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Abstract: Renewable Energy Communities (RECs) are emerging as an effective concept and model 

to empower the active participation of citizens on the energy transition, not only as energy consum-

ers, but also as promoters of environmentally friendly energy generation solutions. This paper aims 

to contribute to the management and optimization of individual and community Distributed Energy 

Resources (DER). The solution follows a price and source-based REC management program, in 

which consumers day-ahead flexible loads (Flex Offers) are shifted according to electricity genera-

tion availability, prices and personal preferences, to balance the grid and incentivize user participa-

tion. The heuristic approach used in the proposed algorithms allows the optimization of energy 

resources in a distributed edge and fog approach with a low computational overhead. The simula-

tions performed using real world energy consumption and flexibility data of a REC with 50 dwell-

ings show an average cost reduction of 10.6% and an average increase of 11.4% in individual self-

consumption. Additionally, the case-study demonstrates promising results regarding grid load bal-

ancing and the introduction of intra-community energy trading.    
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1. Introduction 

Traditional energy grids have been heavily dependent on the burning of fossil fuels, 

like coal or natural gas, to generate electricity. This type of electricity production has there-

fore a negative impact on the environment while also posing geopolitical challenges for 

countries that must rely upon others for obtaining these vital resources. Additionally, en-

ergy generation at plants distant from consumers cause losses in its distribution infra-

structure, diminishing efficiency and increasing running costs [1]. 

Renewable Energy Sources (RES) emerge as a green, reliable, and economically via-

ble solution for electricity production. Given the replenishable nature of its sources, such 

as the sun and wind, RES enable citizens and governments to become more self-sufficient 

as the energy can be produced individually in a distributed manner. Distributed Energy 

Resources (DER) are closer to consumers, which also substantially reduces traditional dis-

tribution losses. As a result, renewable energy has undertaken a significant increase in 

adoption, with its growth forecast to speed up in the next five years [2]. Households, office 

dwellings and factories also play an increasingly prominent role in this transition [3], by 

installing photovoltaic panels and injecting their surplus production into the grid. Such 

kind of end-users are now being designated as prosumers, as they take on the role of both 

producers and consumers of energy simultaneously.  

However, the high penetration of RES poses new difficulties to grid operators in 

managing and maintaining the necessary grid balance, as there is a time imbalance be-
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tween peak demand and RES production and due to the highly fluctuating operation char-

acteristic of these sources. In addition, at certain times of the year, namely Spring and 

Summer, there is an over generation risk which may force grid operators to curtail RES or 

implement negative electricity prices to force demand upwards, leading to higher operat-

ing costs and thus reducing both the environmental and economic benefits of renewable 

sources. 

Energy Flexibility Management offers a partial solution to this problem, minimizing 

the impact of the introduction of RES in energy grids and preserving its economic and 

environmental benefits. Renewable Energy Communities (REC) offer a powerful frame-

work in which energy sharing between members is possible and where Flexibility Man-

agement can be further explored. In this context, Flexigy [4], the project in which this re-

search work has been conducted, aimed to develop an integrated platform for managing 

the energy flexibility of consumers and prosumers belonging to REC.  

This paper builds on the 3-Level smart-grid architecture for REC management intro-

duced in [5] detailing the developed algorithms to schedule the energy flexibility of home 

appliances, considering the member preferences and the appliances’ consumption pro-

files. The scheduling is performed, at each one of three architecture Levels: (i) prosumer 

Level (on a single house or office dwelling), (ii) REC Level (to which the prosumer be-

longs) and (iii) at grid Level. Our approach focuses on delivering fast and scalable algo-

rithms that do not use excessive computing resources, so that they can be applied closer 

to the end user in an edge and fog low-cost implementation. 

The proposed method is validated using a dataset composed of energy flexibility 

profiles, consumption, and production of fifty dwellings. The data was collected on real-

world appliances during the project. In the end, results are presented, and the benefits of 

the solution thoroughly analyzed. 

This paper is organized into multiple sections. Section 2 presents the state-of-the-art 

concepts and projects related to demand side response and energy flexibility. Section 3 

overviews the developed system model. Section 4 details the flex offer scheduling algo-

rithms. Section 5 presents and discusses the results obtained from a real-world simulation. 

Section 6 addresses the main conclusions and future work. 

2. State of the Art 

Traditionally the energy grid supplies electricity to consumers through a unidirec-

tional flow originated from very large energy production facilities, centrally controlled. 

However, with the introduction and evolution of DERs, like photovoltaic panels at 

prosumers households, demand response (DR) and Energy Flexibility Management have 

emerged as viable alternatives to manage these energy resources efficiently, helping to 

shape future smart grids. 

The authors in [6] present a comprehensive review of technologies, data manage-

ment, cybersecurity and how different pricing modalities can be applied in a modernized 

power grid. Moreover, [7], [8] study and formulate peer-to-peer energy trading in smart 

grids, analyzing energy routing algorithms, discussing blockchain as an enabling technol-

ogy and identifying future work, such as implementing a unified messaging framework. 

 There are also numerous works reviewing the state of the art of DR in the literature. 

For example, [9] examined the benefits of DR in smart grids, while [10] focused on the 

developments of energy scheduling and communication technologies for DR. [11] pre-

sents a systematic literature review of the history, definitions, programs, and future de-

velopment opportunities in DR. Additionally, the authors discuss the introduction of 

smart energy communities as a new DR participant with considerable load flexibility.  

In fact, RECs, a type of smart energy communities, are groups of geographically close 

citizens participating in distributed energy generation as a strategy to reduce costs (self-

production and sharing), but also as a novel approach to offer grid balance resources, by 

taking advantage of the flexibility of several electrical appliances (e.g., water heaters, 

HVAC systems, dishwashers), and storage. In the Flexigy project, RECs are considered as 

a group of prosumers connected to the same local medium- to low-voltage transformer. 
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Several studies focused on small scale demand flexibility through the scheduling of home 

appliances. For example, [12] introduces a nonlinear optimization model for the schedul-

ing of typical home appliances with a time-of-use electricity tariff, while [13] assesses the 

impacts of time-of-use tariffs on residential electricity demand and peak shifting. 

Additionally, [14] approaches residential day-ahead energy scheduling for demand 

response in smart grids by formulating an optimization problem that, based on the service 

provider's electricity prices given-ahead of time, presents a solution with the desired 

trade-off between cost and comfort. However, the report only tests six appliances (3-

schedulable and 3-non-schedulable), leading to concerns of solution applicability in real-

world energy communities with hundreds of scheduling devices which result in major 

computational and time requirements to solve the optimization problem. This has been 

one of our main concerns for the proposed algorithms. Moreover, the authors in [15] pro-

pose an adaptive day-ahead load optimization and control solution with an edge and fog 

Internet of Things (IoT) architecture.  

Domestic thermal loads such as thermal accumulators HVAC systems have also the 

target of research as flexible resources for DR used in RECs. These devices can be used to 

store excess electricity production as thermal energy considering the limits of user comfort 

and appliances’ capacity. The authors in [13] present a peak shaving solution that predicts 

water usage profiles from dwelling load patterns, computes thermal losses to determine 

the water temperature in the tank, and consequently forecasts an optimal consumption 

profile. Moreover, [16] applies a fuzzy adaptive competitive algorithm as a load control 

model for scheduling AC units while minimizing the user's thermal comfort, while [17], 

[18] introduce a model predictive control (MPC) algorithm to schedule a dwellings AC 

units considering variable weather, occupancy, and electricity prices.  

As reviewed, various works have addressed small demand flexibility scheduling. 

However, most of them rely on heavy optimization algorithms that require large compu-

ting resources and may take long computing time when scheduling real-world energy 

communities with hundreds or thousands of devices. As such, our work focuses on deliv-

ering an integrated platform for the management and optimization of renewable energy 

communities, unifying dwelling-Level DR, user energy flexibility and peer-to-peer com-

munity energy sharing, while maintain a distributed edge and fog architecture with low 

computational needs. 

3. System Model and Architecture 

Consider a REC where a set of prosumers can share the excess production energy 

between themselves and the utility grid, to promote renewable energy consumption and 

minimize overall costs. As described in detail in [5] at each prosumer house, there are 

smart devices capable of switching on/off some appliances and recording its consumption 

in 15-minute time slices (TSs), or smaller. These devices communicate with an edge or 

cloud device where scheduling decisions are taken to optimize local consumption accord-

ing to i) each prosumer profile/strategy; ii) the energy flexibility of the monitored appli-

ances and, iii) the electricity prices for the day ahead.  

The next sections present the energy flexibility and Flex-Offer (FO) concepts and an 

overview of the prosumer profiles, which were the basis for the development of the algo-

rithms. Additionally, the system architecture is reviewed. 

3.1. Energy Flexibility 

Energy flexibility, which is the capability to shift the activation of certain loads (ap-

pliances) thus changing the overall consumption profile of a facility (home) is the key 

concept behind the development of the scheduling algorithms. 

By taking advantage of these algorithms, the platform can schedule the activation of 

certain loads in order to optimize the usage of the locally generated energy in individual 

and collective terms. 

 

3.1.1 Flex Offer Concept  
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This work is based on the Flex-Offer (FO) concept, which was introduced in [19]. In 

its simplest form, a FO is a standardized model to represent a generic energy flexibility 

abstraction expressing an amount of energy or an energy profile, a duration, a price, the 

earliest start time, and the latest start time. Three FO examples follow:   

• "Consumption of 5 kWh during 3 hours between 01:00 and 05:00, for a price of 

0.25 €/kWh"; 

• “Consumption follows the energy profile in Figure 1, no price specified”. 

In these cases, the FO represent flexible electric loads (e.g., charging electric vehicles, 

heat pumps, equipment for domestic use) and production units (e.g., discharging batter-

ies, photovoltaic panels). 

A FO can be formally defined as a tuple: 

𝑓_𝑑𝑒𝑓 = ([𝑡𝑒𝑠,𝑡𝑙𝑠], ⟨𝑠1, 𝑠2 … . , 𝑠𝑠⟩), (1) 

 Where: 

𝑠𝑖 = [𝑎𝑚𝑖𝑛
𝑖 , 𝑎𝑚𝑎𝑥

𝑖 ]  

In equation 1, tes represents the earlier start time and tls represents the latest start time 

for the FO. The second parameter is a list that contains a sequence of slices s that represent 

the energy profile of the device. Each one of these slices si is an energy range between aimin 

and aimax, usually represented in kWh which can be positive if the device consumes energy 

or negative if the device produces energy. We assume that the duration of each slice is a 

1-time unit, adjustable to multiple sampling frequencies. In our use-case power consump-

tion/production is sampled at 15 min intervals and defined by TimeSliceSize. 

The main interest of a FOs is on having it scheduled using some criteria. The main 

result is that scheduled FO will also have its scheduling, i.e. the time at which the device 

should be turned on tsch.  

Consequently, equation 1 can be updated as follows in equation 2: 

𝑓_𝑠𝑐ℎ = ([𝑡𝑒𝑠,𝑡𝑙𝑠, 𝑡𝑠𝑐ℎ], ⟨𝑠1, 𝑠2 … . , 𝑠𝑠⟩) (2) 

Figure 1 displays a visual representation of a FO energy profile and respective sched-

uling with the tes and the tls defining a time flexibility interval. The FO energy requirements 

are represented by energy slices (si). The slice energy flexibility is detailed by the differ-

ence between the aimin and aimax. The tsch represents the time at which the FO was scheduled. 

  

Figure 1. FO Example 

 

 

3.1.2. Device Flexibility and Flex Offers Types 
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In terms of flexibility, devices can be categorized according to two factors, present in 

Figure 1: (i) slice energy flexibility and (ii) time flexibility. More specifically, three distinct 

kinds of devices are defined, originating the three different types of FO used in this work:  

• Fixed Devices are devices whose consumption period and amount of energy con-

sumed cannot be modified (e.g., televisions and lights). Fixed FOs are used to trans-

late these devices in the system. A Fixed FO can be formally restricted by: 

𝑡𝑠𝑐ℎ = 𝑡𝑒𝑠   𝑎𝑛𝑑 𝑠𝑖𝑎𝑚𝑖𝑛
𝑖 = 𝑠𝑖𝑎𝑚𝑎𝑥

𝑖  (3) 

• Shiftable Devices are time flexible devices, meaning that the consumption time can 

be shifted within certain limits without modifying the load profile (e.g., washing ma-

chine, dishwasher). These devices offer an opportunity to optimize grid load man-

agement. Shiftable FOs translate shiftable devices into the system. A Shiftable FO is 

subject to: 

𝑡𝑒𝑠  ≤  𝑡𝑠𝑐ℎ ≤ 𝑡𝑙𝑠 𝑎𝑛𝑑 𝑠𝑖𝑎𝑚𝑖𝑛
𝑖 = 𝑠𝑖𝑎𝑚𝑎𝑥

𝑖  (4) 

• Elastic Devices are the most flexible, being fully adjustable in terms of usage time 

and instantaneous power consumption (e.g., heater, electric car). Similar to shiftable 

devices, elastic devices provide grid load management capabilities to a greater extent. 

Elastic FOs translate elastic devices into the system. An Elastic FO is restricted by: 

𝑡𝑒𝑠  ≤  𝑡𝑠𝑐ℎ ≤ 𝑡𝑙𝑠  (5) 

3.2. Prosumer Profiles 

Prosumer profile introduced in [5] are defined so that each prosumer can customize 

its objectives according to what best fits his goals and beliefs when participating on a REC. 

From an energy consumption point of view, there are three distinct profiles from which a 

prosumer can choose:  

• Bold Profile the consumer only wants to maximize its renewable energy consump-

tion regardless of the electricity price;  

• Cautious Profile the consumer wants to buy energy always at the lowest total cost 

possible, whatever its source;  

• Local Community Supporter Profile the consumer maximizes REC consumption ir-

respective of its price.  

From the energy production side, whose strategy for selling the prosumer excess pro-

duction can be one of the following:  

• Go-Ahead Profile the producer wants to sell all his renewable electricity generation.  

• Tactical Profile the producer only wants to sell its surplus of renewable generation 

after optimizing self-consumption.  

3.3. System Architecture  

As stated before, the developed algorithms follow a three-level approach introduced 

on [5]. This architecture aims to integrate prosumer profiles in the scheduling solution 

while allowing a distributed edge and fog implementation of the community energy man-

agement. The levels of this architecture are the following: 

• Level 1 - Prosumer level: executed for each prosumer to minimize the energy costs 

and maximize the individual renewable energy self-consumption. 

• Level 2 - Local community level: executed at the REC level to minimize overall en-

ergy costs and optimize the renewable energy-based supply via peer-to-peer energy 

trading and collective renewable self-consumption. 

• Level 3 - Grid level: groups small-scale flex-offers at the REC level or between RECs 

to respond to specific market requests from different stakeholders. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2022                   doi:10.20944/preprints202210.0303.v1

https://doi.org/10.20944/preprints202210.0303.v1


 

 

Figure 2. Three Level Architecture [5] 

Figure 2 presents the system architecture from a logical point of view. Level 1, de-

picted in green in Figure 2 represents each prosumer dwelling with energy consumption 

from multiple home appliances, and, eventually, energy self-production from PV panels 

or other renewable sources. At this level the system collects the flexibility of different ap-

pliances on the prosumer premises and expresses this flexibility as FOs and optimizes 

individual self-consumption according to prosumer profiles. The algorithm can be run 

directly at the prosumer house (e.g.: IoT hub) in an edge computation approach, retaining 

data confidentiality and effectively distributing computing, as it does not need to be run 

on the cloud. FOs left unscheduled in this level at each edge node (each prosumer) are 

then sent to fog computer, handling community needs at Level 2. 

Level 2, illustrated by a red dashed line in Figure 2, represents a REC connected to a 

single medium- to low-voltage energy transformer. At this level all the FOs generated at 

the community dwellings (Level 1), including the FOs partially or not fully scheduled at 

Level 1 are scheduled using the REC aggregated self-production. Once again, this algo-

rithm can be run in a distributed manner at the fog level (e.g., a fog device implemented 

at each community). After the scheduling is performed by the algorithms operating at this 

level, the schedule of the community FOs is sent to the edge nodes, which will orchestrate 

the devices accordingly. 

Finally, Level 3, depicted in blue in Figure 2, aggregates the different REC communi-

ties FOs, which were not fully or were partially fulfilled at Level 1 or 2, and sells those 

aggregate FOs directly on a flexibility market. Aggregation is required to generate FOs 

with higher power, which can be offered on balancing markets [20]. This level can be run 

on cloud servers, where one or more communities are combined. 

4. Flex Offer Scheduling Algorithms 

Following the introduced energy flexibility concept, user profiles and architecture, 

algorithms for the three scheduling levels are detailed in the next sections. 

4.1. Level 1 

Level 1 is executed for all FOs from prosumers who have chosen the Tactical profile 

and aim to maximize their energy self-consumption while minimizing the total cost. We 

assume that the cost of self-consumption is zero. The diagram in Figure 3 depicts the 

workflow of Level 1 algorithm. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2022                   doi:10.20944/preprints202210.0303.v1

https://doi.org/10.20944/preprints202210.0303.v1


 

 

Figure 3. Level 1 workflow 

This Level only includes prosumers with a Tactical profile, which have self-produc-

tion capabilities. As such, the first step of Level 1 algorithms, which might be running in 

an edge device inside the prosumer dwelling, is to forecast the day-ahead self-production. 

Once forecasted, the algorithm fetches community and grid prices for the day ahead from 

the REC fog device.  

Moreover, a forecast of the dwellings' unpredictable consumptions is generated so 

that the system can reserve part of the user production for unpredictable energy consump-

tion (e.g., turning on a computer, using a vacuum cleaner or turning on the lights). This 

way, the self-produced energy consumption is always maximized at the prosumer level. 

Finally, the production profile is updated accordingly to the scheduled consumption. 

In the following sections, the algorithms developed to schedule the distinct types of FOs 

at Level 1 are presented. 

4.1.1. Level 1 Schedule of Fixed FOs 

Algorithm 1 describe the solution designed to schedule fixed FOs consumptions in 

an optimized manner by using the prosumer self-produced energy, block 3.2 in Figure 3. 

Since self-produced energy is free for the prosumer, it is always more advantageous, for 

any buyer profile, to use the maximum self-produced energy as possible when a FO is of 

type Fixed FO. As such, this algorithm tries to always schedule the maximum forecasted 

self-produced energy at any given time. 
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Algorithm 1. schedSelfConsumptionFixedFO. Algorithm used at Level 1 to schedule Fixed FOs. 

 Input:  

  fo – Consumption Fixed FO 

  prod – Multidimensional array containing: (i) user production and, (ii) 

energy prices for each time slice 

  prosumer – Prosumer 

 Output:  

  prod – The updated prosumer production profile 

1 Function schedSelfConsumFixedFO (fo, prod, prosumer) 

2  t <- fo.tes 

3  eProfile <- fo.getEProfile2Sched() 

4  sched <- new Schedule(fo.tes) 

5  For each eSlice in eProfile Do 

6   e2Sched <- getMaxEConsum(prod, t, eSlice) 

7   If e2Sched > 0 Then 

8    sched.AddSlice(t, e2Schedule) 

9   End if 

10   t <- t + TimeSliceSize 

11  End for 

12  prod <- scheduleFO(sched, prod, fo) 

13  Return prod 

14 End 

Given that a Fixed FO has no energy flexibility, its earliest start time (tes) is considered the 

scheduling Time (tschd) (line 2). In line 3 the Fixed Flex Offer consumption profile is fetched 

to an auxiliar variable. Moreover, a new Schedule object is created, with its start time set 

to the FO tes. 

Next, for each energy slice of the FO energy profile, the algorithm verifies how much 

energy consumption can be scheduled using self-production (line 6). If some or all the 

energy can be scheduled using the self-production, a slice is added to the schedule. This 

slice specifies the time, energy amount and price of the schedule energy consumption. 

Finally, at the scheduleFO method (line 12), both the FO and the production energy profile 

are updated, discounting the energy scheduled, and the FO schedule is saved. 

4.1.2. Level 1 Schedule of Shiftable FOs 

Algorithm 2 describes the algorithm designed to schedule shiftable FOs, also at Level 

1, block 3.3 in Figure 3. At this Level, the biggest concern was not only to maximize self-

consumption on all occasions, but instead, the algorithm should reflect the prosumer 

buyer profile. In effect, it can be more monetarily rewarding for a user with a Cautious 

buyer profile to schedule the FO with less self-consumption if the price paid for the sur-

plus is significantly less at that slice, instead of having more self-produced energy but end 

up paying more for the surplus scheduled at Level 2. 

As such, the approach shown in Algorithm 2 focuses on prosumers buyer profiles, as 

it heuristically tries to find the best fit for the FO consumption.  
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Algorithm 2: schedSelfConsumpShiftableFO  

 Input:  

  fo – Consumption Shiftable FO 

prod – Multidimensional array containing: (i) user production and, (ii) 

energy prices for each time slice 

  prosumer – Prosumer 

 Output:  

  prod – The updated production profile 

1 Function schedSelfConsumShiftableFO (fo, prod, prosumer) 

2  cost <- MAXVALUE 

3  sched <- new Schedule(fo.tes) 

4  For i = fo.tes; i < fo.tls; i = i + TimeSliceSize Do 

5   t <- i 

6   auxSched <- new Schedule(i) 

7   sum <- 0 

8   eProfile <- fo.getEProfile2Schedule() 

9   For each eSlice in eProfile Do 

10    e2Sched <- getMaxEConsum(prod, t, eSlice) 

11    consumSurplus = eSlice.energy - e2Sched 

12    sum = sum + checkProfileCost(consumSurplus, t, eSlice, prosumer) 

13    auxSched.AddSlice(t, e2Sched) 

14    t <- t + TimeSliceSize 

15   End for 

16   If sum < cost Then 

17    sched <- auxSched 

18    cost <- sum 

19   End If 

20  End for 

21  prod <- scheduleFO(sched, prod, fo) 

22  Return prod 

23 End 

A cycle is executed to check at which of the time slices comprised between the FO tes 

and tls is more financially advantageous to schedule the start of the FO execution (tsch) 

(lines 5 to 20).  

At the start of the loop, a set of auxiliary variables is created each time a new candi-

date tsch is evaluated (lines 5 to 8). Next, the solution price is determined by calculating the 

price of the energy surplus of each time slice (lines 9 to 15). To determine it, the algorithm 

starts by finding the maximum self-produced energy that can be consumed by the slice 

and consequently the consumption surplus. Then, with the help of the checkProfileCost 

method (line 12), the electricity consumption price is summed to the total price of the so-

lution.  

The checkProfileCost method is the solution presented in this work to be able to opti-

mize the Level 1 self-consumption solution without disregarding both the electricity 

prices at other Levels and the prosumer buyer profiles. This method uses the forecast of 

day-ahead prices and calculates the cost for the prosumer based on its profile: 
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• For users with a Cautious profile, the cost returned at any given time, is calculated 

based on the cost of the surplus energy multiplied by the grid price for that time. As 

such, an estimate for the scheduling of surplus energy at higher Levels is returned.  

• For users with a Community Supporter profile, the cost returned at any given time, 

is calculated based on the cost of the surplus energy multiplied by the REC day-ahead 

prices at that time.  

• For users with a Bold profile, the cost is indeed how much non-renewable energy is 

consumed in surplus of self-consumption. As such, the method returns the total 

amount of surplus energy in this case.  

In the end, if the cost of the solution being evaluated (either price or amount of sur-

plus energy) is lower than the cost of the previously saved schedule (line 16), both the 

schedule and cost variables are updated with the new solution values (lines 17 and 18).  

After the best schedule is found, the scheduleFO method saves it and updates the FO 

and the self-production energy profile, accordingly, subtracting the energy scheduled at 

each slice to the slice available energy. 

4.1.3. Level 1 Schedule of Elastic FOs 

This work also focuses on bringing environmental benefits and optimizing the oper-

ational cost of elastic devices such as thermal accumulators and air conditioners by sched-

uling their day-ahead energy consumption according to its time of use tariffs and the 

prosumer profiles. Future work will be developed concerning battery storage and other 

forms of elastic energy flexibility. Algorithm 3 details the heuristic algorithm designed to 

create a FO for elastic devices, which is later scheduled at the same Level as a fixed FO. 
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Algorithm 3. schedElasticDevice 

 Input:  

  prosumer –Prosumer to which the device belongs 

tMax – Maximum temperature defined by the user to maintain his comfort 

tMin – Minimum temperature defined by the user to maintain his comfort 

tStart – Temperature at the start 

prices - List with the energy self-production values of the user and energy 

prices of the different grid suppliers available. 

powerCom - average power consumption per time slice. 

 Output:  

  FO – The created fixed FO for scheduling 

1 Function generateHeuristicElasticEProfile 

2  t <- new Date(0,0,0) 

3  temp <- tStart 

4  totalCost <- 0 

5  While (auxtime < end) Do 

6   nextCoolDownTime = getNextCoolDownTime(tMin, temp, t) 

7   If isLowestPriceUntilNextCooldown(nextCoolDownTime, prices)Then 

8    newTemp <- calculateNewTemp() 

9    If newTemp < tMax Then 

10     temp <- heatUp () 

11     consump.add(powerCon, t) 

12    Else  

13     temp <- coolDown() 

14    End 

15   Else 

16    temp <- coolDown() 

17   End 

18   t <- t + TimeSliceSize 

19  End While 

20  FO <- new FO(fixed, consumptions) 

21  Return FO 

22 End 

The heuristic approach to solve elastic devices scheduling can be simply explained 

as an attempt to use the thermal appliance as a conditioned thermal battery. 

For example, a client has a water heater that must maintain water between a specified 

comfort range of temperatures, tmin and tmax. Our approach focuses on heating-up the water 

at the slices with the lowest price before the water cools down below tmin. However, the 

water cannot be heat up above tmax. If the water is below tmin, the algorithm heats up disre-

garding the price, until meeting desired comfort levels. 

When for example a client has self-production, the most cost and environmentally 

effective way to use its energy resources is to use surplus energy, which is free, to heat up 

water, successfully storing renewable energy as heat. 

Algorithm 3 does exactly that. First a set of auxiliary variables are created (lines 2 to 

4), including a variable holding the actual temperature of the device. Then, in a loop (lines 
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5 to 19) each time slice is examined, as follows. First, the next cool down time is calculated 

(line 6), based on temperature change equations previously inserted on the system for this 

specific device.  

The cool down time is the predicted time at which it is forecasted that the tempera-

ture of the water goes below tmin. Note that the calculation of the forecast of the cooldown 

time can be improved over time, for example with client hot water consumption patterns. 

This way the algorithm can more efficiently calculate the cooldown time and maintain 

comfort temperatures whilst optimizing energy consumptions. 

Next, the program checks if the current slice price is the lowest until the cooldown 

time (line 7). If so, energy is used to heat up water, and the new temperature is calculated. 

Otherwise, no energy is used, and the water continues to cooldown (line 13). In the end 

(line 20 and 21), a new Fixed FO is created and returned to be scheduled with algorithm 1 

with the consumptions scheduled by this algorithm. Note that it results in a Fixed FO 

since the start time is already defined, resulting a FO without time flexibility, but it can 

maintain some consumption flexibility. 

The main result of Level 1 scheduling can be a set of unscheduled FOs, together with 

another set partially fulfilled FOs, which change from being flexible or elastic to fixed FO. 

Alternatively, it is also possible that all FOs from a prosumer are fulfilled, and no further 

scheduling is performed for FOs from this prosumer. Or a mix of both alternatives.  

4.2. Level 2  

Level 2 starts by getting the users' production surplus to generate a community en-

ergy production profile. Then, it collects and shuffles in a random order all unscheduled 

FOs of Level 1. A FO is considered unscheduled when there is still energy left unsched-

uled. Finally, the FOs pending from the previous Level are scheduled according to the 

prosumer buyer profile and the FO type (steps 1.4, 1.5, and 1.6 in the diagram in Figure 

4).  

Note that in this Level, the FOs scheduling order is randomly selected, addressing 

the equity problem that may arise from scheduling always in the same order, as the first 

to be scheduled may benefit from a large community excess production available than the 

last (considering that a typical RES does not produce the energy enough to satisfy the 

consumption of all REC members).  

   

Figure 4. Level 2 workflow 

4.2.1. Level 2 Schedule of Fixed FOs 

Algorithm 4 presents the pseudocode designed to schedule Fixed FOs at Level 2, 

which are scheduled before all others given their reduced flexibility. 
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Algorithm 4. schedLevel2FixedFO 

 Input:  

  fo – Consumption Fixed FO 

  prod – Multidimensional array containing: (i) community production, (ii) 

energy prices for each time slice 

 Output:  

  prod – Updated production profile  

1 Function schedFixedFO (fo, prod) 

2  t <- fo.tes 

3  sched <- new Schedule(t) 

4  2eProfile <- fo.getEProfile2Sched() 

5  prosumer <- getFOProsumer(fo) 

6  For each eSlice in eProfile Do 

7   e2Sched <- eSlice.energy 

8   sched <- schedSlice(t, e2Sched, prosumer, prod, sched) 

9   t <- t + TimeSliceSize 

10  End for 

11  prod <- scheduleFO(sched, prod, fo) 

12  Return prod 

13 End 

Once again, since a Fixed FO has no energy flexibility, its tes is also the resulting 

scheduling time tsch (line 2). Then, the algorithm initializes a variable with the FO energy 

profile and another with the user buyer profile. Next, the algorithm schedules each energy 

slice of the FO energy profile using the schedSlice method. This method is analysed further 

ahead in algorithm 5. It guarantees an adequate energy schedule according to the user 

profile. Finally, at the scheduleFO method, both the FO and the production energy profile 

are updated, discounting the energy scheduled, and the FO schedule is saved in the data-

base. 

4.2.2. Level 2 Schedule of Shiftable FOs 

Algorithm 4 describes the pseudocode designed to schedule the Level 2 Shiftable 

FOs. 
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Algorithm 4. schedLevel2ShiftableFO 

 Input:  

  fo – Consumption Shiftable FO 

  prod – Multidimensional array containing: (i) community production, (ii) 

energy prices for each time slice 

 Output:  

  prod – Updated production profile 

1 Function schedShiftableFO (fo, prod) 

2  consumPrice <- MAXVALUE 

3  eProfile <- fo.getEProfile2Schedule() 

4  sched <- new Schedule(fo.start) 

5  prosumer <- getFOProsumer(fo) 

6  For i = fo.tes; i < fo.tls; i = i + TimeSliceSize Do 

7   t <- i 

8   auxSched <- new Schedule(i) 

9   sum <- 0 

10   eProfile <- fo.getEProfile2Sched() 

11   For each eSlice in eProfile Do 

12    e2Sched <- eSlice.energy 

13    auxSched <- schedSlice(t, e2Sched, prosumer, prod, auxSched) 

14    sum <- sum + auxSched.getPrice(t) 

15    t <- t + TimeSliceSize 

16   End for 

17   If sum < consumPrice Then 

18    sched <- auxSched 

19    consumPrice <- sum 

20   End If 

21  End for 

22  prod <- scheduleFO(sched, prod, fo) 

23  Return prod 

24 End 

The cycle in lines 6 to 21 is executed to check in which of the time slices comprised 

between the tes and tls is more monetarily advantageous to plan the FO tsch (lines 17 to 20). 

Finally, the scheduleFO method saves the best schedule in the database, updates the FO 

and the production energy profile accordingly. 

4.2.3. Level 2 Schedule of Elastic FOs 

As described previously in section 4.1.3 the elastic scheduling algorithms are exe-

cuted at Level 1 for the users with forecasted self-production available. For all other user's 

elastic devices, the scheduling is done at Level 2. The algorithm used is similar to the one 

used at Level 1, consequently it will not be described in here.  

4.3. Level 3 

The Level 3 algorithms schedule FO at grid Level, but they are out of the scope of this 

paper as this topic has been extensively researched before.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2022                   doi:10.20944/preprints202210.0303.v1

https://doi.org/10.20944/preprints202210.0303.v1


 

These algorithms work by aggregating small FOs into larges FO which can be sched-

uled at grid Level or submitted to a flexibility market. This schema allows the participa-

tion of small consumers in demand response, which otherwise would not have a signifi-

cant impact on energy grid balancing as traditionally energy-intensive industrial users 

and large customers have by intentionally modifying their consumption patterns.  

The authors in [21] theorize about a voluntary local flexibility market where users 

sell their flexibility, which is then grouped by energy aggregators and sold, reducing costs 

for all involved stakeholders.  

For example, [15] introduces an optimal scheduling algorithm based on load con-

straints linked to the dwelling occupant comfort. Similarly, [16] uses aggregation of en-

ergy flexibility expressed by market players as the key to balancing energy supply and 

demand. After their creation and acceptance, the FOs are aggregated, preserving their 

flexibility. Afterward, the scheduling is performed based on forecasts to achieve a greater 

balance of the grid. Next, the FOs are disaggregated and returned to the prosumer. Once 

the execution is carried out, billing is conducted, and depending on the benefits of the FO 

for the utility company, an incentive may be provided to the prosumer. 

5. Case Study 

This section presents the case study used to test the algorithms and evaluate a set of 

environmental objectives and economic benefits accomplished by the introduction of 

management and optimization of REC members’ energy consumption and production. 

5.1. Simulation Approach and Test Data 

The carried-out simulation follows the approach illustrated in Figure 5. At first, the 

system is feed with data related with: historical energy consumption patterns, energy 

prices, weather information and users’ FOs for the next day. In the end, the system outputs 

the user’s FOs schedule according to the algorithm presented in this paper, which max-

imizes the consumption of both user and REC self-production energy, while meeting the 

users’ preferences. 

 

Figure 5. Simulation approach 

The energy prices used for the simulation were obtained from the Iberian wholesale 

energy market, OMIE, with a 1-hour granularity. The energy prices for transactions inside 

the REC were set at 80% of the OMIE price during the period, a 20% discount compared 

to OMIE prices. Finally, and to evaluate the effectiveness of the scheduling algorithm, the 

average of the daily price was considered as the flatline tariff for energy consumption, 

enabling the comparison between the cost before and after the application of the schedul-

ing algorithms. Figure 6 shows the energy prices per kWh used in this simulation. 
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Figure 6. Simulation energy prices 

User consumption flexibility is based on real-world data collected with the help of 

smart-energy meters for 50 different dwellings. The testing data accounts for a total of 137 

consumption FOs, in which 42 are fixed FOs corresponding to consumptions of computers 

and fridges, 71 are shiftable FOs characterizing the flexibility of appliances such as wash-

ing machines and dishwashers, and 24 are elastic FOs describing the flexibility of water 

heaters.  

Regarding energy self-production FOs, three different test scenarios were studied: 

• Scenario 1: 20% of the REC dwellings have self-production;  

• Scenario 2: 40% of the REC dwellings have self-production;  

• Scenario 3: 60% of the REC dwellings have self-production. 

The testing data also encompasses a real-world mix of all user/prosumer profiles. 

From a buyer perspective there were 22 Cautious, 19 Bold and 9 Local Community Sup-

porter. From a supplier point of view there were 44 Tactical and 6 Go-Ahead profiles. 

Table 1 summaries the testbed data information. 

Table 1. Summary of case study test data 

Number of Dwellings 50 Dwellings 

Dwellings with Self Energy Production 

(1) 10 dwellings (20%) 

(2) 20 dwellings (40%) 

(3) 30 dwellings (60%) 

Number of Fixed FOs 42 

Number of Shiftable FOs  71 

Number of Elastic FOs 24 

Types of Prosumer Buyer Profiles 

22 Cautious 

19 Bold 

9 Community Supporter 

Types of Prosumer Supplier Profile 
44 Tactical 

6 Go-Ahead 

 

5.2. Results and Evaluation 

After applying the scheduling algorithms, the obtained results show a significant im-

provement, both economically and environmentally, not only for end-users, but also for 

all involved players in the energy market value chain. This section details the obtained 

results. 
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5.2.1. Environmental Results 

To access the degree of accomplishment of environmental objectives, two Key Per-

formance Indicators (KPIs) are assessed: 

• KPI 1 – User self-consumption  

• KPI 2 – REC consumption 

KPI 1 measures the total amount of user energy self-consumption, in kWh, of each 

community member with available self-production, and compares, in percentage, the val-

ues before and after the algorithms are applied. Note that users with Go-Ahead profiles 

are not considered, since all their self-production is sold, and its surplus consumption is 

not optimized by the algorithms. Table 2 depicts the average increase of user self-con-

sumption before and after the algorithms were applied, for each test case scenario. 

Table 2. Increase of user energy self-consumption (KPI 1) 

Scenario 
Average Increase of User Self 

Consumption (%) 

1 16.4 

2 8.9 

3 8.8 

These results show that an increase on self-consumption was achieved by all test case sce-

narios, as on average, each user consumed 11.4% more of self-produced energy after the 

algorithms presented in this paper, mainly Level 1, were applied to their dwelling. Figure 

7 shows in more detail, the KPI 1 results attained for each user in test scenario 3.  

 

Figure 7. User energy self-consumption per dwelling before(blue) and after(orange) the algorithms 

As expected, there is an overall increase in self-consumption among community 

members. However, some show a decrease, such as the users in dwellings B1, B5 and B22. 

These situations are explained by the Cautious buyer profile chosen by these users that 

prioritize the total energy cost minimization. The algorithms consider that fact, and sched-

ule their FOs at the lowest price possible, even if it means consuming less self-produced 

energy at hours where energy costs are higher, as leftovers would lead to a higher total 

cost. In Section 5.2.2 the economic benefits are analyzed, and for example users B1, B5 and 

B22 show a decrease in total energy cost, as expected. Also note that not all cautious users 

suffer a decrease in self-consumption, that is the case of B12 and B50, with an increase of 

10% and 13% in self-consumption, respectively, which shows that even cost oriented users 

can benefit from the environmentally friendly nature of the optimization. 
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The second KPI measures, in percentage, how much of the total energy consumption 

in the REC comes from intra-community energy trading after Level 2 algorithms are ap-

plied. 

Table 3 shows the increase of the total REC energy production, which is consumed 

by REC members, for each test case scenario. 

Table 3. REC consumption increase after scheduling for each test case scenario 

Scenario 
Community Consumption After Scheduling 

(% of total consumption) 

1 16.5 

2 25.7 

3 28.3 

When examining the second KPI in the case study, results show that on average of 

the three test scenarios, 23.5% of the total consumption registered in the REC was satisfied 

by intra-community energy trading. The results also show that the higher the number of 

self-producing users, the higher the community consumption achieved. In scenario 3, 

where 60% of the houses have self-production, approximately 28% of the total energy con-

sumed in the community came from energy produced by other members in the commu-

nity. Figure 8 shows, for test scenario 3, the percentage of the total energy consumption 

from each energy source before and after the algorithms were applied. 

 

Figure 8. Energy consumption in the simulated REC before(left) and after(right) the algorithms were 

applied 

As seen in the results of KPI 1 and KPI 2, REC members’ renewable self-consumption 

is optimized according to their profiles, and a significant intra-community renewable 

based consumption is achieved. Not only they increase the integration of distributed RES 

in the grid, leading to higher renewable energy consumption, but also, as the energy is 

consumed locally, our approach helps to reduce energy transmission losses, accomplish-

ing an environmental benefit. 

5.2.2 Economical results 

Similarly, to the previous section, to better comprehend and examine the accomplish-

ment of economic goals the following KPI is introduced: 

• KPI 3 – User total energy cost 

The third KPI quantifies the total spending on energy, in euros, of each community 

member, and compares, in percentage, the values before and after the algorithms are ap-

plied. Once again, users with a Go-Ahead buyer profile are not considered for this indica-

tor, as selling all their self-produced energy due to contractual terms impedes the cost 

optimization. Also note that the total cost regards only to consumption cost, since the 

profit made by selling self-production to other REC members is not considered. 
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Table 4 depicts the average reduction of users’ total energy cost before and after the 

algorithms were applied, for each test case scenario. 

Table 4. Average reduction, in percentage, of each prosumer total energy cost 

Scenario 
Average Reduction of Users’ Total 

Energy Cost (%) 

1 9.2 

2 10.6 

3 12.2 

These results show a reduction in total energy cost in all test case scenarios, as on 

average, each user consumption cost is 10.6% less after the algorithms presented in this 

paper are applied to optimize their energy needs. Figure 9 details, the total cost before and 

after for some of the users in test scenario 3. 

 

Figure 9. Dwelling total energy cost before(blue) and after(orange) the algorithms  

As projected, the graph shows an overall reduction in users’ total energy cost. As 

mentioned before, users with cautious profile, that had decreased their self-consumption 

before, such as the users in B1, B5, B22, now show a reduction in their total energy cost, 

attaining their profile objectives. Also, regarding buyer profiles, some Bold users like B10 

and B20 saw their energy total cost increasing. However, since the Bold profile aims to 

maximize renewable energy consumption disregarding the cost, their personal objectives 

were accomplished. 

5. Conclusions 

Energy produced from RES has emerged as green, reliable, and environmentally 

friendly solution for the replacement of traditional energy production methods, which are 

heavily dependent on the burning of fossil fuels. Moreover, RES, such as sun and wind 

can be individually harnessed by citizens, allowing for energy self-sufficiency, and the 

reduction of transmission losses. As a result, RECs are emerging as an effective concept 

and model to empower the active involvement of citizens on the energy transition as pro-

moters of RES and the participation on the energy markets.  

This paper aimed to contribute to the management, scheduling and optimization of 

individual and community energy consumption and production in a REC. It follows on a 

previous REC architecture and introduces heuristic algorithms that aim to address differ-

ent players' economic and social needs. The algorithms are organized in a distributed edge 

and fog approach and are architected for low computational overhead. 
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The carried-out test case scenario with 50 REC members aimed to simulate a real-

world community, with diverse buyer and supplier profiles, energy flexibility and pro-

duction capabilities. The results demonstrate very promising results as it encourages the 

use of RES, helping producers reduce the initial investment pay-out time by not only max-

imizing the use of self-produced energy but also by selling the energy surplus to other 

community members at a profitable price.  

Current work is being developed to update the algorithms to consider the scheduling 

of optimized battery energy storage and consumption and the introduction of electric ve-

hicles in a vehicle-to-grid fashion. Future work should evaluate these algorithms against 

real-world implementations, with a more diversified list of dwellings, appliances, flexi-

bilities, and seasonal data.  
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