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Abstract: Conservation of wildlife depends on precise and unbiased knowledge on the abundance 

and distribution of species. It is challenging to choose appropriate methods to obtain a sufficiently 

high detectability and spatial coverage matching the species characteristics and spatiotemporal use 

of the landscape. In remote regions, such as in the Arctic, monitoring efforts are often resource-

intensive and there is a need for cheap and precise alternative methods. Here, we compare an un-

crewed aerial vehicle (UAV; quadcopter) pilot-survey of the non-gregarious Svalbard reindeer to 

traditional population abundance surveys from ground and helicopter to investigate whether UAVs 

can be an efficient alternative technology. We found that the UAV survey underestimated reindeer 

abundance compared to the traditional abundance surveys when used at management relevant spa-

tial scales. Observer variation in reindeer detection on UAV imagery was influenced by the RGB 

greenness index and mean blue channel. In future studies, we suggest to test long-range fixed-wing 

UAVs to increase the sample size of reindeer and area coverage and incorporate detection probabil-

ity in animal density models from UAV imagery. In addition, we encourage focus on more efficient 

post-processing techniques, including automatic animal object identification with machine learning 

and analytical methods that account for uncertainties. 

Keywords: Aaerial survey; animal detection; distance sampling; helicopter; monitoring; strip tran-

sect; Svalbard; total count; ungulate 

 

1. Introduction 

The distribution and abundance of species are key parameters for conservation and 

management of wildlife [1]. Yet, it remains challenging to estimate population size with 

high precision and low bias (i.e., accuracy [2]) at relevant spatial scales [3]. There are nu-

merous methods to estimate wildlife abundance and density ‒ ranging from direct popu-

lation counts to population indices proportional to the true population size [4,5]. Abun-

dant and easily detectable species are commonly monitored with direct density estimation 

methods, which includes complete or partial census, strip transect, distance sampling or 

capture-recapture programs [5,6]. Recent developments in uncrewed aerial vehicles 

(UAV) technology open new opportunities to survey animal populations as a replacement 

or supplement to traditional count techniques [7]. UAV offers several advantages com-

pared to traditional aerial or ground surveys (e.g., cost effectiveness, reduced environ-

mental impact and disturbance, and operational range [8,9]), however, whether UAV 

methods have improved accuracy and are more efficient than traditional survey methods 

are largely unknown (but see [10,11]). 
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Remote wildlife populations are traditionally counted on foot or using aerial surveys 

from helicopters or planes depending on the species characteristics and management area 

of interest [5,12-15]. Aerial surveys are costly, with a high carbon footprint and they are 

challenging when it comes to detectability and uncertainty estimates [16-19]. In compari-

son, counting on foot along a survey line is more time-consuming and can be logistically 

difficult in remote areas, with terrain features (e.g., river, cliffs) or e.g., when the species 

is sparsely distributed. Distance sampling is a common method that can assess uncertainty 

in abundance surveys along such line transects [4,20]. A key assumption is that the prob-

ability of detecting an animal decreases with increasing distance from the observer. There-

after, abundance estimates account for detection probability. Total count is a method as-

suming that all animals are counted without error. When conducted in a well-delimited 

area with information on presence/absence in sub-units, uncertainty can still be evaluated 

[21]. Both methodologies can be used to predict densities across larger areas [42]. For an 

aerial survey recording e.g., images along a fixed transect width (i.e., strip transect from 

crewed aircraft or UAV flying at constant height), detection is independent of distance 

from the transect line. Yet, there are other factors that can influence detection of an object, 

such as the image quality and resolution [15]. Integrating measures of detection error 

within a surveyed area and identifying habitat covariates strongly correlated with the 

population density can greatly improve the accuracy of estimates when extrapolating den-

sity to larger spatial scales [3]. Only in the last decade, UAVs have been tested and suc-

cessfully applied as a cost-effective alternative to traditional surveys to estimate abun-

dance of wildlife, especially in gregarious species [22,23], but also for solitary animals 

[9,24]. 

In the High Arctic remote Svalbard archipelago, the wild Svalbard reindeer Rangifer 

tarandus platyrhynchus, is the largest resident mammalian herbivore in the terrestrial tun-

dra ecosystem [25]. Svalbard reindeer are non-gregarious, inhabiting open landscapes and 

can appear in high density (>10 individuals/km2). The reindeer is subject to long-term 

monitoring because it is a key-species impacting tundra vegetation [26], is harvested lo-

cally by recreational hunting [27] and is sensitive to climate change [28,29]. The long-term 

monitoring is relying on total population counts along fixed routes on foot [21,30] or by 

helicopter [31,32], and capture-mark-recapture techniques (see [33]). Lately, there has 

been focus on quality assurance and standardisation of monitoring methods of the long-

term ground total counts with distance sampling [21]. Total counts were found unbiased 

when compared to resighting of marked reindeer and highly precise when repeating 

counts. In comparison, distance sampling was also unbiased, while precision was lower 

than total counts, according to the number of transects and groups detected. This has en-

abled range-wide monitoring of Svalbard reindeer using the most appropriate methodol-

ogy according to terrain characteristics [34]. Both total counts and distance sampling esti-

mated similar abundances across Svalbard (22,615 ± 401 [± SE] and 21,079 ± 2,983, respec-

tively) and found that abundance was strongly correlated with vegetation productivity 

[34]. Thus, both ground total counts and distance sampling can serve as reference abun-

dance estimates to evaluate other methodologies. Local wildlife managers (the Governor 

of Svalbard) have, however, annually monitored reindeer since 1998 in hunting units by 

total counts from helicopter, and the accuracy of these counts remain to be evaluated 

[31,35]. In addition, there is a desire for development of monitoring methods that reduce 

disturbance and lower human footprints [36], which suggests the use of UAVs [37]. 

In this paper, we assess the precision and detection rate of reindeer abundance from 

UAV imagery compared to traditional ground and helicopter surveys. We compare the 

survey methods in the same spatial extent by developing models of estimated reindeer 

abundance and predicting the models over the same sampling scales using correlated hab-

itat covariates. We test the feasibility of collecting data on reindeer abundance and varia-

bles affecting detection probability using UAVs, and investigate potential problems and 

pitfalls associated with aerial monitoring is compared with ground-based surveys. 
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2. Materials and Methods 

2.1. Study area and species 

The Arctic Svalbard archipelago (74–81°N, 15–30°E), Norway, measures around 

62,700 km2, with approximately 60% covered by glaciers, 25% by barren rocks and only 

15% by vegetation [38]. We conducted the study in Sassendalen, one of the largest valleys 

in Central Spitsbergen (Figure 1). The valley is surrounded by peaks up to 1200 m.a.s.l. 

and dominated by a large river and continuous vegetation cover with wetland, ridges, 

and heath present only in the valley bottoms and on the lower parts of the mountain 

slopes (<250 m.a.s.l.) [38-40]. 

  

Figure 1. Upper panel: Svalbard archipelago (left). Overview of spatial data coverage for the three 

survey methods; ground DS (green), UAV (black) and helicopter (yellow) in Sassendalen, Svalbard 

(right). Lower panel: Raw images of Svalbard reindeer from the three types of survey methods. Left 

to right: Ground distance sampling, UAV imagery at 120 m and helicopter (photograph from side 

window where one observer was placed). 

The Svalbard reindeer is distributed across all non-glaciated land areas of the archi-

pelago. They appear mostly solitary and virtually free from predation, although rare at-

tacks by polar bears (Ursus maritimus) have been observed [41,42]. Direct density depend-

ence and large annual variations in weather conditions — notably the amount of rain in 

winter, but also the length of the snow-free season in the autumn — shape vital rates of 

the reindeer [28,33,43,44]. This, in turn, causes large annual fluctuations in population 

abundances [32,33]. Reindeer densities min the main valleys in Nordenskiöld Land are 

strongly synchronised due to these weather conditions, leading to spatially autocorrelated 

survival and mortality rates, and thus abundances [28]. This led us to assume similar pop-

ulation dynamics and thereby densities between the adjacent valleys.  
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2.2. Field data collection 

Reindeer data were collected by four survey methodologies: 1) Ground-based dis-

tance sampling (hereafter ‘ground DS’), which served as reference to assess accuracy of 

the other methods, 2) UAV, 3) helicopter and, 4) ground total counts from the neighbour-

ing valley (hereafter ‘independent ground TC’) to test if extrapolations can replace the 

need for aerial surveys (i.e., helicopter and UAV). See Figure 2 for an illustration of the 

workflow. 
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Figure 2. Visualisation of the workflow, including field survey design, postprocessing and data analysis of the four survey methods ground distance 

sampling (ground DS), UAV, helicopter, and independent ground total counts. 
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The UAV and DS surveys were conducted on the same transects (see 

below) during 14-17 July 2021, but 1 day apart to reduce potential disturb-

ance of reindeer by observers. The helicopter survey was conducted one 

week prior to the UAV and DS surveys (6 July) and was part of an annual 

census of reindeer in the valleys on Nordenskiöld Land by the Governor 

of Svalbard (Figure 1). Because the helicopter survey lacked positional in-

formation of individual reindeer, but densities and spatial distribution of 

reindeer in neighbouring valleys are expected to be similar, we usedof the 

independent ground TC from the adjacent valley (Appendix A), con-

ducted during 30 June – 7 July 2021.  

2.2.1. Ground distance sampling survey 

We followed the DS survey protocols described by [21,34] for esti-

mating abundance of Svalbard reindeer. We allocated 10 transect lines in 

north-south direction, from the mountain foothills to the riverbanks, on 

each side of the main river in Sassendalen (Figure 1). We chose one ran-

dom latitude for the first line and placed additional parallel transect lines 

systematically apart 2.5 km east or west from this latitude to avoid over-

lapping reindeer observations and to avoid violation of the assumption of 

independence [20]. We chose this systematic orientation across the valley 

(i.e., river bed to mountain side or vice-versa) to reduce any bias from po-

tential gradients in animal density related to e.g., plant phenology and/or 

habitat configuration [45]. The length of each transect varied depending 

on the length from the mountain side to the riverbank (1.2 km to 2.9 km). 

All transects were walked by one observer (the same main observer as in 

[21,34]) at a constant speed (2–3 km h-1) without stopping, except during 

measurements. A handheld GPS and a compass were used to keep the line 

direction, and single reindeer or clusters were detected on both sides of 

the transect line with the naked eye. To follow the assumption of constant 

detection along the transect line, no scanning for reindeer was done when 

stopping to take measurements. Each observation was measured by laser 

binoculars (10×42 Leica Geovid) to the nearest metre and a compass was 

used to measure the angle from the observer to the reindeer (Figure 1). 

For practical reasons when using the laser, measurements were taken to 

the largest reindeer (e.g., a mother rather than her calf) or the middle in-

dividual of a group of adults. The geographic position of the observer in 

the transect was also recorded. The positions of reindeer individu-

als/groups and perpendicular distances to the line were calculated and 

used in the final dataset. 

2.2.2. UAV survey 

Six out of the ten line transects were mapped by an off-the-shelf DJI 

Mavic 2 Enterprise drone, equipped with a zoomable (24–48mm) RGB 

camera. Flight plans for each line transect were prepared pre-flight with a 

commercial mapping software (DJIFlightPlanner). The flight plans were 

flown automatically with flight altitude 110–120 m above ground with a 

nadir (downward-looking) orientation of the camera. Test flights with dif-

ferent altitudes (e.g., 20-120 m) were performed before the survey to verify 

that reindeer could be detected on images at that height and to ensure that 

reindeer were minimally disturbed. At this altitude, the widest field of 

view (i.e., 24 mm) was used, giving a theoretical ground sample distance 

(GSD) of 4.4 cm and a swath width of 174 m. Side overlap was chosen with 

65% and the nominal forward overlap with 85%. All lines had a run sep-

aration of 61 m and ran in an east-west direction. Ground speed was set 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2022                   doi:10.20944/preprints202210.0295.v2

https://doi.org/10.20944/preprints202210.0295.v2


 

3 

 

to maximum 30 km/h and pictures taken with a frame rate of 2 s. The cam-

era settings were on auto, but it was ensured that the shutter speed would 

not exceed 1/200 to prevent motion blur (max. shutter speed = GSD/ 

ground speed), otherwise flight velocity was reduced. The total mapped 

area width covered 500 m on each side of the transect line. The total length 

of the mapping flight lines was between 20–40 km and typically took be-

tween 2–4 batteries to cover. 

2.2.3. Helicopter survey 

Reindeer were counted by four observers (two pilots and two observ-

ers) in a Super Puma helicopter flying 60–100 metres above the ground 

according to protocols by the Governor of Svalbard [31].  The flight paths 

(Figure 1), were assumed to cover the most important reindeer summer 

habitats in the Sassendalen hunting unit (see  for a map of hunting units). 

The spatial extent of the helicopter surveyed area was defined as the entire 

flat valley bottom of Sassendalen and a buffer of 1 km (500 m on either 

side of the helicopter) around the flight routes (216 km). The census pro-

vides a single total count of all the individuals encountered, classified as 

calf, female/young and male, without any information on location of each 

animal. 

2.2.4. Independent total counts survey 

Total counts followed the protocols described by [21,34] and were 

conducted in Adventdalen, the neighbouring valley. Five observers 

walked separate predefined routes (~ 1 km apart from each other), scan-

ning the entire area with 10×42 mm binoculars for reindeer. During the 

count, reindeer were categorised by age as calves, yearlings, or adults (≥2 

yr. old) based on body size and antler characteristics. The geographic po-

sition of individual reindeer or groups were noted. At this time of the 

year, reindeer still have parts of their winter fur, making them conspicu-

ous against the open tundra landscape. 

2.3. Data analyses 

We estimated reindeer abundance based on field data from the sur-

vey methods of ground DS, UAV and independent ground TC, as detailed 

below. Note that the helicopter total count was a single value with no data 

analysis. To compare estimates we developed density spatial models 

(DSM) for each method as a function of vegetation productivity (Figure 

2). Reindeer densities in summer correlate with vegetation productivity, 

as expressed by the vegetation productivity index ‘maximum normalised 

difference vegetation index’ (maxNDVI) [34,46]. Due to this relationship, 

maxNDVI was used as the common denominator to project the DSMs 

onto the same spatial extents in this study. The vegetation productivity 

layer was calculated by averaging the maxNDVI values from MODIS-sat-

ellites for the last five years (2017-2021) and then resampled to resolution 

240×240 m. We used average maxNDVI because cloud coverage and ran-

dom variation can affect the timing of NDVI contributing to high be-

tween-year variation [47,48]. The statistical models were adapted from Le 

Moullec et al. [21,34]. We fitted all models in R version 1.4.1717 [49]. 

2.3.1. Ground distance sampling DSM 

The ground DS consisted of a two-stage approach with a detection 

probability estimation and a DSM accounting for the imperfect detection 
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[20]. To prepare the data, we divided the transect lines into smaller seg-

ments and summarised count data and maxNDVI per segment, as recom-

mended by Miller et al. (2013). We divided the transects into equal lengths 

of 500 m (for effect of segment lengths on model output, see Table S1 in 

Le Moullec et al. [34]) and truncated the transect width to 95 % of all dis-

tances rounding up to the nearest reindeer group. We modelled detection 

probability using half-normal and hazard-rate functions and determined 

the top ranked model using AIC. We used the standard distance sampling 

functions ‘ds’, ‘dsm’ in the packages Distance and dsm, respectively. We 

included weather (sunny or cloudy) as a covariate because this variable 

was the main covariate influencing detection in Le Moullec et al. [34]. The 

hazard rate function with weather as a covariate had the lowest AIC and 

was therefore selected for the density function (Appendix B). We used the 

most parsimonious density model from Le Moullec et al. [34], which mod-

elled individuals per segment as a function of maxNDVI, using a log-link 

quasi-Poisson model. The final model was fitted using the restricted max-

imum likelihood (REML) framework and residuals were checked for nor-

mality, auto-correlation, and goodness of fit (Table B2, Figure B2).  

2.3.2. UAV DSM 

The UAV survey generated a large number of single images 

(n=10,479) with considerable image overlap. To reduce the number of im-

ages  for reindeer counting, single images were processed into orthomo-

saic images for each transect line using a structure from motion method 

in Agisoft Metashape. The orthomosaic images were typically large (ca. 

30,000×40,000 pixels covering areas between 1.5–3.4 km², GSD between 

3.7–4.1 cm/pixel) and were segmented into smaller tiles of 4,000×3,000 pix-

els with a 10% overlap to ensure that animals on the border of the tiles 

could be identified. Observers (n=6) manually counted the number of 

reindeer inside each tile (see protocol in Appendix C). Positions and im-

age snapshots of detected reindeer were stored for each observer. In ad-

dition, raw single images were counted by three observers to check if rein-

deer were lost from the image or appeared twice in the processing steps 

because of reindeer movement. This resulted in detection of four reindeer 

that appeared more than once and these copies were excluded. Further, 

all detected reindeer were scanned a third time by two observers and as-

signed a certainty category (‘low’, ‘medium’, and ‘high’) according to how 

clearly they appeared on the image snapshot. Only reindeer that were as-

signed as ‘medium’ or ‘high’ were used in the final dataset to reduce the 

potential for confusing reindeer with e.g., a rock or another grey structure. 

We termed this dataset ‘confirmed’ reindeer. Furthermore, we divided the 

area of the six UAV transects into grids with the same resolution as the 

resampled maxNDVI layer (240×240 m) and summarised the number of 

confirmed reindeer per pixel.  

Based on the confirmed reindeer dataset, we fitted a hurdle model to 

avoid overdispersion from the high number of pixels with no reindeer ob-

servations. The hurdle model deals with the response variable in two 

stages: 1) The presence/absence of reindeer in a certain unit (i.e., pixel) and 

2) a count model estimating how many reindeer were present in that unit 

(when reindeer were present). The final hurdle model contained a zero-

truncated negative binomial distribution, assuming a logit-link function 

in both the presence/absence and the count model (Appendix D). We in-

cluded maxNDVI as a covariate in the presence-absence and count mod-

els. The analysis was done with the function ‘hurdle’ in the package pscl, 
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and residuals were checked for normality, autocorrelation, and goodness 

of fit.  

Since reindeer detection was imperfect among the seven observers, 

we explored what could cause this variation. We tested if RGB image val-

ues (i.e., grey colored reindeer on green vegetation would stand out more 

than on grey, barren or non-vegetated terrain, or if luminance (lower de-

tection of reindeer on darker images) influenced observer detection in the 

image. We extracted median luminance and mean red-green-blue (RGB) 

values from each tiled image, and from the mean G and B values we cal-

culated a color-based vegetation index, here termed ‘Greenness Index’ (G-

B [51,52]). We tested whether the presence of reindeer in an image (from 

the ‘confirmed’ dataset) was detected or not by the six observers and how 

the different covariates influenced this probability of detection. For this, 

we used generalised linear mixed effect models (presence/absence model, 

binomial family, ‘glmer’ function in the lme4 package) with the observer 

ID as random effects and the image covariate of interest as fixed effect. In 

Appendix E, we also investigated factors influencing the number of rein-

deer detected in an image, when at least one reindeer was detected (counts 

model). These detection models influencing the reindeer presence/ab-

sence and counts reflect the two steps from the hurdle model.  

2.3.3. Independent total counts DSM 

Given that reindeer densities are spatially synchronous and posi-

tively correlated with maxNDVI, we projected a DSM built with data from 

the adjacent Adventdalen valley ground TC into areas of Sassendalen. 

This allowed us, for instance, to evaluate correspondence by checking if 

the actual abundance from the helicopter census in Sassendalen fell within 

the standard error of these independent ground TC. Similarly, as in Le 

Moullec et al. [33] and in the UAV density models described above, we 

modelled reindeer density per pixel (240 x 240m) with a hurdle model. We 

investigated this in two steps with a presence/absence and count model 

as a function of the maxNDVI. Details on the procedure are outlined in 

Appendix A. 

2.4. Comparison of survey methods 

To assess each survey method, we chose to predict each density 

model across: 1) The ground DS covered area, 2) the UAV covered area, 

and 3) at an ecologically relevant valley scale for management. Since the 

habitat characteristics and elevation ranges were different for the helicop-

ter surveyed area (0.6-601 m) than for the ground and UAV transect area 

(0.7-317 m), we did not predict the ground DS and UAV density models 

to the helicopter surveyed area. Estimates were compared to the the 

ground DS and precisions were compared with the coefficient of variation 

(CV, the ratio of the standard deviation to the mean). Lower CV indicates 

higher precision. 

3. Results 

3.1 Field survey characteristics 

The ground DS survey detected 50 groups of reindeer (n=104 indi-

viduals, mean group size = 2) as a result of walking 23.6 kilometers on foot 

with a transect truncation width of 907 m (i.e., covering an area of 42.7 

km2). The UAV survey, which covered about 40% of the same transects 

(16.2 km2), detected 32 confirmed reindeer. The helicopter survey covered 
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the largest area (286.2 km2) and resulted in 1559 observed reindeer (Figure 

1). The range in vegetation productivity within the three sampling areas 

were similar (range for ground DS [0.04-0.82], UAV [0.09-0.82] and heli-

copter [0.04-0.82]), with a mean maxNDVI of approximately 0.50. 

3.2. Detection of reindeer 

The average detection probability for the ground DS survey was 0.40 

± 0.10 with 30% of the reindeer clusters detected within approximately 

500 m. Sunny weather conditions resulted in higher reindeer detectability 

than cloudy (Figure B1). For the UAV survey, the average detection rate 

of confirmed reindeer varied between observers by 46-70% (n=6). Varia-

tion of reindeer detection in the UAV imagery for the presence/absence 

model showed an association with the greenness index and blue color 

channels when accounting for observer variability (Figure 3). High values 

in the greenness index (i.e., greener vegetation ground cover) resulted in 

increased detectability, while high values of the blue channel decreased 

detectability. In addition, all variables associated with darker ground, ex-

cept for the greenness index, decreased the probability to count the correct 

number of reindeer in an image when at least one reindeer was present 

(Figure E1, Table E2). 

 

Figure 3. Probability of an observer to detect the presence of a Svalbard reindeer 

known to be present on a UAV image. Predicted estimates from linear mixed effect 

of presence/absence models (see Table E2 for the model selection). A) Variation in 

detection probability based on the greenness index (G-B), B) Variation in detection 

probability based on mean blue channel values. The figure shows mean detection 

probability with 95 % confidence intervals (solid line and shaded area), individual 

observer differences (stipled coloured lines), and observed covariate values (black 

points). 

3.3. Reindeer densities and spatial projections 

All three DSMs predicted a positive correlation between vegetation 

productivity (maxNDVI) and reindeer densities (Figure 4). Reindeer den-

sity remained low until around maxNDVI of 0.6-0.7 and thereafter 
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increased steeply. However, the strength of the relationship was mark-

edly lower for UAV, while the ground DS and independent total counts 

were similar (Figure 4). 

 

Figure 4. Predicted density of Svalbard reindeer (number of animals per km2) 

based on data from the three different survey methods (ground DS, drone, and 

independent total counts) as a function of maxNDVI (i.e., proxy of biomass pro-

duction). 

The independent total counts model from the neighbouring valley 

estimated similar abundances in the helicopter surveyed area (1515 ± 101, 

Table 1) as the helicopter survey (n=1559) in Sassendalen. The UAV den-

sity model estimated the lowest abundances with the largest uncertainties 

(i.e., CVs range: 0.11-0.29), underestimating abundance by 70-75 % com-

pared to ground DS and UAV at the different sampling scales. The ground 

DS and the independent ground TC estimated similar abundance at all 

sampling scales.  The independent ground TC gave the most precise esti-

mates (CVs range: 0.07-0.24), while ground DS precision was intermediate 

(CVs range: 0.22-0.26) (Table 1, Figure 5).  
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Table 1. Estimated Svalbard reindeer abundance ± SE in Sassendalen from den-

sity spatial models. Predicted abundance for each density model at three scales; 

Ground distance sampling (DS) scale (area covered by ground DS), UAV scale 

(area covered by UAV), the valley scale (ecologically relevant management area), 

and helicopter scale (area covered by helicopter). See Figure 1 for delineation of 

study areas. Coefficient of variations (CV) are in parentheses. Because the habitat 

characteristics and elevation ranges were different for the helicopter surveyed 

area (0.6-601 m) than for the ground and UAV transect area (0.7-317 m), we did 

not predict the ground DS and UAV density models to the helicopter surveyed 

area. 

 Estimated abundance 

Survey method UAV  

sampling area 

(16.2 km2) 

Ground DS  

sampling area 

(42.7 km2) 

Valley scale 

(161.7 km2) 

Helicopter  

surveyed area 

(286.2 km2) 

Ground DS 

 

164 ± 43 

(CV = 0.26) 

351 ± 84  

(CV = 0.24)  

920 ± 202  

(CV = 0.22) 

- 

UAV 32 ± 9 

(CV = 0.29) 

77 ± 15  

(CV = 0.19)  

243 ± 26 

(CV = 0.11) 

- 

Helicopter - - - 1559* 

Independent ground TC 131 ± 32 

(CV = 0.24) 

311 ± 48  

(CV = 0.15) 

958 ± 82 

(CV = 0.09) 

1515 ± 101 

(CV = 0.07) 

*Actual number reindeer counted in the helicopter survey 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2022                   doi:10.20944/preprints202210.0295.v2

https://doi.org/10.20944/preprints202210.0295.v2


 

9 

 

 

Figure 5. Predicted density (number of animals per km2) of Svalbard reindeer 

based on density spatial models with maxNDVI as a covariate for the ground line 

transect distance sampling (upper), UAV survey (middle) and independent total 

counts model from a neighbouring valley at the valley scale. The map shows pre-

dicted densities at the valley scale for pixel resolution of 240×240 m. 
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4. Discussion 

Our comparison of the different survey methods — ground DS, 

UAV, helicopter and independent ground TC surveys — for estimating 

Svalbard reindeer abundance and density showed that UAV imagery un-

derestimated the number of reindeer as compared to  all three other meth-

ods.  It was feasible to identify reindeer, calculate precision and investi-

gate factors affecting observers’ detection of reindeer using UAV, how-

ever, the UAV count was not able to capture accurate density patterns 

compared to the other survey methods. We therefore address key chal-

lenges to improve count accuracy of UAV at a meaningful scale for species 

management.  

Wildlife surveys with a coefficient of variation (CV) of less than 0.25 

is often considered useful for research and wildlife management [53]. In 

our study, ground DS, UAV and independent ground TC surveys all had 

a CV of less than 0.25 at the valley scale, which means that all three survey 

methods can detect smaller changes in reindeer abundances at a manage-

ment-relevant scale. Although the UAV survey had the highest CV in our 

study, ranging between 0.11-0.29, the median precision of estimates in 

other ungulate surveys is around 0.42, and only 26.4 % of the abundance 

estimates reported a CV below 0.25 [3]. This means that the precision of 

estimates from the UAV survey resembles other ungulate studies in the 

field but is not as accurate as the traditional ground survey methods used 

previously to estimate reindeer abundance in Svalbard. 

Biased estimation of abundance can result from a variety of sources, 

including violation of statistical assumptions, survey design or observer 

variability [3]. Here, the UAV survey underestimated abundances com-

pared to the reference ground DS, previously demonstrated as an accurate 

methodology [20,34]. Although the area covered by the quadcopter (16.2 

km2) is on the higher end of what other studies counting animals with 

UAV have reported [54], the low density of Svalbard reindeer still makes 

it challenging to obtain a large enough sample size in relation to the area 

covered by the UAV. Doing repeat surveys over the same transect lines 

would increase precision by increasing sample size and is recommended 

for low-density animals [55]. Note that this may still lead to biased esti-

mates if the area is small and does not cover all habitat characteristics [55]. 

For this wide-ranging species, unbiased estimates require large enough 

areas to capture the density gradients across the vegetation. 

Observer variability is often due to non-detection of individuals that 

are present (false negatives) or misidentification of individuals (false pos-

itives) [15]. In our study, we minimised these forms of detection error by 

having multiple observers scanning the same UAV imagery and later 

manually reviewing the detected reindeer to remove misidentified indi-

viduals [56]. Images with high values of the greenness index (G-B [51]) 

increased the likelihood of reindeer detection, likely reflecting that ob-

servers pay more attention to images with vegetated areas and that dark 

reindeer are more distinguishable from the green, vegetated background. 

Images with high mean blue values decreased reindeer detection, and 

blue as a dominant reflection can be due to e.g., gravel, rock, or barren 

ground, which will make the brownish fur of reindeer blend better in and 

be more difficult to detect. Observers in aerial surveys are prone to under-

estimate animal abundances, especially group size [15], and integrating 

forms of detection probability in future model development of animal 

density functions for drone imagery will improve accuracy. For instance, 

the strip transect framework by Buckland et al. (2001), modelled with a 
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uniform key detection function (in ‘ds’ in the Distance package), or both 

model parts of a hurdle model (i.e., presence/absence and count model in 

‘hurdle’ in the pscl package), currently assumes perfect detection. This is 

rarely the case in practice. Development of these R-functions, allowing for 

imperfect detection and inclusion of covariates driving detection is bene-

ficial to UAV studies, as UAV survey techniques are rapidly increasing in 

wildlife studies. 

Here we conducted the UAV survey in an open tundra landscape 

with good visibility from the air (at 120 m) and with no terrain obstacles 

hindering the drone. This flying height permitted the maximum area to 

be covered at which a reindeer could be detected with minimal disturb-

ance. Retrospectively, we could have increased detection of animals by 

flying at lower heights (i.e., the observers would have been less uncertain 

about distinguishing an animal from a background feature) and thus re-

duced observer variability further. This comes at the cost of longer flight 

times due to lower swath width (i.e., denser mapping flight lines) and thus 

even smaller covered areas and more imagery to scan. A way to compen-

sate for the increased flight time is to reduce the side or forward overlap 

to a lower value. In such cases, the overlap can be reduced below 50%, 

thereby decreasing the amount of flying time. Before implementing such 

adjustments, the effect of UAV disturbance on reindeer should be care-

fully assessed in a separate study. 

Studies that report aerial surveys being more accurate than tradi-

tional survey methods often have issues with detectability in the tradi-

tional survey methods. This is the case with counting rare deer in dense 

forests, where ground counts are ineffective due to forest cover and low 

densities of deer [8], where aerial imagery may provide better overview 

or spatial coverage. This may also be the case when there are challenges 

detecting marine animals at the sea surface from boats [9,10,24]. In our 

study, the ground DS survey had a maximum line of sight of about 900 

metres, three times more compared to other study systems with lower lin-

ear detection rates, such as DS conducted on deer in woody, heterogenous 

terrain (250 m; [57]). By comparing the helicopter count with the inde-

pendent ground TC, a methodology previously investigated as highly ac-

curate and which here match the ground DS estimates [21,34], we were 

able to assess that the helicopter count was unbiased. The helicopter sur-

vey may have a similar line of sight from the helicopter as the ground 

surveys, but this remains to be quantified in future studies. Thus, a meas-

ure of precision is crucially needed also for the helicopter survey, and re-

cording reindeer geographic positions and assessing detection probabil-

ity, as is now classically done in several aerial surveys of ungulates, will 

greatly improve the survey design.  

To address the challenge of limited area and line of sight covered by 

our small quadcopter drone, we suggest testing a drone with longer range 

to increase the area covered and types of tundra habitats with different 

textures and densities of reindeer. The UAV used in this pilot study had 

limited battery capacity and flying time. Using larger quadcopter drones 

or fixed-wing drones with a longer range allows for covering a larger area 

in which abundance can be estimated [37,58]. This, however, comes at 

higher costs and – in the case of fixed-wing drones – higher operation 

complexity, particularly in remote Arctic regions. Therefore, it was a sen-

sible approach to first verify the methodology with a small quadcopter, as 

in this pilot study. Once the method is fully developed and evaluated it 
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can be easily transferred to more complex UAV systems that compensate 

for the limited range and coverage (i.e., using fixed-wing UAVs) [37]. 

The large number of images that our UAV survey produced exem-

plifies key challenges of any aerial survey methods, namely counting the 

animals in the images. To increase the efficiency of the process, orthomo-

saics were generated and tiled into “easy-to-handle” single images. This 

reduced the number of images to scan and made the process more effi-

cient. In the stitching process, reindeer may disappear or appear multiple 

times. By scanning and comparing the raw imagery with the tiled imagery 

after the stitching process, we quantified this disappearance, but at the 

expense of much longer processing time. In the case of the disappearing 

reindeer, the reindeer were moving over heterogenous terrain (e.g., from 

riverbed into swampy wetland areas). This large gradient in surface tex-

ture of the different habitat types may explain why the algorithm resulted 

in removing the reindeer in the stitching process. However, reindeer that 

remained stationary, or moved over homogenous terrain did not appear 

multiple times, nor did they disappear in the orthomosaic process. Da-

tasets from UAV surveys with low-density populations in open land-

scapes seem particularly well-suited for automated counting methods, 

e.g., using machine learning [59]. However, this requires large training 

data sets of reindeer in a varity of habitat types with different surface 

texture and there is a need to make manual counts more efficient [59]. We 

encourage future studies to focus on developing training datasets using 

the protocol we have presented (Appendix C) as a key towards automated 

detection methods. 

5. Conclusions 

Reliable estimates of wildlife population abundance provide infor-

mation, which is necessary to make conservation and management deci-

sions. UAV has the potential to be an alternative to traditional monitoring 

methods for estimating Svalbard reindeer abundance, if key aspects are 

improved: 1) Increase the covered area to capture the density-vegetation 

productivity gradient of this wide-ranging species, 2) integrate imperfect 

detection in hurdle models, and 3) reduce imagery processing time. With 

this pilot study, we confirmed that it is possible to identify, count, collect 

geographical positions, and quantify covariates affecting detection of 

reindeer on UAV imagery. We suggest overcoming these challenges by 

using a fixed-wing UAV to cover a larger spatial area and develop a train-

ing dataset that could be used for machine learning algorithms to auto-

mate the counting process. The relative lower carbon footprint and lesser 

human disturbance compared to helicopter surveys encourage further 

UAV method development in remote Arctic regions. Before limitations 

are addressed, UAV surveys may be a supplement to the traditional, 

ground-based field methods but cannot yet fully replace them when it 

comes to herbivore monitoring in open heterogenous landscapes. Our 

study demonstrates the importance of a thorough quality assessment of 

survey methods before results are applied for management inference. 
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Appendix A: Independent total counts from Adventdalen – background data and results 

Statistical analyses 

The values of all average maxNDVI pixels (240 x240 m) in the sampling area (Adventdalen below 250 

meters) were extracted (N=3262 pixels), including all pixels with at least one geographic position of a 

reindeer observation (n=437 pixels, min positions per pixel=1, max positions per pixel = 22). There was 

positional information for 1527 out of 1668 reindeer groups. Mean reindeer group size was 3.2 reindeer. 

The hurdle model was applied to this dataset with maxNDVI as a covariate and observations per pixel 

as a response variable. The best model was determined by AIC. Based on results from the best model 

from the total counts in Adventdalen, a density map was created across the Sassendalen valley in the 

same area as the helicopter surveyed area. 

 
Figure A1. Reindeer geographic positions in the Sassendalen’s neighbouring valley Adventdalen (N=1527). 
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Table A1. Independent total counts density model obtained from ground counts in a neighbouring 

valley. We used the most parsimonious density model for total counts from Le Moullec et al. [34], 

which modelled individuals per segment as a function of maxNDVI using a hurdle density model 

with a zero-truncated negative binomial distribution with a dispersion parameter. This model was fitted 

using the restricted maximum likelihood (REML) framework. The model presented below is the 

model with the highest AIC.  

Hurdle density model Adventdalen 

 β ± SE P 

Count model Intercept -1.04 ± 0.57 0.07 

 NDVI* 0.003 ± 0.0009 0.002 

P/A model Intercept -4.59 ± 0.33 <0.05 

 NDVI 0.004 ± 0.0005  0.02 
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Appendix B: Model selection and detection curve for estimating Svalbard reindeer abundance by 

ground Distance sampling 

Table B1. The four candidate detection probability models for Distance sampling (DS) of Svalbard rein-

deer, Svalbard, Norway (July 2021). Detection probability was fitted using half-normal (hn) and hazard 

rate (hr) functions with weather (sunny or cloudy) as covariate (see Table S3 in Le Moullec et al. [34] for 

the influence of other covariates). We ranked models using Akaike’s Information Criterion (AIC) and 

differences in AIC (ΔAIC). 

Model Key AIC ΔAIC 

~ weather hr 657.893 0 

~ 1 hr 661.477 3.584 

~ weather hn 663.627 5.734 

~ 1 hn 665.857 7.964 

 

 
Figure B1. Detection probability function based on the line transect distance sampling of Svalbard reindeer. The 

best model was fitted at a continuous scale for observed distances and included a hazard rate key detection function 

with weather (sunny or cloudy) as covariate. Observations of reindeer clusters are illustrated by dots along the 

curve.  
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Table B2. Density model obtained from ground distance sampling. We used the most parsimonious density 

model from Le Moullec et al. [34], which modelled individuals per segment as a function of NDVI using a log-

link quasi-Poisson model. This model was fitted using the restricted maximum likelihood (REML) framework. 

 

Figure B2. Density function modelling individuals per segment as a function of NDVI using a log-link 

quasi-Poisson model. The model was fitted using the restricted maximum likelihood (REML) . Dis-

played above are diagnostic plots for the selected model using the function ‘gam.check’ in the package 

mgcv.  

 Ground DS survey Sassendalen Model  

by Le Moullec et al. (2019) 

 β ± SE P β ± SE P 

Intercept -19.25 ± 2.05 <0.001 −13.95 ± 0.38 <0.001 

NDVI* 0.012 ± 0.003 <0.001 2.65×10−3 ± 0.76×10−3 <0.001 

* Le Moullec et al. 2019 is based on average maxNDVI from 2013-2016. 
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Appendix C: Protocol for counting reindeer from UAV imagery 

Counting Svalbard reindeer from drone imagery — instructions to observers (full version can be 

available from the authors upon request) 

Background 

In this protocol you will count Svalbard reindeer in UAV imageries captured in Sassendalen, Svalbard 

in July 2021. Six predefined transects were flown with a multirotor at an altitude of 100-120 meters over 

reindeer habitats. The images were merged and postprocessed into evenly sized tiles by Richard Hann 

(NTNU). The objective for you as an observer is to help identify reindeer from the UAV imagery and 

assign them into simple sex and age categories, so they can be compared with helicopter and ground 

surveys done the same year. 

The software you will use to count the reindeer is called DotDotGoose. DotDotGoose is a free, 

open-source tool to assist with counting objects manually in images. The software was created by the 

American Museum of Natural History to assist conservation researchers and practitioners working on 

counting objects in any kind of image format. The benefit of DotDotGoose is that you can easily create 

custom classes, pan and zoom on images and place points to identify individual objects. The metadata 

from each observer will be exported for further analyses in this project. 

The reindeer categories you will identify in the UAV images correspond to sex and age classes 

used in helicopter counts (Governor of Svalbard 2009) and ground surveys [total counts; 21]. These are 

1) reindeer with large antlers (old male), 2) reindeer with small antlers (female/young), 3) reindeer with-

out antlers (female/young), 4) calves, 5) reindeer you are unsure in which category they belong, and 6) 

carcasses. Carcasses are not counted in helicopter surveys but come in addition because it will help you 

to keep focused since there are many images without reindeer in them. 

The categories may look like the photos below on the UAV imagery (Figure C1 and C2). Note that 

key characteristics of a reindeer is the body shape, the colour (white and grey) and sometimes the 

shadow. The shadow can sometimes help to determine the size of the antlers (if antlers are present). Be 

aware that the objects are pixelated and blurry and it may not always be easy to distinguish the objects, 

especially if the reindeer are lying down.
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Reindeer with small antlers Reindeer large antlers Reindeer without antlers 

 

 

 

Reindeer with small antlers have 

less clearly defined antlers or the 

antlers are much smaller compared 

to their body size. 

Reindeer with large antlers have a 

clear, protruding large v-or u-shape 

in one end, large compared to their 

body size. 

Reindeer with no antlers do not 

have any clear protruding shape 

from their body. 

Calf Carcass  

 

 

 

A calf is determined by the relative 

smaller size compared to the sur-

rounding reindeer (the calves are al-

ways with a female reindeer). 

Carcasses may look like above with 

white hair scattered around. Also 

note the antlers next to it. 

 

Figure C1. Overview of the five classes to categorise reindeer from drone imagery. 
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Figure C2. A full-scale image like the one you will see when you go through the images and classify reindeer into one of the five 

categories in Figure E1. Do you see a reindeer? Try to remember the size of the reindeer relative to the full-scale image. If you see 

anything that resembles a reindeer, you can zoom in using the buttons on the left.  

For more information about the software (other than what is in this protocol) check out the DotDotGoose QuickGuide 

in the folder or this video tutorial on how to use the software: https://www.youtube.com/watch?v=VGxTiQHx4Lc 

Download software and get started! 

 Save and extract the ‘Reindeer_counting_drone_imagery.zip’ to your computer or hard disk. The folder and 

metadata require about 4 GB of space so make sure you have enough. 

Set up DotDotGoose software 

 Click and open the dotdotgoose.exe file in the ‘Reindeer_counting_drone_imagery’ folder 

 Click on ‘Load’ in the bottom left corner. Find the imagery folder “drone_imagery_SAS_2021” and select the 

point file ‘template_reindeer_counting.pnt’ 

 In Survey Id at the top left panel: put your first name and last name with underscore e.g., ole_olesen. This will 

create a column in the metadata with your name.  

 Click the Save button and save a point file with your own name (e.g., ole_olesen.pnt) into the same folder as 

the drone imagery ‘drone_imagery_SAS_2021’. It is important that it is the same folder as the imagery — if 

not the save will not work! 

 If you need to close the programme and finish at another time, you can open your point file in the DotDot-

Goose software by locating the file and click Import.  
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Reindeer detection and assigning objects to categories 

Time tracking 

 We would like to know how long it takes for each observer to scan through each transect line. The name of 

each jpeg file starts with the transect number (e.g., Line_1, Line_2). 

 When you are about to start on the first image of the transect (e.g., Line_1_tile_100.jpeg) write down the time 

in ‘time_start’ from the Custom Fields (right side panel) from your computer clock (e.g. 09:54).  

 When you have scanned all images in the transect (e.g., last image is Line_1_tile_99.jpeg) write down the time 

in time_stop (e.g. 11:00) on this last image of Line_1. 

 Do this for every transect line (Line_1 to Line_6) so we get the start and end time for each transect. Please try 

to complete every transect line in one go, but if you need to take breaks write down the end time and start 

time as well so breaks can be subtracted. 

 Remember to save frequently and when you take breaks.  

Reindeer scanning method 

 For each image, scan the full-scale image quickly from grid to grid with your eyes (see example below). It 

might be useful to move your mouse as a guide.  

 If you can’t find an object of interest, go to the next image by pressing the down arrow key on your keyboard.  

 If you want to go back to any previous images use the up-arrow key or double-click on a specific photo in the 

Summary table. 

 
Figure C3. Example of how to scan an image. 
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 If you do find an object of interest, zoom in on it to check if it is a reindeer or carcass by scrolling your 

mouse or use the zoom buttons in the right bottom corner (you can also drag the image up, down, and side-

ways by clicking and holding the mouse). 

 To mark a reindeer or carcass, you click on the category you want to assign on the left side panel (see left im-

age below). Press the Ctrl key while you click on the object in the image. A dot will be created over the rein-

deer. 

 You can double check that the right category was assigned to the object for that image by looking at the Sum-

mary table on the left panel (see right image below).  

 NB! If you accidentally make a point or assign wrong category and need to remove it from the image, press 

and hold the Shift key on your keyboard, then left click and drag the mouse to draw a box around the points 

you’d like to delete. A red circle around your point will show up. Press the Delete key to remove the point. 

References 

Ersts,P.J.[Internet] DotDotGoose (version 1.5.1). American Museum of Natural History, Center for Biodiversity and 

Conservation. Available from https://biodiversityinformatics.amnh.org/open_source/dotdotgoose. Accessed 

on 2021-12-7.  
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Appendix D: UAV density model for estimating reindeer abundance with hurdle density model 

Table D1. UAV density model obtained from UAV sampling in Sassendalen in 2021. We used the most parsimonious 

density model from Le Moullec et al. [34], which modelled individuals per segment as a function of NDVI using a 

Hurdle density model with a zero-truncated negative binomial distribution with a dispersion parameter. Displayed 

below are the two candidate models with lowest AIC. Both models were fitted using the restricted maximum likeli-

hood (REML). The simplest of the two models, Hurdle model 2, was selected for the analyses. 

 UAV density models   

  β ± SE P AIC ΔAIC 

Hurdle 1 Count model Intercept -2.61 ± 82.8 0.975 182.50 0 

  NDVI -9.59 ± 7.15 0.180   

 P/A model Intercept -7.00 ± 1.40 <0.05   

  NDVI 6.67 ± 2.15  0.002   

Hurdle 2 Count model Intercept 114.19 ± -0.08    0.93 182.54 0.04 

  Log(theta) -10.16 ± 114.20   0.93   

 P/A model Intercept -5.82 ± 1.36  <0.05   

  NDVI 5.19 ± 2.080   0.012   
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Appendix E: Detection probability from UAV imagery 

The linear mixed effects models (glmer function), implemented in the lme4 package in R, were developed based on two 

sources of detection errors  related to the probability that 1) an observer detects a reindeer in an image (presence/absence 

model) and 2) when they do, how many reindeer are detected in that image (counts model). The reason for this was 

also to develop detection models to fit the two-function process in the density model. For the presence/absence model, 

all reindeer detected by observers (verified as a reindeer (1) or not (0) ) were given an ID based on their GPS coordinates. 

The image covariates median luminance, mean red, mean green, and mean blue channels were extracted from each 

image using the package imageR. High values in the red and blue channel indicated grey, gravely backgrounds. The 

RGB greenness index (G-B, [51]) was calculated to identify green background (low values = dark green, high values = 

light green).  Due to multicollinearity in covariates, we ran separate models including each of the individual covariate 

as fixed effect and observer ID as a random effect. 

Presence/absence model 

 Binomial linear mixed effect model (GLMER) 

 Five separate models with observer id as a random effect and each of the fixed effects median luminance, 

mean red, green, and blue channels per image. We only show the predicted effect plots for the fixed effects 

with a statistical significance (p>0.05) below (intercepts and standard error in results section). 

 Response variable: Reindeer seen (1) or reindeer not seen (0) by observers 

 Sample size of reindeer n=234
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Counts model 

 Poisson GLMER. 

 Five models with observer id as a random effect and each of the fixed effects median luminance, mean red, 

green, and blue channels per image (intercepts and standard error in results section). Below, we only show 

the predicted effect plots for the fixed effects with a statistical significance (p>0.05) 

 Response variable: Number of reindeer observed in an image 

 Sample size of reindeer n=179 

 

Figure E1. Predicted effects of each covariate in the five separate GLMER counts model. A) greenness index, B) mean blue channel, 

C) mean red channel, D) mean green channel, E) median luminance. 

 

Table E1. Model estimates from the ten separate GLMERs for UAV P/A (N=234, 6 observers) and UAV counts model (N=179, 6 

observers). The coefficients are on a logit scale for the P/A models and Poisson scale for the counts models. Bold denotes significant 

covariate effects (p < 0.05). Stand.dev = Standard deviation. 

 fixed effect random effect Coeffi-

cient 

fixed effect  

(β ± SE) 

random 

effect  

(variance, 

stand.dev) 

AIC 

P/A 

model 

~Greenness index observer ID Intercept 

Covariate 

-1.36 ± 0.48 

3.57 ± 0.92 

 0.04, 0.20 301.89 

 ~mean blue channel observer ID Intercept 

Covariate 

1.90 ± 0.73 

-3.06 ± 1.48 

0.03, 0.17 315.10 

 ~mean green channel observer ID Intercept 

Covariate 

1.63 ± 0.85 

-2.25 ± 1.58 

0.03, 0.17 317.43 

 ~mean red channel observer ID Intercept 1.35 ± 0.89 0.03, 0.16 318.40 
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Covariate -1.67 ± 1.61 

 ~median luminance observer ID Intercept 

Covariate 

1.07 ± 0.68 

-1.22 ± 1.28 

0.03, 0.16 318.57 

Counts 

model 

~mean red channel observer ID Intercept 

Covariate 

-3.91 ± 0.76 

-3.91 ± 0.76 

0.02, 0.13  709.63 

 ~mean green channel observer ID Intercept 

Covariate 

 3.01 ± 0.38 

-3.62 ± 0.72 

0.02, 0.13  712.19 

 ~median luminance observer ID Intercept 

Covariate 

-2.66 ± 0.57 

-2.66 ± 0.57 

0.02, 0.14 714.17 

 ~mean blue channel observer ID Intercept 

Covariate 

-2.41 ± 0.58 

-2.41 ± 0.58 

 0.02, 0.13  725.01 

 ~Greenness index observer ID Intercept 

covariate 

1.40 ± 0.14 

-0.52 ± 0.22 

0.03, 0.18   740.84 
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