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Abstract 

Organisms release their nucleic acid in the environment including the DNA and RNA which can 

be used to detect their presence. eDNA/eRNA techniques are being used in different sectors to 

identify organisms from soil, water, air, and ice since long. The advancement in technology led 

to easier detection of different organisms without impacting the environment and the organism 

itself. These methods are being employed in different areas including surveillance, history, and 

conservation. eDNA and eRNA methods are being extensively used in aquaculture and fisheries 

setting to understand the presence of different fish species and pathogens in water. However, 

there are some challenges 

associated with the reliability 

of the results because of the 

degradation of nucleic acid 

by several factors. In 

aquaculture there are several 

diseases and parasites 

detected with these methods. 

In this review we discuss 

different aquaculture diseases 

and parasites detected with 

eDNA/eRNA approach and 

the fate of these nucleic acids 

when subjected to different 

water quality and 

environmental parameters. 

This review intends to help the researcher about the potential of eDNA/eRNA based detection of 

pathogens in aquaculture; this will be useful to predict the potential outbreak before it occurs. 

Along with that this paper intends to make people understand several factors that degrade and 

can hamper the detection of these nucleic acids. 
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Introduction 

 

Environmental DNA (eDNA) analysis is a new scientific technique for identifying species from 

materials that contain cellular and extracellular DNA leached off all living organisms. The 

terminology for eDNA as extracellular DNA is noted by Pietramellara et al. 2008. However, 

researchers are using different terminology such as exDNA (extra cellular DNA) or cfDNA (cell-

free DNA). The idea of obtaining DNA from the environmental sample was first demonstrated in 

1986 by Ogram et al. 1987 and called environmental DNA (eDNA). The identification of various 

eDNA from macro-organisms validated the method as actually important in a conservation 

context, and it has been demonstrated in a wide range of ancient and modern habitats, both 

terrestrial and aquatic. (Haile et al. 2009; Epp et al. 2012; Bhadury et al. 2006; Andersen et al. 

2012). Environmental DNA (eDNA) approaches are becoming more widely used in conservation 

biology, biodiversity research, and invasion ecology. One of the most significant benefits of eDNA 

sampling is the undemanding way of obtaining samples, as the target organism does not need to 

be isolated. The detection of parasites and diseases in water can also be done using environmental 

DNA methods. There is numerous evidence of the detection of several bacterial species from 

aquatic environments including Aeromonas and Flavobacterium. 

  

DNA is leached in the aquatic environment by different means such as mucosal secretion, bodily 

fluids, tissues, scales, skin, microbial cells, and cell ruptures. This gives the researcher the potential 

to isolate DNA from the different water sources without impacting the aquatic habitat. eDNA is 

not only being extracted from water samples but it is also being extracted from different substrates 

including soil, snow, and air as well. The extensive study of eDNA has led historians to identify 

new species and detect the presence of endangered species. Environmental nucleic acid including 

eRNA for one of the recent infective SARS-CoV-2 has been successfully isolated from hospital 

air sampling (Led icky et al. 2020). The advances in diagnostic techniques and instruments are one 

of the biggest reasons behind the success of environmental nucleic acid detection. Direct detection 

in water utilizing eDNA-based approaches eliminates the need to acquire and investigate diseased 

hosts, reducing disease monitoring effort and costs dramatically. Eukaryotic micro- and macrobial 

communities and populations have been effectively detected and monitored using eDNA analysis. 

The advances of eDNA analysis have resulted in efficient identification and quantification of these 

extracellular nucleic acids in different mediums. DNA metabarcoding, quantitative PCR and  
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digital droplet PCR are some of the methods being used (Figure 1.). In this review paper we intend 

Figure 1:-  Different methods of eDNA/eRNA quantification. qPCR, ddPCR, metabarcoding, RT-

PCR are generally used to quantify the presence of different organisms from water samples. 

 

to discuss the potential of eDNA in disease surveillance and fate of extracellular nucleic acids 

subjected to environmental conditions in water.  

 

eDNA in fish disease 

Bacteria  

The ability of bacteria, archaea, and fungi cultures to release their genetic material into the 

extracellular medium has been reported, as well as in the context of multicellular microbial 

communities such as biofilms. Bacteria release their DNA in water by different methods including 

cell lysis and extrusion. The integrity of DNA released by cell lysis is usually more because the 

exonucleases cannot act fast to degrade the DNA. Extrusion is used as a survival strategy by certain 

bacteria such as Deinococcus radiodurans in which damaged DNA is released and new DNA is 

synthesized (Battista 1997). Many environmental bacteria including Micrococcus, Acinetobacter, 

Bacillus, Flavobacterium, Azotobacter, Pseudomonas, and Alcaligenes, release their genetic 

material while growing in the media (Paget and Simonet 1994; Lorenz and Wackernagel 1994). 

The amount of eDNA found depends on several factors such as temperature, salinity, turbidity, 

and vegetation. In freshwater systems the amount of DNA ranges from 1.74-7.77 μg/L (Deflaun 

et al. 1986). There are many fish bacterial diseases affecting freshwater aquaculture causing huge 

economic loss to the farmers. eDNA technique might help them to predict bacterial load in their 

farms. There are several research studies being carried out to find an efficient method to detect 

those pathogens directly from the water samples. In most cases of Flavobacterium columnare 

infection, a gram-negative bacterium affecting different fish species is found only externally in the 

skin, gills, and water samples before being systemic. Early and rigorous F. columnare diagnosis, 

as well as the implementation of practical preventive measures, are the only credible means of 
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disease control. F. psychrophilum was found in different river water samples in Japan. They found 

a higher presence of F. psychrophilum during early summer and fall and the presence of this 

bacteria depends on the water temperature (Tenma et al. 2021). In addition to that F. 

psychrophilum and Yersinia ruckeri were also detected in the water of the salmon recirculatory 

aquaculture system (RAS). Similarly, 7 distinct species of Aeromonas were confirmed from 

coastal zones of the river basin in Bangladesh. Over the 2-year study period, they also found that 

the amount of Aeromonas changes with change in temperature using the eDNA method (Sadique 

et al. 2021). There are still many bacterial pathogens that are responsible for the loss which are yet 

to be studied.  

 

Fungi 

Fungi are one of the common fish pathogens in aquaculture settings. The most common fungal 

disease that affects fish species is saprolegniasis, branchiomycosis, and aspergillosis. Because 

farmed animals are typically held in high densities and exposed to constant stress and various types 

of pollutants, the risk of infection and disease spread is higher in fish farms than in wild 

environments. There are only a few studies on fish fungal disease identification using the eDNA 

method in aquaculture. Following high mortality outbreaks in the river Loue, for finding S. 

parasitica in water, a qPCR assay was designed. The pathogen was detected in river water but not 

in the tap water of surrounding villages. (Rochhi et al. 2017). There are other fungi identified by 

this approach from water that affects amphibians. Batrachochytrium dendrobatidis and B. 

salamandrivorans, two major fungal diseases of amphibians were found in water samples in Spain 

using a qPCR assay (González et al. 2021). DNA released from fungus cells has received less 

attention than DNA released from bacterial cells. Although fungi consist of more than 70% 

microbiome in soil due to the fast rate of DNA degradation in dead fungal cells, the contribution 

of fungal DNA to the eDNA pool in soil should be insignificant. The fungus can spread to ponds 

and rivers via rainwater flow and water infiltration. Adequate and efficient methods to detect the 

presence of these fungal pathogens using eDNA will allow the farmer to predict the fungal disease 

outbreak leading to timely management and control strategies. 

Parasites 

Environmental DNA (eDNA) sampling methods in conjunction with different molecular 

methods, is well suited to quickly detect presence of pathogens in different fish farms which 

helps the managers with valuable information that can be used to reduce the disease threats. 

Parasites are the most common group of fish pathogens that are being detected easily using 

eDNA method. Standard fish parasite surveillance entails capturing and euthanizing fish before 

manually inspecting for the presence of parasites. Using this conventional method is both 

expensive and time-consuming, and it necessitates the sacrifice of many fish species. 

eDNA/eRNA fragments of several species in water samples has recently been established as an 

accurate low-cost alternative in addition to the traditional monitoring techniques which require 

sampling the fish itself. Rusch et al. (2018) developed a ddPCR assay to detect eDNA in field 

samples, demonstrating the utility of eDNA detection in natural water systems for G. salaris. 

eDNA of Dactylogyrus species was detected in a consignment of ornamental fish water and 

confirmed by sanger sequencing. Although there are some limitations regarding the use of eDNA 

tool as a biosecurity and quarantine method. It detects eDNA from water and not directly from 

fish and this might create a false positive even though the fish might not have the targeted 

parasite, but the assay can show positive because of the source water used (Gonzalez et al. 2019). 

Chilodonella abundance was detected at varying levels across the year in the barramundi fish 
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farm monitored in the study (Gomes et al. 2017). Jousson et al. 2005 developed an assay that can 

detect low concentrations of the parasite in tank water containing goldfish, presumably 

corresponding to an early stage of the disease. As a result, it could be a useful tool for monitoring 

and controlling ichthyophthiriasis in aquaculture.  

 

Virus 

There are mainly two different forms of virus that infect fish species which are either DNA virus 

or the RNA virus. Several studies have shown that DNA and RNA from virus can be detected 

using eDNA or eRNA method (Minamoto et al. 2009; Haramoto et al. 2007; Kawato et al. 2021; 

Taengphu et al. 2021; Vilaca et al. 2020; Miaud et al. 2019; Weli et al. 2021; Bernhardt et al. 

2020). Since DNA is more stable than RNA, detection of eDNA is more practical and easier than 

detecting RNA from an environmental source. There are many common forms of virus that are 

found in freshwater aquaculture including Herpesvirus, Viral hemorrhagic septicemia virus 

(VHSV), Infectious hematopoietic necrosis virus (IHNV), Golden shiner virus (GSV), Channel 

catfish virus (CCV), Red seabream virus, tilapia tilapine virus, and salmon alphavirus.  

 

Disease identified by eDNA 

 

Table 1:- Different fish diseases identified by eDNA/eRNA based detection system. The different 

environment the samples collected, and methods used to quantify are listed in the table. 

 

Disease Environment Method References 

Virus    

Cyprinus Herpes 

Virus (CyHV-3) 

Lake, Pond, River PCR, Real time PCR Minamoto et al. 

2009; Haramoto et al. 

2007; Honjo et al. 

2012 

Red seabream virus Fish Farm 

(Seawater) 

DNA metabarcoding Kawato et al. 2021 

Tilapia tilapinevirus  Pond water Probe based RT-

qPCR 

Taengphu et al. 2021 

Rana Virus Lakes, Ponds qPCR Vilaca et al. 2020; 

Miaud et al. 2019;  

Salmon aplhavirus Seawater RT-qPCR, RT-

ddPCR 

Weli et al. 2021; 

Bernhardt et al. 2020 

Parasite    

Gyrodactylus salaris  qPCR, ddPCR Rusch et al. 2018; 

Fossoy et al. 2020 

Dactylogyrus spp. Shipment water qPCR  Trujillo-Gonzalez et 

al. 2019b 

Chilodonella 

hexasticha 

Pond water qPCR  Bastos Gomes et al. 

2017,2019 

Ichthyophthirius 

multifiliis 

Tank water Real time PCR Jousson et al. 2005 

Myxobolus 

cerebralis 

River water Multiplex qPCR Richey et al. 2018 
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Ceratonova shasta River water qPCR Richey et al. 2020 

Parvicapsula 

minibicornis 

 

River system Real time PCR Hallett and 

Bartholomew 2009 

Tetracapsuloides 

bryosalmonae 

 

River water qPCR Carraro et al. 

2017,2018; Hutchins 

et al. 2018 

Neoparamoeba 

perurans 

Sea water Real time PCR Bridle et al. 2010 

Schistosoma 

mansoni 

Tank water, water 

bodies 

qPCR Alzaylaee et al. 2020 

Fungi    

Saprolegnia 

parasitica 

River water Real time qPCR Rochhi et al. 2017 

Bacteria    

Aeromonas sp. River, Pond Real time PCR Sadique et al. 2021; 

Fong et al. 2016 

Flavobacterium 

psychrophilum 

River, RAS Real time PCR, 

ddPCR 

Tenma et al. 2021; 

Lewin et al. 2020 

Yersinia ruckeri RAS ddPCR Lewin et al. 2020 

 

 

eDNA production and degradation in water 

  

 The link between the production and its degradation of eDNA/eRNA is crucial for its 

detection and measurement (Thomsen, et al., 2012). When epithelial cells are shed or sloughed 

off through movement, excretion, and secretion eDNA/eRNA is released in the environment 

(Pilliod et al., 2014). Several studies have shown that physiological stress along with the size and 

number of individuals affects the DNA production rate (Takahara et al., 2012; Thompsen et al., 

2012; Maruyama et al., 2014; Pilliod et al., 2014). There is evidence of both intra- and inter-

specific heterogeneity in the creation of eDNA/eRNA, highlighting a need to better understand 

the process of eDNA/eRNA generation and degradation in different species and systems 

(Thomsen, et al., 2012; Maruyama, et al., 2014). 
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Figure 2:- Different factors affecting the nucleic acid degradation in aquatic environment. 

Nucleic acids are affected by temperature, light, pH and the environment they are present in. 

 

A range of factors, including light, temperature, enzymatic activity, and pH, impact the 

breakdown eDNA (Figure 2.). Addressing eDNA detection in an aquatic environment requires a 

full understanding of these factors’ interactions and the effects they have on eDNA stability. 

Hence, Barnes et al. (2014) divided the factors influencing DNA persistence into three groups: 

the DNA molecule's properties, abiotic factors (light, substrates, pH, oxygen, salinity), and biotic 

factors (microbes and enzymes). The length, conformations, and whether a DNA molecule is 

membrane-enclosed, or free (also known as "naked") DNA are all properties of the DNA 

molecule that affect how quickly DNA breaks down in the environment (Romanowski et al., 

1992; Alvarez et al., 1996; Zhu, 2006; Barnes, et al., 2014). Biotic and abiotic factors affecting 

DNA degradation in an aquatic environment are discussed below. 

 

eDNA persistence-related factors in freshwater systems 

 

Temperature 

 DNA deterioration in water occurs more quickly than in soil and sediments, possibly 

because of increased enzymatic and microbial activity at higher temperatures (Zhu, 2006). 

According to Matsui et al. (2001) who investigated the fate of dissolved DNA in a thermally 

stratified lake, DNA in the warmer epilimnion (upper layer) destroyed completely in 170 hours 

while degrading more slowly in the much cooler hypolimnion (lower layer). In contrast to 

samples exposed to the full sun for 18 days and those exposed to 20%shade for 18 days, 
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respectively, Idaho giant salamander eDNA stored at 4°C and no light after 18 days contained 

2030 and 733 times more eDNA (Pilliod et al., 2014). Similarly, the experiment carried out by 

Zulkefil et al. (2019) found higher degradation of eDNA at 35 ºC compared to the control at 5 ºC 

which was about 60% from the initial concentration. Likewise, the experiment carried out by 

Tsuji et al. (2017) to know about the eDNA degradation of two species i.e., ayu sweetfish 

(Plecoglossus altivelis altivelis) and common carp (Cyprinus carpio) at seven-time points, over a 

48-h period, and at three different water temperatures (10 °C, 20°C, 30°C) found higher 

degradation at 30 °C. Some studies have found no effect of temperature on eDNA shedding rate 

(klymus et al., 2015; Takahara et al., 2016). Contrarily, Robson et al. (2016) discovered that 

Mozambique tilapia's DNA shedding rate was dramatically increased by tropical temperatures 

(23, 29, and 35 °C) (Oreochromis mossambicus). Inconsistencies in the research' findings could 

point to variations in eDNA production that are species-specific. Higher temperature often leads 

to degradation by double strand break of the DNA (Figure 3a). 

 

 

Ultraviolet light (UV) 

 Since the stratospheric ozone layer is being destroyed, UV-B radiation can enter the 

water column and cause the destruction of eDNA by rupturing DNA base-pair bonds Figure 3b 

(Hader and Sinha. 2005). Contradictory findings have been found in studies that have 

investigated how UV affects eDNA degradation. Pilliod, et al. (2014) showed that after eight 

days in full sun exposure, eDNA was no longer detectable, however, after 11 days in partial 

shade and after 18 days in complete darkness, eDNA was still detectable in all samples. Given 

that eDNA decayed exponentially even in the absence of light and that temperature accounted for 

the bulk of the observed variation in eDNA degradation among samples, temperature may have a 

bigger effect on DNA degradation than light (Pilliod, et al., 2014). However, the study conducted 

by Zulkefli et al. (2019) with various levels (20, 50, and 100 µmol m-2s-1) of solar radiation had 

no observable effect on the degradation rate of eDNA. Interestingly, the same study indicated 

that UV light, regardless of whether it is UVA or UVB radiation, had no impact on the ability to 

identify DNA (Zulkefli et al., 2019; Machler et al., 2018). The notable significant differences 

were seen by co-varying light intensity and temperature (35ºC) at the end of the experiment 

compared to 5ºC treatment (Zulkefli et al., 2019). 

 

Table 2:- Comparision of eDNA dacay rates among various types of eDNA, sources, and 

environmental factors. * Indicates the significant effect on eDNA degradation in the 

corresponding study. (Table adopted from Zulkefli et al., 2019) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2022                   doi:10.20944/preprints202210.0291.v1

https://doi.org/10.20944/preprints202210.0291.v1


 

 

pH 

 DNA hydrolysis is favored in acidic environments (Lindahl. 1993; Gates. 2009). In 

contrast, Stickler et al. (2015) noted that the increased rate of eDNA degradation at pH 4 was due 

to interactions with other factors and that the pH level itself had no impact on the degradation. In 

stream mesocosms with an acid-base gradient, the degradation rate of lotic multispecies eDNA 

was accelerated to undetectable levels in just two days (Seymour et al., 2018). Low pH will 

result in denaturing of the two strands of DNA while higher pH leads to the degradation of 

hydrogen bonds and separation of nitrogen bases in DNA (Figure 3c). 

 

Environmental parameters 

 The consistent detection of eDNA in the aquatic environment depends on the flow rate 

(Ficetola et al., 2008; Nathan et al., 2015), solid materials, and dissolved substances in the water 

column and riverbed (Rees et al., 2014; Shogren et al., 2017). It is believed that the properties of 

sediments (suspended or benthic) might have an influence on eDNA degradation because 

sediments might adsorb DNA (Stewart et al., 1991; Lorenz et al., 1987), thus reducing the eDNA 

eDNA Type Source Environmental 

Factor 

Decay Rate, 

(r) (day -1) 

Reference 

Extracellular Sediment sample 

Cyanobacterium 

Anabaena variabilis 

Temperature*, 

microbial activity*, 

pH, light intensity 

0.0931-3.2706 Zulkefli et al., 

2019 

Intracellular Crustacean 

Daphnia magna 

 

 

 

pH *, temperature, 

microbial 

activity, total 

dissolved nitrogen 

 

Water derived 

6.552–23.568 

 

Biofilm derived 

1.176–17.256 

 

 

Seymour et al., 

2018 

 May fly 

Ephemera Danica 

 

 Eel 

Anguila anguilla 

 

Intracellular Ayu sweetfish 

Plecoglossus altivelis 

altivelis 

 

Temperature *, 

microbial 

abundance 

 

0.48-7.2 

 

Tsuji et al., 2017 

 Common carp 

Cyprinus carpio 

  

Intracellular Common carp 

Cyprinus carpio 

Temperature*, 

trophic state* 

0.35-2.42 Eichmiller et al., 

2016 

Intracellular American bullfrog 

Lithobates 

catesbeianus 

UV-B*, 

temperature*, pH 

0.243 Strickler et al., 

2015 

Intracellular Common carp 

Cyprinus carpio 

Microbial 

community*, pH 

2.52 Brnes et al., 

2014 

Extracellular Sediment and water 

samples 

Based on simplified 

OECD endurance 

test 

0.009-0.133 Mao et al., 2014 
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detection rates. However, eDNA can re-suspend from sediment (Graf et al., 1997), which can 

result in false positives or the identification of a species that is no longer present in the 

environment (Stoeckle et al., 2016). Additionally, dissolved materials in the water matrix can 

affect how quickly DNA is detected and potentially PCRs, such as humic acids (Albers et al., 

2013). In this regard, an experiment conducted on environmental conditions on eDNA success in 

aquatic ecosystems suggested that the presence of sediments is responsible for lower eDNA 

detection in water samples regardless of flow-through or still water conditions. This was 

followed by the delayed release of eDNA in the presence of sediment. Additionally, humic 

substances had a higher inhibitory effect on eDNA detection followed by algae and siliceous 

sediment particles (Stoeckle et al., 2017). This study mentioned that application of eDNA 

methods in field survey conditions strongly depends on site-specific conditions like water flow 

conditions, sediment composition, and suspended particles. 

 
Figure 3:- Effect of temperature, light and PH on DNA degradation process. 

 

eDNA/eRNA have immense potential for disease risk monitoring, as they can improve our 

ability to determine the existence, diversity, and quantity of pathogenic organisms. Since 

traditional pathogen detection techniques frequently entail cultivating or necropsying host 

tissues, they are equally as resource intensive as those used to detect free-living pathogens. 

Detecting pathogens and parasites beforehand is a crucial step in aquaculture. Fish kills due to 

disease outbreak are common in aquaculture all around the world from warmwater to cold-water 

aquaculture systems. Management can be initiated to prevent the spread of disease and potential 

treatment of water timely. Parasites are often considered less significant in freshwater 

aquaculture, but they can decrease the final value of the product. In addition to that, there are 

several cases of co-infection with bacteria and viruses led by parasite infection (Xu et al. 2007; 

Zhang et al. 2015; Ogut et al. 2014). Certain challenges like accuracy, efficiency, and fate of 

eDNA/eRNA are of concern despite the efforts from many researchers around the globe. 
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Sengupta et al. 2019 used eDNA method for detection of cercaria, one of the major parasites that 

affects both aquatic and human species. They used both field-based models and lab-based 

models to effectively detect the presence of this parasite. However, there are limitations 

regarding the methods such as the rate of decay and the life stage of the parasite identified using 

this technique cannot be determined. Thus, to increase the effectiveness of this method 

experiments and research need to be carried out at different conditions.  

Our review provides comprehensive advances and detection of freshwater pathogens and 

parasites using eDNA techniques. In addition to that, our study reviews the effect of different 

environmental factors on eDNA degradation. The rate of degradation of DNA and RNA is 

different in marine environment than in freshwater system. The half-life of eDNA is found to be 

in a range of 7 h to 72h in marine water (Collins et al. 2018) which is faster than the freshwater 

system (Thomsen et al. 2012; Sassoubre et al. 2016). The degradation rate also varies with 

terrestrial environment and different seasons (Collins et al. 2018). Aside from abiotic factors 

such as oxidation and hydrolysis by depurination, biotic factors such as extracellular DNases 

produced by heterotrophic microbes are also likely to play a significant role in eDNA persistence 

dynamics (Barnes et al. 2016; Torti et al. 2015). eDNA analysis is changing the way we design 

and implement biodiversity monitoring programs, opening new opportunities for the future. This 

tool has a high potential for monitoring aquatic biodiversity including pathogens and parasites. 
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