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Abstract: Music is capable of conveying many emotions. The level and type of emotion of the
music perceived by a listener, however, is highly subjective. In this study, we present the Music
Emotion Recognition with Profile information dataset (MERP). This database was collected through
Amazon Mechanical Turk (MTurk) and features dynamical valence and arousal ratings of 54 selected
full-length songs. The dataset contains music features, as well as user profile information of the
annotators. The songs were selected from the Free Music Archive using an innovative method (a
Triple Neural Network with the OpenSmile toolkit) to identify 50 songs with the most distinctive
emotions. Specifically, the songs were chosen to fully cover the four quadrants of the valence arousal
space. Four additional songs were selected from DEAM to act as a benchmark in this study and filter
out low quality ratings. A total of 277 participants participated in annotating the dataset, and their
demographic information, listening preferences, and musical background were recorded. We offer an
extensive analysis of the resulting dataset, together with a baseline emotion prediction model based
on a fully connected model and an LSTM model, for our newly proposed MERP dataset.
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1. Introduction

With the explosive growth in the amount of music available online, developments in the field
of Music Information Retrieval (MIR), such as models to classify and analyse music, have become
ever more important [1,2]. One of the MIR tasks that has gained increasing attention is the automatic
recognition of emotions from music, or Music Emotion Retrieval (MER). The field of MER focuses on
constructing statistical, machine learning models that can predict perceived emotion based on music
audio. This field has grown rapidly in the last decade or so, partly due to the growth of the music
industry in the digital space, which makes it easier for researchers to access large datasets of music.
Unfortunately, emotion is subjective and often vaguely defined [1]; as a result, different listeners may
have differing views on the emotion they perceive from a song. This results in noisy emotion labels in
music datasets. In order to attempt to this noisiness, our research explores whether we can find reasons
for the difference between listeners. We thus explore whether similarities between listeners translate to
similarities in the perception of emotion in music. Identifying such similarities would contribute to
the topic of personalizing dynamic MER, allowing models to be customised to individuals. We do
this exploration on a newly gathered large dataset of labelled emotion ratings of music. The resulting
cleaned dataset is available online, together with baseline models for emotion prediction (both with
and without using listener profile information).

The relationship between music and emotions has been scientifically explored since as early as
1922 by Seashore [3], with a surge of interest beginning in the 1950s by Meyer [4]. Though not yet
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formally defined and named at the time, Meyer does mention the discrepancies between what we
now know as expressed, perceived and induced emotion [5] in music. Expressed emotion refers to the
intended emotion of the music by the performer and/or composer. The composer of the music may
have intended to convey certain emotions, while the performer of the music also relays performance
expression and emotion to the listener. A qualitative study by Gabrielsson and Juslin [6] was able to
identify the similarities in emotion expression between nine professional musicians playing on varying
instruments. Additionally, they found that listeners were generally able to identify the emotion that
the musicians intended to express. This identification of emotion by the listener is known as perceived
emotion. Induced emotion, on the other hand, refers to the emotion felt by the listener during music
listening. In this work, we focus on perceived emotions.

Because music is able to relay emotion, researchers have investigated how particular music
features convey emotional information. A review by Panda et al. [7] surveys emotion models using
eight musical features: melody, harmony, rhythm, dynamics, tone colour, expressivity, texture and
form. They discuss which aspects of these features may influence emotions. Conversely, a review
by Juslin and Laukka [5] presents a summary of musical features that are correlated with five common
discrete emotions. In both reviews, it is evident that each musical feature is capable of containing
emotional information, and these features can be combined in various ways to convey intended
emotions. Furthermore, by isolating the melody dimension and varying harmony, rhythm, dynamics,
and expressivity dimensions, Juslin [8] show that features may indicate differing emotions and yet
convey one overall emotion. The dataset provided in this research provides an avenue for researchers
to further examine musical features and their effect on the affect states of listeners with different
backgrounds.

1.1. Categorical versus dimensional models of emotion

Generally, there are two main categories of emotion representations, categorical and
dimensional [9]. Representations that use discrete emotional terms fall into the former type. Music
datasets that use this type of emotion representation include the CAL500 dataset [10], which provides
a three-scale rating of eighteen emotions for each song, and the Emotify dataset [11], which classifies
each song into one of nine categories of the Geneva Emotional Music Scales [12]. As summarized
by Barthet et al. [13], many different types of emotion models with categorical labels exist. Some studies
use discrete terms directly [14], while other studies propose clusters or groups of discrete emotional
terms. For instance, Trohidis et al. [15] proposes twelve emotion clusters, while Hu and Downie
[16] proposes five clusters for the Audio Mood Classification task of the annual Music Information
Retrieval Evaluation eXchange (MIREX). Dimensional models on the other hand attempt to abstract
the representation of all emotions along two or more dimensions. A widely known two-dimensional
model is Russell’s circumplex model of affect [17]. The two dimensions of this model are valence and
arousal (VA), where V refers to the (un)pleasantness of the emotion, and A represents the energy level.
The Lakh-Spotify Dataset [18] is one of the latest datasets that uses symbolic music paired with emotion
labels in terms of VA. Valence and Arousal labels have also been used for tasks such as controlling
emotion in generated music [19-22] as well as variation detection in emotion from music [23]. Due
to the nature of the two representations, MER techniques for categorical annotations usually involve
classification, while dimensional annotations require regression techniques.

We should note that categorical and dimensional emotion representation models are closely
related, and dimensional representations are often utilised in a categorical manner. For
example, Bischoff et al. [24] section Thayer’s two-dimensional Energy and Tension model [25] into
four quadrants of the two-dimensional plane, while Han et al. [26] section the two-dimensional
model into eleven subdivisions, where each sub-dimension is represented by a discrete emotional
term. Soundtracks [27] is a dataset that collected both categorical and dimensional annotations, and
compared the two representations of emotion. Their results show that the perceived emotional labels
collected through both representations are largely comparable for the Soundtracks dataset. More
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recently, [20] provided a method for mapping discrete emotional terms to Russell’s dimensional model.
Finally, Chua et al. [28]'s MuVi dataset provides both valence and arousal (dynamic, throughout the
song) as well as categorical emotion labels (static, label for entire song) for music and video.

Although these two types of emotion representations are similar, dimensional representations
are more versatile in two ways. Firstly, due to the continuous nature of dimensional representations,
they are able to represent different degrees of emotion [29], while categorical representations do
not typically have a scale to capture the degree of emotion (with some exceptions). Secondly, with
dimensional representations, it is more practical to represent changes in the emotion of music over
time [9,30]. Therefore, we see that categorical representations are often used with static annotations,
i.e. a single annotation for a song or excerpt. Dimensional representations, on the other hand, are
better suited to capture changes in emotion throughout a song. A dataset that inspired this work is the
DEAM dataset [31], which contains both static as well as dynamic dimensional emotion annotations.
Dynamic annotations capture the dynamic nature of music and enable emotional changes of music
to be described within a musical piece. Additionally, if needed, dynamic labels can be aggregated to
create static labels. In this work, we use valence arousal annotations, as they are easiest to capture
dynamically (over time). This is important as we wanted to capture how perceived emotion evolved
throughout the length of an entire song.

The number of datasets with emotion annotations is limited, especially those annotated
dynamically with valence and arousal. While we could approximate a categorically labelled dataset
by crawling the web and finding emotion tags on resources such as Last.fm and AllMusic, as done
in [32-34], this would not provide us with curated, dynamic data. Datasets with dynamic valence and
arousal labels are typically collected manually. Datasets such as DEAP [35] and PMEmo [36] go one
step further and also include physiological signals, which requires participants to be present physically.
Physical collection allows for more variables of the data collection process to be standardised, at
the cost of being more labour intensive. Participants are often university students [1,10,28,29,37]
or experts such as musicians [38,39] and MIR researchers [40] amongst others [41]. Alternatively,
in an effort to collect larger quantities of affect labels in a shorter amount of time, although with a
potential loss in accuracy, crowd-sourcing on platforms such as Amazon Mechanical Turk (MTurk)
has also been explored [31,42-45]. Some researchers utilize a mix of both online and offline collection
methods [40,46], or even use predictive models such as Attend AffectNet [47] for the emotion labeling
[48]. Regardless of the data collection method, it is important for each musical excerpt in the dataset to
be labelled by multiple participants in order to account for subjectivity. Participant agreement can be
used to identify anomalies in the labels, or be aggregated to better represent the general response. We
opted for large-scale collection in this work, and used the MTurk platform. Given the noise that often
comes with this collection method, extra attention was put on preprocessing the data and filtering out
noisy annotations, as is explained in detail in Section 3. Additionally, each participant received four
stimuli previously labelled by an expert in the DEAM dataset. This offers us a benchmark to filter out
low-quality annotations.

1.2. Impact of listener demographics on perceived emotion

Just as there is a variety of musical features that contain emotional information, there is also a
variety of listener features that may lead to differences in which emotion they perceive [41]. Pearce and
Halpern [49] and Lima and Castro [50] both found similarities and differences in emotion perception of
music among older and younger adults. They observed that the extent of sadness perceived decreases
as age increases. Musical training was also reported to have an impact on emotion perception. In
addition, lower frequencies were rated with lower valence by musicians in a study by [51]. These
findings may be due to the impact of musical training on one’s perception of musical cues and their
relation to conveyed emotion [52]. Moreover, Schedl et al. [53] found higher agreement in labels
between participants with musical training and those who play an instrument compared with those
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lacking training. Lima and Castro [50] similarly observed a correlation between number of years of
musical training and accuracy of music emotion categorization.

Another listener feature that may have an impact on perceived emotion is culture. While listeners
are generally able to accurately identify emotion in music from cultures foreign to them [54,55],
cultural background has been reported to impact the participant’s perceived emotion agreement of
music. Lee et al. [55] found that participants from Brazil, South Korea, and the US mostly agreed
when recognising simple emotional characteristics, but showed disagreement when recognising more
complex emotional characteristics such as dreamy and love. Wang et al. [56] also compared the impact
of musical background and cultural background on the perception of emotions by Chinese and Western
participants. They found cultural background to have a larger impact as compared to the musical
background of a participant. Stereotypes of a culture may also have an impact on one’s perception of
music from specific cultures [57]. A comparison study between a Greek group of participants and a
group with varying cultures reported that participant agreement was higher in the Greek group [58].
Such findings suggest that people from the same cultural background may show higher levels of
agreement with regard to perceived emotion. Music from different cultures has also been shown to
convey emotion differently through various musical features [59]. Chen et al. [60] managed to improve
the quality of a music valence prediction model by taking cultural differences in music features into
account. Due to the importance of all these listener features, we included a large number of profile
features in our dataset creation.

Identifying listener features that can narrow down the affect perception of listeners may potentially
improve music emotion recognition for individual listener groups. Hence, in this work, we present an
open-sourced dataset, Music Emotion Recognition with Profile information (MERP). This dataset is
catered towards exploring whether MER can be improved given additional listener feature information.
The dataset contains copyright-free full-length musical tracks with dynamic ratings on Russell’s
two-dimensional VA mode. This is the first work to our knowledge that presents a publicly available
dataset of dynamic and regressive affect labels of full-length musical pieces, alongside profile
information of participants. We provide a thorough description of the dataset collection process,
together with statistics and visualisations in Section 3. Extensive preprocessing and denoising was
performed to increase the quality of our data. In Section 4, we use the resulting dataset to train a
baseline emotion prediction model and evaluate the influence of the different profile features. The
benchmark results for this dataset are listed in Section 5, followed by the conclusion.

2. Data gathering procedure

2.1. Participants

We collected data through Amazon Mechanical Turk (MTurk). The listening study was carried
out online, as a Human Intelligent Task (HIT) on the platform. There are two types of participants,
‘master” and ‘non-master” participants. Master participants are generally more reliable, as they have to
go through a screening process to prove their reliability before earning the master title. A total of 452
participants completed the task on MTurk, of which 171 were master participants and 286 non-master
participants.

At the beginning of the listening study, profile information of the participants was collected
through 9 brief questions. With the data collection platform in mind, the questions were set to be
factual and easy to answer. They also served to check the attentiveness of participants [61]. The
questions can be categorised into 3 sections: demographic information, listening preferences, and
musical experience. For demographic information, participants were asked about their age, gender,
country of residence, and country of musical enculturation. For listening preferences, we asked them
what language of music they like to listen to most, as well as their favourite genre of music. As for
musical experience, they were asked if they were actively playing at least one instrument, whether
they have received formal training, and if they have, how many years of musical training they received
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. We describe the groups of participants for each profile in Section 3.2, and explore whether the profile
information of participants is helpful in an automatic music emotion recognition task in Section 4.

Using Amazon Mechanical Turk (MTurk) allowed us to access a large pool of participants from
different continents in a quick and convenient way. To ensure quality, we applied a novel technique of
having participants rate benchmark songs so we could do basic filtering, which we enhanced with
other preprocessing techniques as described in Subsection 3.1.

2.2. Stimuli

To ensure that the collated dataset would be publicly accessible, the stimuli were selected from
readily available Creative Commons sources, namely the Free Music Archive (FMA) [62] and the
Database for Emotional Analysis in Music (DEAM) [31].

The FMA is a large database that consists of 106,574 full-length tracks. From the FMA all-time
chart, we looked at the top 1,000 songs listened to, and filtered out the songs shorter than 30 seconds
and longer than 10 minutes. Due to budget constraints for the study, we could not annotate all of
these songs and we further narrowed the selection. To do this, we used an existing, trained emotion
prediction model [63] and selected songs which had the most distinctive emotion. To do this, we
extracted features using the OpenSmile toolkit [64], which were then fed into a Triple Neural Network,
trained as described in [63], to determine a static (single) arousal value and valence value for each song.
The valence-arousal values of the songs are plotted in Figure 1, where we can see that the distribution
of the songs is relatively sparse in the high arousal / low valence quarter, as well as the high valence /
low arousal quarter. This is not unexpected, as the valence and arousal of music are often related. For
example, a sad song is often slow and low in energy, which would make it low in both arousal and
valence. To ensure that the stimuli represent emotions from all quadrants of the valence arousal graph,
we first binned both valence and arousal of each song into 5 categories. The categories are low valence
and low arousal; low valence and high arousal; mid valence and mid arousal; high valence and low
arousal; and high valence and high arousal. For each of these 5 categories, we selected 10 songs that
were the most distinct from other categories, resulting in the final 50 songs that were used in our study.
Figure 1 highlights the 50 songs selected as stimuli, visualised on the valence and arousal graph.

In addition, 4 song excerpts (each 45 seconds in length) were selected from DEAM. These excerpts
also originate from the FMA dataset, and have annotated (dynamic) valence arousal values. These
songs were presented to every participant, hence the ratings for these songs could be used as a quality
benchmark to filter out noisy entries during the data preprocessing stage (see Section 3.1). The total
length of the 54 songs selected is about 8,778 seconds, which is approximately 146 minutes, or 2 hours
and 26 minutes. The shortest song is around 31 seconds, while the longest song is 4 minutes and 58
seconds, and the mean length is 2 minutes and 52 seconds. Table 1 shows the total duration across the
54 music stimuli based on their Valence/Arousal category.

Valence Arousal Minutes

low low 34.1
low high 23.0
mid mid 31.5
high low 16.0
high high 38.7

Table 1. Total duration of all of the stimuli for each Arousal-Valence category (mins).

2.3. Procedure

The listening study was organised on a single web page on Amazon MTurk, in which all questions
were listed and could be scrolled through freely by participants during the answering process. The
participants were first asked a series of 9 questions about themselves. They were then introduced to
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Figure 1. Representation of the predicted arousal and valence value of the top 1,000 songs of the FMA
(after filtering on length). The coloured dots represent the songs selected for each of the 5 categories for
the final user study.

the task, as well as the definitions of valence and arousal, along with examples of songs that have high
and low arousal and valence. The examples were accompanied by a 2-dimensional valence / arousal
graph, with a dot that marks where the example piece is positioned on the VA graph. Participants
were hence provided with examples of the graphical representation of emotion in music so that they
become familiar with the meaning of valence and arousal.

A total of 24 songs were presented to each participant, of which, 4 songs were the benchmark
DEAM songs which were presented to all of the participants. The remaining 20 songs were randomly
selected from our 50 stimuli. The 4 DEAM songs were presented in the task as the 1st, 4th, 7th and
10th stimuli, though not in the same order. A very generous 2 hours were set as a maximum duration
for this listening task, while participants were told that the study should take about 30 minutes.

During the listening study, the participants were required to label VA values simultaneously
while listening to the stimuli in real-time. We captured their mouse position over a two-dimensional
VA graph throughout a song; this is unlike some other studies where participants labelled Valence
and Arousal separately [31], listened to the song multiple times [46] or were allowed to edit their
answers [1]. In this way, we were able to capture the initial impressions of the participants while
keeping them constantly engaged in the labelling task.

Han et al. [65] shows that dynamic tracking in music emotion recognition is more in line with
the characteristics of music than static processing. For participants to familiarise themselves with the
valence arousal graphical labelling interface (Figure 2), which dynamically tracks the user’s mouse
position after they press play on a song, a practice song is first provided prior to the actual questions.
Clicking on the centre of the graph will begin the streaming of the music, as well as the recording
of their mouse position on the graph. Subsequently, for each stimulus, a valence arousal graphical
labelling interface is displayed, along with reminders of the definition of valence and arousal, and of
the instructions (to constantly indicate their perceived emotion in valence and arousal throughout the
song). As full task completion was not obligatory, on average, each participant labelled 13.8 songs.
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Figure 2. The interface through which valence and arousal values were captured via mouse tracking in
the listening study.

The javascript code of the developed rating interface that integrates with MTurk is available online'.
This interface samples the participants’ mouse position at a frequency of 10Hz to collect the valence
and arousal values.

3. Dataset analysis and visualisation

3.1. Data filtering

Data collected through online crowdsourcing methods is generally known to be noisy [66],
especially so when collecting subjective data. Multiple methods of filtering were carried out to identify
(and remove) entries of low integrity from the collected dataset.

3.1.1. Step 1 - Identifying erroneous entries from profile information

We first began with a screening of the participants. Of the initial 452 participants, 5 of them
did not complete the task and were removed from the dataset, leaving a total of 447. Even though
participants were instructed to only complete the task once, due to releasing the task in multiple
batches, 26 participants submitted entries in more than 1 batch. 20 out of these 26 participants
submitted conflicting entries when answering the profile questions in the first half of the task, and were
removed from the dataset. Submissions by participants who made obvious mistakes while answering
profile questions in the first half of the task were also disregarded. For instance, some participants had
negative numbers or numbers close to 2,000 when asked how many years of formal music training
they had received. Other participants indicated that they had not received formal music training, yet
entered a positive number for the number of years they had received training. As a result, a total
number of 417 participants remained in the dataset after this step.

3.1.2. Step 2 - Discarding trials with abnormal length

Due to inconsistent sampling frequency caused by variables such as network connection, system
latency, browser used, and CPU usage [43], some of the collected emotion ratings for the same songs

1 https:/ /github.com/dorienh /MERP/blob/master /amazon_Merged.html
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were of slightly varying lengths. For example, a 30 second excerpt should have 300 labels but instead
had too few, or too many. Trials that were too short were discarded, to avoid data fabrication. For trials
that were too long, a threshold of a difference of 20 data points (2 seconds) was determined to be of
acceptable distance from the length of the audio features extracted from the songs. Any additional
ratings after the song ended (max. 20) were removed. After this operation, some of the ratings of the 4
songs from the DEAM dataset, which are meant to provide us with a common benchmark amongst all
participants, would have been removed. To avoid this, we further removed participants who had a
rating for a DEAM song shortened. This left us with 358 participants and 4,441 trials.

3.1.3. Step 3 - Discarding entries that greatly differ from DEAM

To determine the integrity of the affect labels collected, we compared them with the labels
provided in the DEAM dataset. The labels in the DEAM dataset were averaged across participants, and
for each time step, we checked whether our collected annotations fell within 2 standard deviations of
the average DEAM label. Songs whereby more than 50% of the time steps were within this threshold,
were considered to be acceptable. All 4 DEAM songs for each participant had to fulfil this check, or the
participant was discarded. After this procedure, we were left with 277 participants and 3,482 trials, as
displayed in Table 2.

3.1.4. Resulting dataset

An overview of the resulting data (before and after preprocessing) collected through MTurk for
both master as well as non-master participants, is shown in Table 2. Each rated stimulus is considered

a trial.
Raw data
Participant type =~ Number of participants Number of trials
Master 139 1,722
Non Master 219 2,719
Total 358 4,441

After preprocessing
Participant type  Number of participants Number of trials

Master 128 1,588
Non Master 149 1,894
Total 277 3,482

Table 2. Overview of the participants and trials in dataset.

3.2. Profile visualisations

One of the novel aspects of this dataset is the inclusion of profile information that was gathered
about the raters. In this section, we visualize the demographics of the 277 participants. In Figure 3 we
can see an overview of the proportion of participants that fall into each profile category. The profile
information was binned as seen in the figure. This binning will be useful in the later sections on
emotion prediction models. Section 4.1 further describes how the profile information is treated and
utilised for emotion prediction.

The first 3 feature bars of Figure 3 show common demographic profile features, e.g. age. As
depicted in Figure 4, most of the participants are young adults in their twenties to thirties. The age
feature was divided into 4 bins. Participants below 25 years of age are considered youth, between 26
to 35 years of age are young adults, between 36 to 50 years of age are adults and above 51 are elders.
After binning, 52.7% of participants are youth, 24.2% are young adults, 13.4% are adults and 9.7% are
elders. The second bar in Figure 3 shows that there are 57.0% male and 43.0% female participants. The
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third bar depicts the country of residence of participants. The majority of the participants are from the
USA (52.7%) and India (42.6%) as the MTurk task was released to these two countries. The remaining
4.7% includes participants from Great Britain (1.4%), Italy (0.7%), South Africa (0.4%), Russia (0.4%),
Indonesia (0.4%), Armenia (0.4%), American Samoa (0.4%), Romania (0.4%) and Brazil (0.4%).

age young adult adult elder

gender female other
residence India other
enculturation India other
m .
,,% language Tamil other
£
E. genre classical pop other
instrument no
training no
duration =5 >5
master no
0 20 40 60 80 100

Percentage of participants

Figure 3. Proportion of participants for each of the profile features.

The fourth feature bar, labelled ‘enculturation’ in Figure 3, depicts a slightly more unique feature
which represents the musical enculturation of participants — which country’s music do participants
identify with most. As one might expect, the division looks very similar to the bar above it, implying
that country of residence and country of musical enculturation are related. The percentages of each
country are as follows: USA (52.7%), India (40.8%), Great Britain (1.8%), Italy (0.7%), Japan (0.4%),
Ecuador (0.4%), Mexico (0.4%), South Africa (0.4%), Russia (0.4%), Armenia (0.4%), Colombia (0.4%),
American Samoa (0.4%), New Zealand (0.4%), United Arab Emirates (0.4%) and Brazil (0.4%).

The fifth and sixth feature bars of Figure 3 pertain to the listening preferences of participants.
With regards to the preferred language of lyrics, since participants are mostly from the USA and India,
it is unsurprising that for the fifth feature ‘language’, songs with English (72.2%) and Tamil (18.1%)
lyrics are the favourite of most participants. The remaining 9.7% include the languages Malayalam
(3.2%), Hindi (2.5%), Italian (0.7%), Telugu (0.7%), Armenian (0.7%), Japanese (0.7%), Korean (0.4%),
German (0.4%) and Bengali (0.4%). As for the preferred genre of participants shown in the sixth bar
named ‘genre’, Rock (31.8%) had the highest percentage, followed by Classical (14.1%) and Pop (13.7%)
music. Many other genres were grouped as ‘other’ in the bar chart as they were small in comparison,
they include Rhythm and Blues (8.3%), Indie Rock (6.9%), Country (6.9%), Jazz (5.4%), Electronic dance
music (2.2%), Metal (2.2%), Electro (1.4%), Techno (1.1%) and Dubstep (0.7%).
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Figure 4. Age of participants.

The seventh to ninth feature bars in Figure 3 represent the musical experience of participants.
The seventh feature, labelled ‘instrument’, represents the proportion of participants that are actively
playing at least one instrument. 45.8% of them indicated that they were actively playing an instrument.
The eighth bar, named ‘training’, depicts the proportion of participants that have received formal
musical training. A total of 57.4% of participants indicated that they received formal musical training,
while 42.6% indicated that they never received formal music training. Since 42.6% of participants have
not received formal musical training yet 45.8% are actively playing an instrument, we can surmise
that at least 3.2% of participants are self-taught. The ninth bar, labelled ‘duration’, reflects the number
of years participants have received formal training. The 42.6% of participants who had not received
formal training are included in the ninth feature bar as the participants who have received 0 years of
training. A total of 5.8% participants underwent 1 year of training, 15.9% had 2 years of training, 13.0%
had 3 years, 5.8% had 4 years, and 7.9% had 5 years of training. Overall, 48.4% of participants received
between 1 to 5 years of formal musical training. 0.9% of participants indicated having 6 or more years
of training, the largest value being 31 years of training.

In the tenth feature bar of Figure 3, the proportion of MTurk master to non-master participants
is represented. A total of 46.2% of participants are master participants while 53.8% of participants
are non-master participants. It is noteworthy that 128 master participants were retained from the
original 172 master participants after our preprocessing, while only 149 non-master participants were
retained from the original 280 non-master participants. The retention percentage of 74.4% for master
participants as compared to only 53.2% for non-master participants implies that master participants
are indeed more reliable compared to non-master participants.

We should note that the profile binning or grouping for non-boolean type profiles was arbitrarily
determined in this work. For example, as the age of participants was largely skewed towards the
young adult age, the two younger groups are of smaller age ranges while the two older groups
are of larger age ranges. In future research, one could experiment with different configurations, or
further testing may be performed to determine more representative age bins that show a difference
in perceived emotion from the music. The same can be said for the preferred genre profile type. In
this study, the participants mainly preferred rock and classical songs. Some of the favored genres
were not represented by many participants, and were grouped under ‘Other’. Perhaps with better
representation, more significant differences between genres would be revealed.

3.3. Statistical differences in affect ratings between profile groups

We analysed the collected data in order to determine whether there are significant differences
in terms of valence and arousal annotations from participants of various demographic groups. As
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statistical testing requires independent samples, the dynamic affect labels were averaged to a single
value per participant per song. Additionally, because the valence and arousal ratings were not normally
distributed, a non-parametric test was used. The non-parametric Kruskal Wallis test [67] was used for
each of the 10 profile features to identify whether statistically significant differences exist between the
emotion ratings of the different profile groups. Table 3 shows the results of the Kruskal Wallis tests.
p-values lower than the threshold value of 0.05 are marked in bold so as to highlight that there is a
significant difference in emotion ratings between profile groups of that profile feature.

Profile type Valence p-value Arousal p-value
age 0.0191 0.4907
gender 0.2166 0.1851
residence 0.0156 0.0125
enculturation 0.0000 0.0198
language 0.4050 0.1729
genre 0.0767 0.0001
instrument 0.0002 0.0383
training 0.0009 0.0313
duration 0.0034 0.0022
master 0.5507 0.0015

Table 3. Resulting p-values from the Kruskal Wallis tests run on each profile feature with valence and
arousal ratings respectively.

For the profile and affect type pairs that have p-values below 0.05, we carried out Dunn’s test [68]
as a post-hoc test, with Bonferroni correction [69]. The resulting p-values of the Dunn’s test indicate
which profile features are statistically different. For each bold value in Table 3, we report the profile
features that are significantly different, along with their p-values below. Our findings are in line with
Schedl et al. [53], who found differences in music perception only for some user groups.

A statistical difference was found between valence ratings provided by young and adult raters
(p = 0.0484) as well as youth and elder raters (p = 0.0291). The data suggests that the youth group
tends to give higher valence ratings as compared to the two other groups. Valence ratings from the
young-adult age group seem to lie in between the other groups, suggesting that the perceived valence
of music may decrease with age.

Both valence and arousal ratings from raters from a different country of residence showed a
significant difference. For valence, however, the post-hoc test p-values were larger than 0.05 after
Bonferroni correction. In particular, between the USA and India participants, the p-value was 0.0560
which is close to the threshold for significance. As for arousal, a significant difference was found
between USA and India (p = 0.0167). Participants residing in India had a larger proportion of ratings
that were near the origin (0, 0), for both affect types, as compared to participants residing in the USA.
In general, the ratings from participants residing in the USA were more evenly spread out as well,
while ratings from participants residing in India were skewed towards the positive end of both affect
types.

With regards to raters with a different country of music enculturation, a significant difference
between the USA and India groups was found for both valence (p = 0.0076) and arousal (p = 0.0484),
and between the USA and other countries, only for valence (p = 0.00004). It is worth noting that
there is only one participant representing the ‘other” group, hence we did not take this value into
consideration for the analysis. Furthermore, as there is a larger overlap between the participant groups
for country of residence and country of music enculturation, similar observations of the data can be
made.

For listeners with a different preferred genre of music, we see a statistically significant difference
in terms of valence ratings. Interestingly, the differences are between the classical genre and each of
the other groups. Namely, between classical and rock (p = 0.0004), classical and pop (p = 0.0766),
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and classical and other (p = 0.0001). As compared to the other three genres, participants who prefer
classical music mostly rated valence closer to the origin. Other groups tended to give higher positive
valence ratings.

Participants who actively play an instrument compared to participants who do not, have a larger
proportion of ratings near the origin (0,0). With regards to valence (p = 0.0002), participants who do
not actively play an instrument had the most ratings near 0.5 valence. As for arousal (p = 0.0383),
other than the larger proportion of ratings near the origin by participants who do not actively play an
instrument, both groups are generally skewed towards more ratings in the positive arousal quadrant
rather than the negative quadrant.

The distributions for participants who have received formal training and those that have not
(the eighth profile information-training), closely resemble those of participants who actively play an
instrument and those that do not (the seventh profile information-instrument). This is observed despite
the fact that there are 43 participants who have received formal musical training but are not actively
playing an instrument, and another 11 participants who are actively playing an instrument but have
not received formal training. A statistically significant difference is found between these two groups,
for both valence (p = 0.0009) and arousal (p = 0.0314). This makes sense as most participants who
play an instrument learned to do so through formal musical training.

The group of participants who have not received formal training coincides with the group of
participants who have received 0 years of musical training. With regards to arousal ratings, the group
of participants with 1 to 5 years of training is significantly different to the other two groups: 0 years
(p = 0.0145) and more than 5 years of training (p = 0.0171). As for valence, a significant difference
was found between the group of participants with 1 to 5 years of training and the group with 0 years
of training (p = 0.0024). The lack of significant difference between the group of 0 years and the group
of more than 5 years of training suggests that perhaps the length of duration of training may not have
an obvious impact on the perceived affect. The statistical difference noted in both affect types may be
due to the large proportion of ratings near the origin, given by the group with 1 to 5 years of training,
and not found in the other two groups.

Lastly, the ratings of master MTurk participants showed a statistical difference with non-master
MTurk participants where arousal is concerned (p = 0.0015). Non-master participants had a large
proportion of ratings near the origin, while master participants showed a tendency to rate with
higher arousal values. Though the same is observed in valence, the difference between the two
groups is not substantial enough to be significant. This peak of values near the origin is observed
in many of the profile types aforementioned, which suggests that perhaps those groups have more
non-master participants. This is found to be the case for country of residence and enculturation, where
approximately 73% of the India group are also non-master. It is also possible that there is a subset of
non-master participants that cause this peak. Alternatively, since the mouse pointer is positioned at
the origin when the experiment begins, it is possible that non-master participants move their mouse
less, or respond later.

The significant differences found above confirm the importance of capturing profile information
in a dataset of valence arousal ratings on music. In the next section, we predict valence and arousal
ratings from the audio and profile information captured in this newly proposed dataset, and thus
provide a baseline model. The significant differences found between various groups for the different
profile types suggest that affect prediction may be improved and refined by feeding the model this
information; this is what we will test in our experiments.

4. Emotion prediction models

In this section, we provide a baseline prediction model for valence and arousal. We provide
baseline results for models that use audio features only, as well as models that use both audio features
and profile information of participants. We explore two types of model architectures for our music
emotion prediction tasks: a fully connected model, and a long short-term memory (LSTM) model.
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The models are simple in design and intended to be supplementary performance benchmarks on the
dataset. In future work, more state-of-the-art methods such as convolutional neural networks [70]
could be used with the dataset for further experimentation with profile information and its uses for
building improved MER models.

4.1. Feature extraction and Label aggregation

We use two types of features to build our emotion prediction baseline models: audio-based
features, and profile features (of the raters).

Audio features

We extracted audio features from the audio files using the openSMILE toolbox [64]. We used the
openSMILE configuration file from the 2015 ‘Emotion in Music’ task from the MediaEval Multimedia
Evaluation Campaign. A total of 260 low-level features were extracted for every 500ms segment with
frame size 60ms and step size 10ms, resulting in a vector of features for every 0.5 seconds of music [31].

Profile features

The profile features were binned into categories, such that they are numerically represented with
values ranging from 0 to 1, each bin represented by a float value. In a binary example, such as whether
a participant actively plays an instrument, ‘no’ is represented by 0 and ‘yes’ is represented by 1. This
way, the participant’s profile information is classified into bins and represented by a number. We chose
to build a separate model for each profile feature so that we can more clearly identify and gain insight
into which profile features are useful to improve prediction accuracy.

Label averaging over participants

After collecting labels through MTurk, we have multiple ratings per song. In our final training
and test dataset for predicting emotions, we want to have one value per song. We therefore averaged
the labels for all (types of) raters per song. More specifically, in the case where we do not consider
profile information, all labels for a song are averaged, as described by Equation 1. Let Y«P/‘ i be the
label rated by participant j for song i at time t and S; is the list of songs that have been labelled by
participant j. At each time ¢,

. Ejg,]il,t]'l{ieSj} M
j +{ieS;}
This results in 15,849 values for both arousal and valence.

When taking profile information into consideration in a model, we only average the labels given
by users with the same profile feature, per song. For example, when considering the age of participants,
since we binned age into 5 categories, we average the labels labelled by participants that fall within
each of these 5 categories. As shown in Equation 2, for a single bin of a single profile type, let P
represent a profile type (e.g. age, genre), while P, represents all participants that belong to a particular
bin of the profile type (e.g. female). Then, Y;; p, would be the averaged label at time step ¢ for song i
by each participant j that belongs to Pr.

— Yjen, YiitL{ies;)
Yitp, = ——=—7
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4.2. Baseline emotion prediction models

As previously mentioned, two types of models were trained using the newly proposed dataset, a
fully connected model and an LSTM model. The purpose of this is to provide a simple benchmark
for future research as well as provide source code for the data pipeline so that others can easily use
the provided dataset. The two proposed models were each trained on two variations of our dataset:
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one using audio features alone (averaged per song), and one using audio features concatenated with a
single profile type feature (averaged per song and per profile type). This is done separately for arousal
and valence. The input to both types of models is 30 timesteps long and contains 15 consecutive
seconds of music. As depicted in Figure 5, for models trained using audio features only, the input is
straightforward, a vector of shape 260 x 30. For models trained using both audio features and profile
features, we append the profile type feature to each feature vector in each time step, resulting in an
input of shape 261 x 30. Figure 6 shows the two architectures used.

Audio features

[260x30] 2

v

—

Audio and profile features
[261x30]

v

Sequential LSTM
model

Fully connected
model

Predicted emotion
— valence or arousal values
(30 timesteps)

Predicted emotion
—  valence or arousal values
(30 timesteps)

Figure 5. Overview of the two proposed models and their input/output.

Fully Connected model

Input features
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Dropolljt (0.5)
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Dropmlxt (0.5)
LeakyR(-I:Lu (0.1)
Fully ConLected (1)
Tar:h()
Gaussian K:amel(1,5. 7)
V

Predicted emotion
valence or arousal values

LSTM model

Input features
|
Bidirectional LSTM (512)
I
Bidirectional LSTM (1024)
I
Fully Connected (1)
I
Tanh()

v

Predicted emotion
valence or arousal values

Figure 6. Baseline architectures. Left: Fully Connected architecture. Right: LSTM architecture.

All models were trained using 5-fold cross-validation, where each fold was trained for a fixed
number of 100 epochs. Mean squared error (MSE) was used as the objective function, and the Adam
optimizer [71] was used with a learning rate of 0.0001. As there are a total of 54 songs, 10-11 songs
were withheld as the test set for each fold, while the remaining 44-43 songs were used as the training
set. In this way, songs in each training and test set are independent of one another. A batch size of 8

was used.
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4.2.1. Fully connected model

A fully connected model was implemented as a simple baseline model to show the performance
of valence and arousal prediction. In the results section, we compare the two models to see how the
fully connected model fares in comparison to the LSTM model.

As depicted on the left of Figure 6, the fully connected model is made up of 3 fully connected
layers, with a dropout of 50% and with leakyReLu of 0.1 as activation function in between consecutive
fully connected layers. The first fully connected layer expands the input dimension from 260 to
512, before reducing it by half to 256, then finally to 1. A tanh activation function is then applied to
the output, which results in the predicted valence or arousal value. To reduce the noisiness of the
predictions, a Gaussian kernel with sigma set to 1.5 and size 7 was applied as a smoothing function.

4.2.2. LSTM model

LSTMs are a type of Recurrent Neural Network (RNN), which are designed for sequential data [72].
As the name suggests, a memory of previous time steps is carried forward when looking at subsequent
time steps. The network is fed with feature vectors per time slides, which then go through a series of
gates to determine what information to keep, forget, update and carry forward. Similar to the network
described by Weninger et al. [73], Jia [74], we utilize two bidirectional LSTM layers in our model. As
depicted on the right of Figure 6, the first layer has a hidden dimension of 512, doubling the output to
accommodate both forward and backward directions. A fully connected layer is then used to reduce
the hidden dimension of size 2,048 to 1, after which a tanh activation function is applied. The resulting
value represents either a predicted valence or arousal value, depending on the type of model trained.

5. Prediction results

5.1. Emotion prediction models using audio only

The VA (valence and arousal) prediction results for the fully connected model are shown in Table 4.
We show both the MSE and the Pearson correlation coefficient (R) between the predicted and ground
truth VA values as evaluation metrics using 5-fold cross-validation.

Valence Arousal
MSE R MSE R

Fully connected 0.0315 0.1314 0.0333  0.3507
LSTM 0.0532 0.0599 0.0441 0.2992

Table 4. Model performance when using only audio features as input. Best values in bold.

From the table, we can see that the fully connected model outperforms the LSTM model in terms
of MSE. The MSE values for both valence and arousal are smaller for the fully connected model,
while the R-values are larger. A larger R-value indicates that the prediction approximates the ground
truth better. Since we are using a very strong feature representation (OpenSmile), it may suffice to
use a simple model to make predictions. Another possible reason why the LSTM model did not
perform as well as the fully connected model could be due to the much larger number of parameters
being trained in the LSTM model as compared to the fully connected model, thus requiring a larger
dataset. For the purpose of this study, we do not aim to find the best state-of-the-art performance, but
merely offer a dataset with a model pipeline that is made available online 2, and that can be used as a

2 https://github.com/dorienh/MERP
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benchmark for future research. It is worth noting, however, that the arousal prediction model performs
better. This is in line with many other studies [75], and most likely due to the fact that arousal is an
easier-to-understand attribute, reflective of the energy of the music.

5.2. Emotion prediction models that use audio as well as profile info

In Table 5, the MSE and R-values for both types of models are shown for Valence and Arousal.
Each row represents the results for the models trained with audio information and one additional
profile feature as input. We should note that, as stated above, the datasets use averaged ratings per
participant per profile feature, which results in differences in the dataset size depending on the number
of feature bins. The last row of Table 5 corresponds to Table 4 and was included for convenience.

-0.5cm
Fully connected LSTM
Profile feature Valence Arousal Valence Arousal
MSE R MSE R MSE R MSE R

age 0.0756 0.0549 0.0722 0.2194 0.1174 -0.0048 0.0595 0.2397
gender 0.0644 0.0679 0.0517 0.2813 0.0802 -0.0017 0.0649 0.2576
residence 0.0750 0.0500 0.0860 0.2011 0.1048 0.0316 0.1240 0.1881
enculturation  0.0634 0.0441 0.0703 0.1837 0.0834 0.0355 0.0970 0.2133
language 0.0502 0.0104 0.0559 0.1812 0.0626 0.0189 0.0576 0.1919
genre 0.0525 0.0534 0.0507 0.1978 0.0609 -0.0160 0.0462 0.253
instrument 0.0411 0.0903 0.0448 0.2383 0.0432 0.0142 0.0394 0.2509
training 0.0466 0.0987 0.0462 0.2663 0.0506 0.0214 0.0386 0.2793
duration 0.0657 0.0817 0.0627 0.2195 0.0853 0.0427 0.0580 0.2698
master 0.0441 0.0821 0.0462 0.296 0.0519 0.0122 0.0366 0.311

audio only 0.0315 0.1314 0.0333 0.3507 0.0532 0.0599 0.0441 0.2992

Table 5. Model performance when using both audio features as well as one profile feature as input.

A graphical representation of Table 5 is depicted in Figure 7. The top two graphs show the MSE
results, and we can observe that for valence, the fully connected model outperforms the LSTM model
in all cases. For arousal, LSTM performed slightly better for models that included the age, genre,
instrument, training, duration and master profile feature. Similarly, for the Pearson correlation (R)
results, the fully connected model outperforms the LSTM model in almost every case, except for the
model that included the language profile feature. The LSTM model performs better in most models
with profile features except those that included gender and residence.

We should note that it is not fair to directly compare the results of these different models with each
other, as the test set is different for each of these models. For instance, in the case of the ‘instrument’
model, the model is not only trying to predict one valence and arousal value for each time step of the
song, but one for participants who do not play an instrument, and one for those who play at least
one instrument. This leads to less noisy labels overall, and a more directed prediction. Some profile
features, like the duration of musical training, have bins with very few participants inside. In the case
of musical training, there are three bins in total, with the > 5 years bin containing only 0.9% of the
data. Yet, due to the fact that the data is averaged per song per profile bin, this accounts for a third of
the final model evaluation. So while some of the results with profile info may seem lower than the
audio-only model, the predictions within certain bins will be stronger.

As seen in Section 3, there are significant differences in ratings between different groups. Based
on the statistical analysis of the various profile groups in that section, the profile features related to
musical background are related to VA ratings. We see that models that include those seem to have a
higher predictive power, which is indicative of a better-separated feature space.

Table 5 offers benchmark prediction results for each of the models with different profile features
as input. In future work, it would be interesting to explore the class-specific accuracy of each profile
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feature bin. Given the fact that we did always have a large set of ratings for each of the dedicated
combinations of profile bins (e.g. Indian, with other language, more than 5 years of training, and other
gender), we did not include a model that takes all profile features as input.

all participants
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Figure 7. Comparison of evaluation metrics between the models trained using different profile
features. Note that the range of the y-axes of the graphs has been adjusted for viewing convenience.

6. Conclusion

In this work, we present a new dataset of music with emotion ratings, called MERP, which
includes continuous valence and arousal rating for full-length audio, as well as profile information of
the raters. On average, each song was rated by approximately 47 participants. We perform thorough
data preprocessing on the dataset to clean it, including a novel approach for quality control based on
benchmark ratings from the DEAM dataset. The resulting dataset is available online.

Through a detailed descriptive data analysis in Section 3, we uncovered which profile information
has an influence on valence and arousal ratings. For instance, participants whose favourite genre
is classical music rate valence significantly differently than participants with other favourite genres.
For participants who reside in different countries (US versus India), we notice a significant difference
in both arousal and valence ratings. This is in line with findings by Gémez Carién et al. [76], who
state that profile information has the potential to improve group-based MER. We also found more
differences between profile groups when taking into account culture-related profile types as well as
music-related profile features.

We provide two baseline predictive emotion models for our new dataset based on a fully
connected, as well as a long short-term memory neural network architecture. In an experiment,
we examine the power of adding a profile feature as input to the model so as to get more customized
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ratings. Our proposed MERP dataset® as well as all of our baseline models* are available online. We
show that by providing not just denoised emotion ratings for full-length musical pieces, but also a set
of profile features for each rater, we can use these data to train models that predict how specific groups
of people perceive emotion. This will help address the noisiness that is inherent in the field of emotion
ratings.

MERP has been designed in such a way as to be easily expanded. The listening study can be
opened again on MTurk, to the same regions for more data, or to more countries other than India and
the US. More royalty-free music can be added as well. As long as the 4 DEAM songs are included in
the study, they can continue to be used as a benchmark for identifying anomalies. We provide the code
for the listening study® used on Amazon Turk as reference. As the audio is royalty-free and available
for download, future studies need not use the same openSMILE audio features used in this work,
but can freely generate other features. The labels provided are dynamic and span full-length songs,
and can be aggregated or split as desired. The labels are also 2-dimensional and can be mapped to
categories according to hybrid emotional models such as [24].

In future research, it would be useful to further improve the baseline models with state-of-the-art
machine learning techniques, and build a model that takes into account all features. It would also
be useful to explore how emotion ratings typically evolve over the course of long music pieces. In
order to account for subjectivity, not only for each song but also for each participant profile group,
we prioritised collecting more labels for a small number of songs rather than fewer labels for many
songs. While we have already collected numerous ratings for 50 full-length songs, in future research
this could be further expanded. Having a larger variety of songs from more genres and styles would
benefit the generalisation of predictive models.
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LSTM  Long-Short Term Memory model
-Ocm
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