unscheduled in this level at each edge node (each prosumer) are
then sent to fog computer, handling community needs at Level 2.

Level 2, illustrated by a red dashed line in Figure 2, represents a REC connected to a
single medium- to low-voltage energy transformer. At this level all the FOs generated at
the community dwellings (Level 1), including the FOs partially or not fully scheduled at
Level 1 are scheduled using the REC aggregated self-production. Once again, this algo-
rithm can be run in a distributed manner at the fog level (e.g., a fog device implemented
at each community). After the scheduling is performed by the algorithms operating at this
level, the schedule of the community FOs is sent to the edge nodes, which will orchestrate
the devices accordingly.

Finally, Level 3, depicted in blue in Figure 2, aggregates the different REC communi-
ties FOs, which were not fully or were partially fulfilled at Level 1 or 2, and sells those
aggregate FOs directly on a flexibility market. Aggregation is required to generate FOs
with higher power, which can be offered on balancing markets [20]. This level can be run
on cloud servers, where one or more communities are combined.

4. Flex Offer Scheduling Algorithms

Following the introduced energy flexibility concept, user profiles and architecture,
algorithms for the three scheduling levels are detailed in the next sections.

4.1. Level 1

Level 1 is executed for all FOs from prosumers who have chosen the Tactical profile
and aim to maximize their energy self-consumption while minimizing the total cost. We
assume that the cost of self-consumption is zero. The diagram in Figure 3 depicts the
workflow of Level 1 algorithm.
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Figure 3. Level 1 workflow

This Level only includes prosumers with a Tactical profile, which have self-produc-
tion capabilities. As such, the first step of Level 1 algorithms, which might be running in
an edge device inside the prosumer dwelling, is to forecast the day-ahead self-production.
Once forecasted, the algorithm fetches community and grid prices for the day ahead from
the REC fog device.

Moreover, a forecast of the dwellings' unpredictable consumptions is generated so
that the system can reserve part of the user production for unpredictable energy consump-
tion (e.g., turning on a computer, using a vacuum cleaner or turning on the lights). This
way, the self-produced energy consumption is always maximized at the prosumer level.

Finally, the production profile is updated accordingly to the scheduled consumption.
In the following sections, the algorithms developed to schedule the distinct types of FOs
at Level 1 are presented.

4.1.1. Level 1 Schedule of Fixed FOs

Algorithm 1 describe the solution designed to schedule fixed FOs consumptions in
an optimized manner by using the prosumer self-produced energy, block 3.2 in Figure 3.
Since self-produced energy is free for the prosumer, it is always more advantageous, for
any buyer profile, to use the maximum self-produced energy as possible when a FO is of
type Fixed FO. As such, this algorithm tries to always schedule the maximum forecasted
self-produced energy at any given time.
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Algorithm 1. schedSelfConsumptionFixedFO. Algorithm used at Level 1 to schedule Fixed FOs.

Input:
fo - Consumption Fixed FO
prod - Multidimensional array containing: (i) user production and, (ii)
energy prices for each time slice
prosumer - Prosumer
Output:

prod - The updated prosumer production profile

1 Function schedSelfConsumFixedFO (fo, prod, prosumer)
2 t <- fo.tes

3 eProfile <- fo.getEProfile2Sched()

4 sched <- new Schedule (fo.tes)

5 For each eSlice in eProfile Do

6 e2Sched <- getMaxEConsum(prod, t, eSlice)
7 If e2Sched > 0 Then

8 sched.AddSlice (t, e2Schedule)

9 End if

10 t <- t + TimeSliceSize

11 End for

12 prod <- scheduleFO (sched, prod, fo)

13 Return prod

14 End

Given that a Fixed FO has no energy flexibility, its earliest start time (f.s) is considered the
scheduling Time (fsnd) (line 2). In line 3 the Fixed Flex Offer consumption profile is fetched
to an auxiliar variable. Moreover, a new Schedule object is created, with its start time set
to the FO fes.

Next, for each energy slice of the FO energy profile, the algorithm verifies how much
energy consumption can be scheduled using self-production (line 6). If some or all the
energy can be scheduled using the self-production, a slice is added to the schedule. This
slice specifies the time, energy amount and price of the schedule energy consumption.
Finally, at the scheduleFO method (line 12), both the FO and the production energy profile
are updated, discounting the energy scheduled, and the FO schedule is saved.

4.1.2. Level 1 Schedule of Shiftable FOs

Algorithm 2 describes the algorithm designed to schedule shiftable FOs, also at Level
1, block 3.3 in Figure 3. At this Level, the biggest concern was not only to maximize self-
consumption on all occasions, but instead, the algorithm should reflect the prosumer
buyer profile. In effect, it can be more monetarily rewarding for a user with a Cautious
buyer profile to schedule the FO with less self-consumption if the price paid for the sur-
plus is significantly less at that slice, instead of having more self-produced energy but end
up paying more for the surplus scheduled at Level 2.

As such, the approach shown in Algorithm 2 focuses on prosumers buyer profiles, as
it heuristically tries to find the best fit for the FO consumption.
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Algorithm 2: schedSelfConsumpShiftableFO

Input:
fo - Consumption Shiftable FO
prod - Multidimensional array containing: (i) user production and, (ii)
energy prices for each time slice
prosumer - Prosumer
Output:

prod - The updated production profile

1 Function schedSelfConsumShiftableFO (fo, prod, prosumer)
2 cost <- MAXVALUE

3 sched <- new Schedule(fo.tes)

4 For i = fo.tes; 1 < fo.tls; 1 = i + TimeSliceSize Do
5 t <-1i

6 auxSched <- new Schedule (1)

7 sum <- 0

8 eProfile <- fo.getEProfile2Schedule ()

9 For each eSlice in eProfile Do

10 e2Sched <- getMaxEConsum(prod, t, eSlice)

11 consumSurplus = eSlice.energy - e2Sched

12 sum = sum + checkProfileCost (consumSurplus, t, eSlice, prosumer)
13 auxSched.AddSlice (t, e2Sched)

14 t <- t + TimeSliceSize

15 End for

16 If sum < cost Then

17 sched <- auxSched

18 cost <- sum

19 End If

20 End for

21 prod <- scheduleFO (sched, prod, fo)

22 Return prod

23 End

A cycle is executed to check at which of the time slices comprised between the FO t.
and fis is more financially advantageous to schedule the start of the FO execution (ts)
(lines 5 to 20).

At the start of the loop, a set of auxiliary variables is created each time a new candi-
date tsen is evaluated (lines 5 to 8). Next, the solution price is determined by calculating the
price of the energy surplus of each time slice (lines 9 to 15). To determine it, the algorithm
starts by finding the maximum self-produced energy that can be consumed by the slice
and consequently the consumption surplus. Then, with the help of the checkProfileCost
method (line 12), the electricity consumption price is summed to the total price of the so-
lution.

The checkProfileCost method is the solution presented in this work to be able to opti-
mize the Level 1 self-consumption solution without disregarding both the electricity
prices at other Levels and the prosumer buyer profiles. This method uses the forecast of
day-ahead prices and calculates the cost for the prosumer based on its profile:
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e  For users with a Cautious profile, the cost returned at any given time, is calculated
based on the cost of the surplus energy multiplied by the grid price for that time. As
such, an estimate for the scheduling of surplus energy at higher Levels is returned.

e  For users with a Community Supporter profile, the cost returned at any given time,
is calculated based on the cost of the surplus energy multiplied by the REC day-ahead
prices at that time.

e  For users with a Bold profile, the cost is indeed how much non-renewable energy is
consumed in surplus of self-consumption. As such, the method returns the total
amount of surplus energy in this case.

In the end, if the cost of the solution being evaluated (either price or amount of sur-
plus energy) is lower than the cost of the previously saved schedule (line 16), both the
schedule and cost variables are updated with the new solution values (lines 17 and 18).

After the best schedule is found, the scheduleFO method saves it and updates the FO
and the self-production energy profile, accordingly, subtracting the energy scheduled at
each slice to the slice available energy.

4.1.3. Level 1 Schedule of Elastic FOs

This work also focuses on bringing environmental benefits and optimizing the oper-
ational cost of elastic devices such as thermal accumulators and air conditioners by sched-
uling their day-ahead energy consumption according to its time of use tariffs and the
prosumer profiles. Future work will be developed concerning battery storage and other
forms of elastic energy flexibility. Algorithm 3 details the heuristic algorithm designed to
create a FO for elastic devices, which is later scheduled at the same Level as a fixed FO.
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Algorithm 3. schedElasticDevice

Input:
prosumer -Prosumer to which the device belongs
tMax - Maximum temperature defined by the user to maintain his comfort
tMin - Minimum temperature defined by the user to maintain his comfort
tStart - Temperature at the start
prices - List with the energy self-production values of the user and energy
prices of the different grid suppliers available.
powerCom - average power consumption per time slice.

Output:

FO - The created fixed FO for scheduling

1 Function generateHeuristicElasticEProfile
2 t <- new Date(0,0,0)

3 temp <- tStart

4 totalCost <- 0

5 While (auxtime < end) Do

6 nextCoolDownTime = getNextCoolDownTime (tMin, temp, t)
7 If isLowestPriceUntilNextCooldown (nextCoolDownTime, prices)Then
8 newTemp <- calculateNewTemp ()

9 If newTemp < tMax Then

10 temp <- heatUp ()

11 consump.add (powerCon, t)

12 Else

13 temp <- coolDown ()

14 End

15 Else

16 temp <- coolDown ()

17 End

18 t <- t + TimeSliceSize

19 End While

20 FO <- new FO(fixed, consumptions)

21 Return FO

22 End

The heuristic approach to solve elastic devices scheduling can be simply explained
as an attempt to use the thermal appliance as a conditioned thermal battery.

For example, a client has a water heater that must maintain water between a specified
comfort range of temperatures, tmin and tm. Our approach focuses on heating-up the water
at the slices with the lowest price before the water cools down below tmin. However, the
water cannot be heat up above tmax. If the water is below tuin, the algorithm heats up disre-
garding the price, until meeting desired comfort levels.

When for example a client has self-production, the most cost and environmentally
effective way to use its energy resources is to use surplus energy, which is free, to heat up
water, successfully storing renewable energy as heat.

Algorithm 3 does exactly that. First a set of auxiliary variables are created (lines 2 to
4), including a variable holding the actual temperature of the device. Then, in a loop (lines
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5 to 19) each time slice is examined, as follows. First, the next cool down time is calculated
(line 6), based on temperature change equations previously inserted on the system for this
specific device.

The cool down time is the predicted time at which it is forecasted that the tempera-
ture of the water goes below tuin. Note that the calculation of the forecast of the cooldown
time can be improved over time, for example with client hot water consumption patterns.
This way the algorithm can more efficiently calculate the cooldown time and maintain
comfort temperatures whilst optimizing energy consumptions.

Next, the program checks if the current slice price is the lowest until the cooldown
time (line 7). If so, energy is used to heat up water, and the new temperature is calculated.
Otherwise, no energy is used, and the water continues to cooldown (line 13). In the end
(line 20 and 21), a new Fixed FO is created and returned to be scheduled with algorithm 1
with the consumptions scheduled by this algorithm. Note that it results in a Fixed FO
since the start time is already defined, resulting a FO without time flexibility, but it can
maintain some consumption flexibility.

The main result of Level 1 scheduling can be a set of unscheduled FOs, together with
another set partially fulfilled FOs, which change from being flexible or elastic to fixed FO.
Alternatively, it is also possible that all FOs from a prosumer are fulfilled, and no further
scheduling is performed for FOs from this prosumer. Or a mix of both alternatives.

4.2. Level 2

Level 2 starts by getting the users' production surplus to generate a community en-
ergy production profile. Then, it collects and shuffles in a random order all unscheduled
FOs of Level 1. A FO is considered unscheduled when there is still energy left unsched-
uled. Finally, the FOs pending from the previous Level are scheduled according to the
prosumer buyer profile and the FO type (steps 1.4, 1.5, and 1.6 in the diagram in Figure
4).

Note that in this Level, the FOs scheduling order is randomly selected, addressing
the equity problem that may arise from scheduling always in the same order, as the first
to be scheduled may benefit from a large community excess production available than the
last (considering that a typical RES does not produce the energy enough to satisfy the
consumption of all REC members).

There are still Level 2
communities to Scheduled
schedule ?

Once the Level1
is scheduled
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Figure 4. Level 2 workflow

4.2.1. Level 2 Schedule of Fixed FOs

Algorithm 4 presents the pseudocode designed to schedule Fixed FOs at Level 2,
which are scheduled before all others given their reduced flexibility.
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Algorithm 4. schedLevel2FixedFO

Input:
fo - Consumption Fixed FO
prod - Multidimensional array containing: (i) community production, (ii)
energy prices for each time slice

Output:

prod - Updated production profile

1 Function schedFixedFO (fo, prod)

2 t <- fo.tes

3 sched <- new Schedule (t)

4 2eProfile <- fo.getEProfile2Sched()
5 prosumer <- getFOProsumer (fo)

6 For each eSlice in eProfile Do

7 e2Sched <- eSlice.energy

8 sched <- schedSlice(t, e2Sched, prosumer, prod, sched)
9 t <- t + TimeSliceSize

10 End for

11 prod <- scheduleFO (sched, prod, fo)
12 Return prod

13 End

Once again, since a Fixed FO has no energy flexibility, its fe is also the resulting
scheduling time fsa: (line 2). Then, the algorithm initializes a variable with the FO energy
profile and another with the user buyer profile. Next, the algorithm schedules each energy
slice of the FO energy profile using the schedSlice method. This method is analysed further
ahead in algorithm 5. It guarantees an adequate energy schedule according to the user
profile. Finally, at the scheduleFO method, both the FO and the production energy profile
are updated, discounting the energy scheduled, and the FO schedule is saved in the data-
base.

4.2.2. Level 2 Schedule of Shiftable FOs

Algorithm 4 describes the pseudocode designed to schedule the Level 2 Shiftable
FOs.
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Algorithm 4. schedLevel2ShiftableFO

Input:
fo - Consumption Shiftable FO
prod - Multidimensional array containing: (i) community production, (ii)
energy prices for each time slice

Output:

prod - Updated production profile

1 Function schedShiftableFO (fo, prod)

2 consumPrice <- MAXVALUE

3 eProfile <- fo.getEProfile2Schedule ()
4 sched <- new Schedule(fo.start)

5 prosumer <- getFOProsumer (fo)

6 For i = fo.tes; 1 < fo.tls; 1 = i + TimeSliceSize Do
7 t <-1i

8 auxSched <- new Schedule (1)

9 sum <- 0

10 eProfile <- fo.getEProfile2Sched()
11 For each eSlice in eProfile Do

12 e2Sched <- eSlice.energy

13 auxSched <- schedSlice(t, e2Sched, prosumer, prod, auxSched)
14 sum <- sum + auxSched.getPrice (t)
15 t <- t + TimeSliceSize

16 End for

17 If sum < consumPrice Then

18 sched <- auxSched

19 consumPrice <- sum

20 End If

21 End for

22 prod <- scheduleFO (sched, prod, fo)

23 Return prod

24 End

The cycle in lines 6 to 21 is executed to check in which of the time slices comprised
between the f.s and tis is more monetarily advantageous to plan the FO tsn (lines 17 to 20).
Finally, the scheduleFO method saves the best schedule in the database, updates the FO
and the production energy profile accordingly.

4.2.3. Level 2 Schedule of Elastic FOs

As described previously in section 4.1.3 the elastic scheduling algorithms are exe-
cuted at Level 1 for the users with forecasted self-production available. For all other user's
elastic devices, the scheduling is done at Level 2. The algorithm used is similar to the one
used at Level 1, consequently it will not be described in here.

4.3. Level 3

The Level 3 algorithms schedule FO at grid Level, but they are out of the scope of this
paper as this topic has been extensively researched before.
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These algorithms work by aggregating small FOs into larges FO which can be sched-
uled at grid Level or submitted to a flexibility market. This schema allows the participa-
tion of small consumers in demand response, which otherwise would not have a signifi-
cant impact on energy grid balancing as traditionally energy-intensive industrial users
and large customers have by intentionally modifying their consumption patterns.

The authors in [21] theorize about a voluntary local flexibility market where users
sell their flexibility, which is then grouped by energy aggregators and sold, reducing costs
for all involved stakeholders.

For example, [15] introduces an optimal scheduling algorithm based on load con-
straints linked to the dwelling occupant comfort. Similarly, [16] uses aggregation of en-
ergy flexibility expressed by market players as the key to balancing energy supply and
demand. After their creation and acceptance, the FOs are aggregated, preserving their
flexibility. Afterward, the scheduling is performed based on forecasts to achieve a greater
balance of the grid. Next, the FOs are disaggregated and returned to the prosumer. Once
the execution is carried out, billing is conducted, and depending on the benefits of the FO
for the utility company, an incentive may be provided to the prosumer.

5. Case Study

This section presents the case study used to test the algorithms and evaluate a set of
environmental objectives and economic benefits accomplished by the introduction of
management and optimization of REC members’ energy consumption and production.
5.1. Simulation Approach and Test Data

The carried-out simulation follows the approach illustrated in Figure 5. At first, the
system is feed with data related with: historical energy consumption patterns, energy
prices, weather information and users’ FOs for the next day. In the end, the system outputs
the user’s FOs schedule according to the algorithm presented in this paper, which max-
imizes the consumption of both user and REC self-production energy, while meeting the
users’ preferences.

Energy Prices

Energy Flexibilty
N
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Flex Offer Scheduling
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Figure 5. Simulation approach

The energy prices used for the simulation were obtained from the Iberian wholesale
energy market, OMIE, with a 1-hour granularity. The energy prices for transactions inside
the REC were set at 80% of the OMIE price during the period, a 20% discount compared
to OMIE prices. Finally, and to evaluate the effectiveness of the scheduling algorithm, the
average of the daily price was considered as the flatline tariff for energy consumption,
enabling the comparison between the cost before and after the application of the schedul-
ing algorithms. Figure 6 shows the energy prices per kWh used in this simulation.
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Figure 6. Simulation energy prices

User consumption flexibility is based on real-world data collected with the help of
smart-energy meters for 50 different dwellings. The testing data accounts for a total of 137
consumption FOs, in which 42 are fixed FOs corresponding to consumptions of computers
and fridges, 71 are shiftable FOs characterizing the flexibility of appliances such as wash-
ing machines and dishwashers, and 24 are elastic FOs describing the flexibility of water
heaters.

Regarding energy self-production FOs, three different test scenarios were studied:

e  Scenario 1: 20% of the REC dwellings have self-production;
e  Scenario 2: 40% of the REC dwellings have self-production;
e  Scenario 3: 60% of the REC dwellings have self-production.

The testing data also encompasses a real-world mix of all user/prosumer profiles.
From a buyer perspective there were 22 Cautious, 19 Bold and 9 Local Community Sup-
porter. From a supplier point of view there were 44 Tactical and 6 Go-Ahead profiles.
Table 1 summaries the testbed data information.

Table 1. Summary of case study test data

Number of Dwellings 50 Dwellings
(1) 10 dwellings (20%)
Dwellings with Self Energy Production (2) 20 dwellings (40%)
(3) 30 dwellings (60%)
Number of Fixed FOs 42
Number of Shiftable FOs 71
Number of Elastic FOs 24
22 Cautious
Types of Prosumer Buyer Profiles 19 Bold
9 Community Supporter
44 Tactical

Types of Prosumer Supplier Profile 6 Go-Ahead

5.2. Results and Evaluation

After applying the scheduling algorithms, the obtained results show a significant im-
provement, both economically and environmentally, not only for end-users, but also for
all involved players in the energy market value chain. This section details the obtained
results.
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5.2.1. Environmental Results

To access the degree of accomplishment of environmental objectives, two Key Per-
formance Indicators (KPIs) are assessed:
e  KPI1 - User self-consumption
e  KPI2-REC consumption

KPI 1 measures the total amount of user energy self-consumption, in kWh, of each
community member with available self-production, and compares, in percentage, the val-
ues before and after the algorithms are applied. Note that users with Go-Ahead profiles
are not considered, since all their self-production is sold, and its surplus consumption is
not optimized by the algorithms. Table 2 depicts the average increase of user self-con-
sumption before and after the algorithms were applied, for each test case scenario.

Table 2. Increase of user energy self-consumption (KPI 1)

Average Increase of User Self

Scenario Consumption (%)
16.4
2 8.9
3 8.8

These results show that an increase on self-consumption was achieved by all test case sce-
narios, as on average, each user consumed 11.4% more of self-produced energy after the
algorithms presented in this paper, mainly Level 1, were applied to their dwelling. Figure
7 shows in more detail, the KPI 1 results attained for each user in test scenario 3.
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Figure 7. User energy self-consumption per dwelling before(blue) and after(orange) the algorithms

As expected, there is an overall increase in self-consumption among community
members. However, some show a decrease, such as the users in dwellings B1, B5 and B22.
These situations are explained by the Cautious buyer profile chosen by these users that
prioritize the total energy cost minimization. The algorithms consider that fact, and sched-
ule their FOs at the lowest price possible, even if it means consuming less self-produced
energy at hours where energy costs are higher, as leftovers would lead to a higher total
cost. In Section 5.2.2 the economic benefits are analyzed, and for example users B1, B5 and
B22 show a decrease in total energy cost, as expected. Also note that not all cautious users
suffer a decrease in self-consumption, that is the case of B12 and B50, with an increase of
10% and 13% in self-consumption, respectively, which shows that even cost oriented users
can benefit from the environmentally friendly nature of the optimization.
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The second KPI measures, in percentage, how much of the total energy consumption
in the REC comes from intra-community energy trading after Level 2 algorithms are ap-
plied.

Table 3 shows the increase of the total REC energy production, which is consumed
by REC members, for each test case scenario.

Table 3. REC consumption increase after scheduling for each test case scenario

Community Consumption After Scheduling

Scenario (% of total consumption)
1 16.5
2 25.7
3 28.3

When examining the second KPI in the case study, results show that on average of
the three test scenarios, 23.5% of the total consumption registered in the REC was satisfied
by intra-community energy trading. The results also show that the higher the number of
self-producing users, the higher the community consumption achieved. In scenario 3,
where 60% of the houses have self-production, approximately 28% of the total energy con-
sumed in the community came from energy produced by other members in the commu-
nity. Figure 8 shows, for test scenario 3, the percentage of the total energy consumption
from each energy source before and after the algorithms were applied.

Before After

® Community = Self Grid

Figure 8. Energy consumption in the simulated REC before(left) and after(right) the algorithms were
applied

As seen in the results of KPI 1 and KPI 2, REC members’ renewable self-consumption
is optimized according to their profiles, and a significant intra-community renewable
based consumption is achieved. Not only they increase the integration of distributed RES
in the grid, leading to higher renewable energy consumption, but also, as the energy is
consumed locally, our approach helps to reduce energy transmission losses, accomplish-
ing an environmental benefit.

5.2.2 Economical results

Similarly, to the previous section, to better comprehend and examine the accomplish-
ment of economic goals the following KPI is introduced:
e  KPI3 - User total energy cost

The third KPI quantifies the total spending on energy, in euros, of each community
member, and compares, in percentage, the values before and after the algorithms are ap-
plied. Once again, users with a Go-Ahead buyer profile are not considered for this indica-
tor, as selling all their self-produced energy due to contractual terms impedes the cost
optimization. Also note that the total cost regards only to consumption cost, since the
profit made by selling self-production to other REC members is not considered.
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Table 4 depicts the average reduction of users’ total energy cost before and after the
algorithms were applied, for each test case scenario.

Table 4. Average reduction, in percentage, of each prosumer total energy cost

. Average Reduction of Users’ Total
Scenario

Energy Cost (%)
1 9.2
2 10.6
3 12.2

These results show a reduction in total energy cost in all test case scenarios, as on
average, each user consumption cost is 10.6% less after the algorithms presented in this
paper are applied to optimize their energy needs. Figure 9 details, the total cost before and
after for some of the users in test scenario 3.
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Figure 9. Dwelling total energy cost before(blue) and after(orange) the algorithms

As projected, the graph shows an overall reduction in users’ total energy cost. As
mentioned before, users with cautious profile, that had decreased their self-consumption
before, such as the users in B1, B5, B22, now show a reduction in their total energy cost,
attaining their profile objectives. Also, regarding buyer profiles, some Bold users like B10
and B20 saw their energy total cost increasing. However, since the Bold profile aims to
maximize renewable energy consumption disregarding the cost, their personal objectives
were accomplished.

5. Conclusions

Energy produced from RES has emerged as green, reliable, and environmentally
friendly solution for the replacement of traditional energy production methods, which are
heavily dependent on the burning of fossil fuels. Moreover, RES, such as sun and wind
can be individually harnessed by citizens, allowing for energy self-sufficiency, and the
reduction of transmission losses. As a result, RECs are emerging as an effective concept
and model to empower the active involvement of citizens on the energy transition as pro-
moters of RES and the participation on the energy markets.

This paper aimed to contribute to the management, scheduling and optimization of
individual and community energy consumption and production in a REC. It follows on a
previous REC architecture and introduces heuristic algorithms that aim to address differ-
ent players' economic and social needs. The algorithms are organized in a distributed edge
and fog approach and are architected for low computational overhead.
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The carried-out test case scenario with 50 REC members aimed to simulate a real-
world community, with diverse buyer and supplier profiles, energy flexibility and pro-
duction capabilities. The results demonstrate very promising results as it encourages the
use of RES, helping producers reduce the initial investment pay-out time by not only max-
imizing the use of self-produced energy but also by selling the energy surplus to other
community members at a profitable price.

Current work is being developed to update the algorithms to consider the scheduling
of optimized battery energy storage and consumption and the introduction of electric ve-
hicles in a vehicle-to-grid fashion. Future work should evaluate these algorithms against
real-world implementations, with a more diversified list of dwellings, appliances, flexi-
bilities, and seasonal data.
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