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Abstract

We point out an inconsistency in Newton’s equations of celestial mechanics. A set of
differential equations implied by Newton’s equations are shown to be free of this inconsistency.
We then investigate the integrals of motion associated with this relative difference system.
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1 Introduction
Over the course of the millennia of years, numerous astronomical observations and measure-
ments of celestial bodies were made by earthbound humans. The twentieth century ushered in
an era of human made objects orbiting earth or traveling in space. Observations and measure-
ments from earth or from other moving bodies viewed theoretically as point masses require
the utilization of coordinate systems in which the origin O coincides with the center of mass
of one of these point masses. Note that this choice of origin does not necessarily coincide
with the center of mass of the entire N -body system. It goes without saying that these point
masses accelerate and decelerate during their travel. By fixing the origin O on the point mass,
Newton’s equations become an inconsistent system.

Newton’s equations of the N -body problem are important theoretical and computational
tools used throughout the study of celestial mechanics. As a case in point, Newton’s equations
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are the leading term in certain general relativity celestial mechanics equations proposed by
Einstein, Infeld, and Hoffman [2]. In special relativity, Newton’s equations may be viewed
as the leading term in celestial mechanics equations that undergo expansion in terms of the
parameter c−1, where c is the speed of light. Compare e.g. with Feynman [[4], Chapter 3].

Surprisingly, an analysis of the Kepler problem for 2-body problem reveals a paradox in
the simplest setting of the N -body problem.

2 A Paradox For the Two-body Problem
Suppose that we have a fixed origin O in space from which we take measurements of the
position and the velocity of two point masses m1 and m2. If the position vector of m1 is given
by the 3 × 1 vector r1(t), (which for ease of exposition we denote as r1), and the position
vector of m2 is given by the 3 × 1 vector r2(t) or r2. Newton’s equations for acceleration
imply that

r′′1(t) =
Gm2(r2 − r1)
‖r2 − r1‖3

, r′′2(t) =
Gm1(r1 − r2)
‖r1 − r2‖3

, (2.1)

where G is the gravitational constant and ‖r(t)‖ =
√
rT r. Note that rT is a 1×3 vector. Now,

as in the case of a central force problem, we set in the equations of (2.1)

r1(t) ≡
−→
0 =⇒ r′1(t) = r′′1(t) ≡

−→
0 , (2.2)

where
−→
0 = [0, 0, 0]T . The assumption of (2.2) is equivalent to placing m1 on O, or in other

words taking all measurements from m1. See Figure 1. The second equation of (2.1) then
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Figure 1: Change of Origin

becomes
r′′2(t) = −

Gm1r2
‖r2‖3

. (2.3)
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Equation (2.3) is the Kepler problem and is known to have conic section r2(θ) = ed
1+e cos θ as a

solution. But what happens to the first equation of (2.1)? It becomes

−→
0 =

Gm2r2
‖r2‖3

. (2.4)

The only possible solution to (2.4) is r2
‖r2‖3 =

−→
0 , which in turn implies ‖r2‖ = ∞. To obtain

a meaning for the solution r2
‖r2‖3 =

−→
0 , we proceed with the following heuristic description

which is justified rigorously via compactification; see Y. I. Gingold and H. Gingold and/or H.
Gingold, and D. Solomon [5, 6]. Supplement R3 by an ideal set

ID := {∞U}, where U ∈ R3 and ‖U‖ = 1, (2.5)

and create
UER3 := {R3} ∪ ID. (2.6)

Then ∞U may be considered a constant solution “at infinity” (critical point or equilibrium
point) of (2.4), where ‖∞U‖ = ∞. This way we can add elements like ∞U as legitimate
constant solutions to the equations of celestial mechanics. This is consistent with setting r2 =
∞U in (2.4) since

Gm2‖∞U‖
‖∞U‖3

=
Gm2

‖∞U‖2
=
Gm2

∞
= 0.

Thus, if we supplement R3 with a collection of ideal “ points at infinity”, which we denote
as ∞U (U any arbitrary unit vector in R3), and if we assume (2.3) and (2.4) form an initial
value problem with finite initial conditions r1(t0) 6= r2(t0), r′t(t0), r

′
2(t0), the simultaneous

solution of (2.3) and (2.4) leads to the conclusion that r2(t) is both a conic section and a
constant vector∞U . Hence, for the aforementioned initial value problem, the system of (2.3)
and (2.4) is an overdetermined system with no consistent solution.

Geometrically, there is a one-to-one mapping between UER3 and a closed subset that is
a “bowl” on the unit sphere S4 [5, 7]. Alternatively, there is a one-to-one mapping between
UER3 and a “parabolic bowl” in R4 [3, 6]. For either one of these two compactified geo-
metric realizations of UER3, given P1, P2 ∈ UER3, we determine d(P1, P2) via the chordal
distance. By construction, since S4 and the “parabolic bowl” are compact in R4, d(P1, P2) is
always finite. And indeed the chordal metric in both instances makes UER3 into a complete
metric space [3, 5, 6, 7].

So how can one avoid this quandary? One possible way is to define the origin independent
relative system

(r1 − r2)′′ = −
G(m1 +m2)(r1 − r2)

‖r1 − r2‖3
. (2.7)

Then when r1 ≡
−→
0 , i.e. when m1 corresponds with origin O, Equation (2.7) becomes

−r′′2(t) =
G(m1 +m2)r2
‖r2‖3

, (2.8)
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a modified Kepler problem. Observe that if m1m
−1
2 is very small, as is the case with the Earth

as compared to the sun, Equation (2.8) is a very good approximation to (2.3).

3 A Paradox For the Three-body Problem
Now assume from a fixed origin O we record the position of three point masses, m1,m2, and
m3 as the 3 × 1 vectors r1(t), r2(t), and r3(t) respectively. Then Newton’s law of planetary
motion leads to the following system of three nonlinear second order differential equations.

r′′1(t) =
Gm2(r2 − r1)
‖r2 − r1‖3

+
Gm3(r3 − r1)
‖r3 − r1‖3

(3.1)

r′′2(t) =
Gm1(r1 − r2)
‖r1 − r2‖3

+
Gm3(r3 − r2)
‖r3 − r2‖3

(3.2)

r′′3(t) =
Gm1(r1 − r3)
‖r1 − r3‖3

+
Gm2(r2 − r3)
‖r2 − r3‖3

(3.3)

Once again, let us see what happens to the above system when m1 corresponds to O, i.e. when
r1 ≡

−→
0 . Since r1 ≡

−→
0 implies that r′1 = r′′1 ≡

−→
0 , Equations (3.1) through (3.3) respectively

become

−→
0 =

Gm2r2
‖r2‖3

+
Gm3r3
‖r3‖3

(3.4)

r′′2(t) = −
Gm1r2
‖r2‖3

+
Gm3(r3 − r2)
‖r3 − r2‖3

(3.5)

r′′3(t) = −
Gm1r3
‖r3‖3

+
Gm2(r2 − r3)
‖r2 − r3‖3

(3.6)

Equation (3.4) implies that

m2r2
‖r2‖3

= −m3r3
‖r3‖3

⇐⇒ r2 = −
m3‖r2‖3

m2‖r3‖3
r3. (3.7)

If we take the norm of (3.7) we find that

‖r2‖ =
m3‖r2‖3

m2‖r3‖3
‖r3‖ ⇐⇒ ‖r2‖−2 =

m3

m2
‖r3‖−2 ⇐⇒ ‖r2‖ =

√
m2

m3
‖r3‖. (3.8)

By substituting (3.8) into (3.7) we obtain the relation

r2 = −
√
m2

m3
r3. (3.9)
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We now place (3.7) and (3.9) into (3.5) to obtain

−
√
m2

m3
r′′3 =

Gm1m3

m2

r3
‖r3‖3

+
Gm3

(
r3 +

√
m2
m3
r3

)
∣∣∣∣∣∣(r3 +√m2

m3
r3

)∣∣∣∣∣∣3
= Gm3

m1

m2
+

1(
1 +

√
m2
m3

)2
 r3
‖r3‖3

=
Gm3

m2

[
m1(
√
m3 +

√
m2)

2 +m2m3

(
√
m3 +

√
m2)2

]
r3
‖r3‖3

.

The above calculations show that

r′′3 = −G
(
m3

m2

) 3
2
[
m1(
√
m3 +

√
m2)

2 +m2m3

(
√
m3 +

√
m2)2

]
r3
‖r3‖3

. (3.10)

However, if we substitute (3.9) into (3.6) we obtain

r′′3 = −Gm1r3
‖r3‖3

−
Gm2

(
1 +

√
m2
m3

)
(
1 +

√
m2
m3

)3 r3
‖r3‖3

= −G

m1 +
m2(

1 +
√

m2
m3

)2
 r3
‖r3‖3

= −G
[
m1(
√
m3 +

√
m2)

2 +m2m3

(
√
m3 +

√
m2)2

]
r3
‖r3‖3

. (3.11)

Since (3.10) must equal (3.11) we have the relation(
m3

m2

) 3
2
[
m1(
√
m3 +

√
m2)

2 +m2m3

(
√
m3 +

√
m2)2

]
r3
‖r3‖3

=

[
m1(
√
m3 +

√
m2)

2 +m2m3

(
√
m3 +

√
m2)2

]
r3
‖r3‖3

. (3.12)

In order for (3.12) to be valid, either one of two possibilities occurs. First r3
‖r3‖3 ≡−→

0 , which implies that r3 = ∞U , a contradiction to the assumption of finite initial
conditions, or (

m3

m2

) 3
2

= 1⇐⇒ m3 = m2. (3.13)

ec Thus if the system in question does not satisfy (3.13), Newton’s equations (3.1)
through (3.3) lead to a paradox if m1 is taken to be the origin O. However if the
system in question does satisfy (3.13) we can substitute (3.13) into (3.9) and (3.8) to
obtain

r2(t) = −r3(t) and ‖r2(t)‖ = ‖r3(t)‖. (3.14)
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Then the system of three equations given by Equations (3.4) through (3.6) reduces to

r1 ≡
−→
0 and r′′2 = −r′′3 = G

[
m1 +

m3

4

] r3
‖r3‖3

, (3.15)

and the second equation of (3.15) is a modified Kepler equation which has a conic
section curve as a solution. Furthermore, if r1 ≡

−→
0 and r2 and r3 satisfy (3.14) we

see that the center of mass of the three bodies

m1r1 +m2r2 +m3r3
m1 +m2 +m3

=
−→
0 = r1.

In summary, the above discussion shows that we can not freely choose the originO
to be centered on a point massm1, since unless the other point masses obey “antipodal”
symmetry conditions, the choice of r1 ≡

−→
0 in the system of Newton’s equations given

by (3.1) through (3.3), leads to the paradoxical conclusion of m2 and m3 escaping to
“infinity”. In order to do so in a manner that avoids contradiction, we propose to use
an origin invariant model of relative differences, namely

(r1 − r2)′′ = −
G(m1 +m2)(r1 − r2)

‖r1 − r2‖3
− Gm3(r1 − r3)
‖r1 − r3‖3

+
Gm3(r2 − r3)
‖r2 − r3‖3

(3.16)

(r1 − r3)′′ = −
Gm2(r1 − r2)
‖r1 − r2‖3

− G(m1 +m3)(r1 − r3)
‖r1 − r3‖3

− Gm2(r2 − r3)
‖r2 − r3‖3

(3.17)

If we put r1 ≡
−→
0 into (3.16) and (3.17),we obtain the consistent system

r′′2 = −G(m1 +m2)r2
‖r2‖3

− Gm3r3
‖r3‖3

− Gm3(r2 − r3)
‖r2 − r3‖3

(3.18)

−r′′3 =
Gm2r2
‖r2‖3

+
G(m1 +m3)r3
‖r1 − r3‖3

− Gm2(r2 − r3)
‖r2 − r3‖3

(3.19)

If m2 and m3 are small compared to m1, Equations (3.18) and (3.19) are perturbations
of (3.5) and (3.6). Also since the system of equations given by (3.18) and (3.19) does
not have an analog of Equation (3.4), it is not overdetermined.

4 Well Posed Origin Anywhere Consistent System
As the examples of the previous two section demonstrate, it is desirable to have a sys-
tem of differential equations for the N-body problem that has the following properties:

a. The system of differential equations is consistent with any coordinates system
whose origin is any point in space.

6

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2022                   doi:10.20944/preprints202210.0277.v1

https://doi.org/10.20944/preprints202210.0277.v1


b. Any singularities free initial value problem has a unique solution with a continu-
ous second derivative on some interval containing the initial point.

We propose to call such systems of differential equations well posed origin any-
where consistent. For the theory of ordinary differential equations see e.g. [1, 9, 10,
12].

Any Newtonian N-body problem has at least two inconsistencies built in it. Recall
that the original Newton system of N nonlinear second order differential equations is
given by

r′′j (t) = G
N∑
i=1
i6=j

mi(ri − rj)
‖ri − rj‖3

, 1 ≤ j ≤ N. (4.1)

Fix the origin of coordinate system at the point mass mj , where j 6= N . Substitute
r′′j (t) ≡ r′j(t) ≡ rj(t) =

−→
0 into each of the N equations associated with (4.1). Then

for any legitimate initial conditions, the jth differential equation becomes

−→
0 = G

N∑
i=1
i 6=j

miri(t0)

‖ri(t0)‖3
, ri(t0) 6= rk(t0) 6=

−→
0 whenever i 6= k. (4.2)

On the other hand the initial values chosen with rN(t0) 6=
−→
0 can be made contradic-

tory to (4.2) by the additional choice

G
N−1∑
i=1
i 6=j

miri(t0)

‖ri(t0)‖3
=
−2mNrN(t0)

‖rN(t0)‖3
, (4.3)

since (4.3) when substituted in (4.2) implies that

−→
0 = G

N−1∑
i=1
i 6=j

miri(t0)

‖ri(t0)‖3
+
mNrN(t0)

‖rN(t0)‖3
= −mNrN(t0)

‖rN(t0)‖3
6= −→0 .

Thus we get a contradiction to the desired well posedness.

Another contradiction in Newton’s N -body problem is obtained as follows. Recall
that the origin is centered on the point mass mj , where j 6= N . Choose initial values
in (4.1) as ri(t0) = θiU , where θi > 0 and U is a constant unit vector. Then (4.2)
becomes

−→
0 = G

N∑
i=1
i 6=j

miri(t0)

‖ri(t0)‖3
= G

 N∑
i=1
i 6=j

miθi
‖ri(t0)‖3

U ⇐⇒ N∑
i=1
i 6=j

miθi
‖ri(t0)‖3

= 0.

7
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Since by construction
∑N

i=1
i6=j

miθi
‖ri(t0)‖3 > 0, we obtain a contradiction.

We now generalize the origin invariant model of the relative differences to N point
masses mi, where 1 ≤ i ≤ N . When doing so we obtain a system of N − 1 nonlinear
second order differential equations which is well posed origin consistent anywhere.
Let O be any origin, and ri(t) be the position of mi. The origin invariant model of
relative differences consists of N − 1 nonlinear second order differential equations of
the form

(r1 − rk)′′ = G

N∑
i=2

mi(ri − r1)
‖ri − r1‖3

−G
N∑
i=1
i6=k

mi(ri − rk)
‖ri − rk‖3

= G

N∑
i=2

mi(ri − r1)
‖ri − r1‖3

−G
N∑
i=1
i 6=k

mi[r1 − rk − (r1 − ri)]
‖r1 − rk − (r1 − ri)‖3

, 2 ≤ k ≤ N, (4.4)

where the dependent variables of (4.4) are (∆1k := r1(t) − rk(t))Nk=2. Contrast (4.4)
with the original Newton system of N nonlinear second order differential equations
(4.1). Unlike Newton’s system (4.1) which is only invariant under inertial translations
c(t) (recall that this means that c′′(t) = 0), the relative difference system (4.4) is
invariant under any arbitrary translation c(t). This is because

r′′1 − r′′k = (r1 + c(t))′′ − (rk + c(t))′′

=
N∑
i=2

Gmi(ri + c(t)− (r1 + c(t)))

‖ri + c(t)− (r1 + c(t))‖3
−

N∑
i=1
i6=k

Gmi(ri + c(t)− (rk + c(t)))

‖ri(t) + c(t)− (rk + c(t))‖3

= G
N∑
i=2

mi(ri − r1)
‖ri − r1‖3

−G
N∑
i=1
i6=k

mi(ri − rk)
‖ri − rk‖3

, 2 ≤ k ≤ N. (4.5)

Furthermore, any solution to an initial value problem of (4.4) is also invariant under
arbitrary translations c(t).

The last sentence leads us to consider how a solution to an initial value problem
of Newton’s system (4.1) is related to an initial value problem of the relative differ-
ence system (4.4). Clearly any solution to an initial value problem of (4.1), where
(rj(t0))1≤j≤N with rj(t0) 6= rk(t0) for j 6= k and (r′j(t0))1≤j≤N denote the 2N initial
values, is a solution to the initial value problem of (4.4) with 2(N−1) initial conditions
(r1k(t0) := r1(t0)− rk(t0))2≤k≤N and (r′1k(t0) := r′1(t0)− r′k(t0))2≤k≤N .

On the other hand, if we start with the relative system and initial conditions
(rk(t0))1≤k≤N and (r′k(t0))1≤<k≤N associated with Newton’s system (4.1), we can

8
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form the initial conditions (r1k(t0))2≤k≤N and (r′1k(t0))2≤k≤N and obtain an initial
value problem associated with the relative difference system (4.4). Because (4.4) is
independent of origin, we may solve the aforementioned initial value problem for
r1 ≡

−→
0 and find solutions for (rj)

N
j=2 relative to the origin at m1 since the N − 1

equations of (4.4) become

−r′′k = G
N∑
i=2

miri
‖ri‖3

+
Gm1rk
‖rk‖3

−G
N∑
i=2
i 6=k

mi(ri − rk)
‖ri − rk‖3

, 2 ≤ k ≤ N (4.6)

Then to find the position of m1 relative to mN , take the above initial value problem
of (4.4) and using the independence of origin, set rN ≡

−→
0 in the N − 1 equations of

(4.4) to obtain

(r1 − rk)′′ = G
N−1∑
i=2

mi(ri − r1)
‖ri − r1‖3

− GmNr1
‖r1‖3

−G
N−1∑
i=1
i 6=k

mi(ri − rk)
‖ri − rk‖3

+
GmNrk
‖rk‖3

, (4.7)

and

r′′1 = G
N−1∑
i=2

mi(ri − r1)
‖ri − r1‖3

− GmNr1
‖r1‖3

−G
N−1∑
i=1

miri
‖ri‖3

. (4.8)

We then solve the system of differential equations given by (4.7) and (4.8) to determine
the positions of m1 through mN−1 relative to mN . Thus (4.6) and (4.8), when used in
succession, show how a solution of (4.4) is also a solution of (4.1).

The discussion in the preceding paragraphs demonstrate a principle of indetermi-
nation which states that unless we identify the origin O with a point mass mj , we
cannot determine the position, velocity, and acceleration of mk, where k 6= j.

Another system, closely related to (4.4) and invariant under arbitrary translations
c(t), is

(rj − rk)′′ = G
N∑
i=1
i6=j

mi(ri − rj)
‖ri − rj‖3

−G
N∑
i=1
i6=k

mi(ri − rk)
‖ri − rk‖3

, 1 ≤ j < k ≤ N, (4.9)

where the dependent variables are (∆jk := rj(t) − rk(t))1≤j<k≤N . System (4.9) con-
sists of

(
N
2

)
equations and is generated by the the N − 1 equations (r1− rp)′′, 2 ≤ p ≤

N since
(rj − rk)′′ = (r1 − rk)′′ − (r1 − rj)′′ whenever j 6= 1. (4.10)

Because the right side of the equations of (4.1) involves differences of the form ri−rj ,
where i 6= j, System (4.9) could be technically preferable to (4.4) since the solutions

9
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to (4.9) will directly calculate these differences without involving the subtractive step
of (4.10). Furthermore, given initial conditions (rk(t0))1≤k≤N and (r′k(t0))1≤<k≤N of
(4.1), we form the initial conditions (rjk(t0) := rj(t0)−rk(t0))1≤j<k≤N and (r′jk(t0) :=
r′j(t0)−r′k(t0))1≤j<k≤N and obtain an initial value problem associated with (4.9). Since
(4.9) is independent of origin, we can use the principle of indetermination, exactly as
we did for System (4.4), and determine the position, velocity, and acceleration of each
individual point mass mj , where 1 ≤ j ≤ N .

Because of this correspondence between solutions of (4.1), (4.4), and (4.9), and
the fact that both (4.4) and (4.9) have the advantage of being origin independent, we
propose utilizing both (4.4) and (4.9) as independent systems to model the N -body
problem.

In the next four sections we analyze the integrals of motion associated with (4.9)
and obtain conservation of energy and conservation of angular momentum results anal-
ogous to those of the System (4.1).

5 Conservation of Energy
Newton’s laws of motion for the N -body problem result in a system of

(
N
2

)
nonlinear

second order differential equations of the form

(rj − rk)′′ = G
N∑
i=1
i 6=j

mi(ri − rj)
‖ri − rj‖3

−G
N∑
i=1
i6=k

mi(ri − rk)
‖ri − rk‖3

=
−G(mj +mk)(rj − rk)

‖rj − rk‖3
+G

N∑
i=1
i 6=j,k

mi

[
ri − rj
‖ri − rj‖3

− ri − rk
‖ri − rk‖3

]
,

(5.1)

where we assume 1 ≤ j < k ≤ N .

Take each equation in (5.1) and multiply both sides by mjmk[(rj − rk)
′]T . The

resulting left side is

mjmk[(rj − rk)′]T (rj − rk)′′ =
mjmk

2

d[ [(rj − rk)′]T (rj − rk)′]
dt

=
mjmk

2

d‖(rj − rk)′‖2

dt
, (5.2)
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while the resulting right side is T1(j, k) + T2(j, k), where

T1(j, k) :=
−Gmjmk(mj +mk)[(rj − rk)′]T (rj − rk)

‖rj − rk‖3
(5.3)

T2(j, k) := Gmjmk[(rj − rk)′]T
N∑
i=1
i6=j,k

mi

[
ri − rj
‖ri − rj‖3

− ri − rk
‖ri − rk‖3

]
(5.4)

Observe that

T1(j, k) = −Gmjmk(mj +mk)[(rj − rk)′]T
rj − rk
‖rj − rk‖3

= Gmjmk(mj +mk)[(rj − rk)′]T
[
∇(rj−rk)

1

‖rj − rk‖

]
= G(mj +mk)

d

dt

mjmk

‖rj − rk‖
. (5.5)

Then use (5.2) and (5.5) to sum together∑
1≤j<k≤N

mjmk[(rj − rk)′]T (rj − rk)′′ =
∑

1≤j<k≤N

mjmk

2

d‖(rj − rk)′‖2

dt

=
∑

1≤j<k≤N

T1(j, k) +
∑

1≤j<k≤N

T2(j, k)

= G
∑

1≤j<k≤N

(mj +mk)
d

dt

mjmk

‖rj − rk‖
+

∑
1≤j<k≤N

T2(j, k),

(5.6)

where∑
1≤j<k≤N

T2(j, k) = G
∑

1≤j<k≤N

mjmk[(rj − rk)′]T
N∑
i=1
i6=j,k

mi

[
ri − rj
‖ri − rj‖3

− ri − rk
‖ri − rk‖3

]
.

(5.7)

The goal is to show that

∑
1≤j<k≤N

T2(j, k) =
∑

1≤j<k≤N

(M −mj −mk)
d

dt

mjmk

‖rj − rk‖
, M :=

N∑
k=1

mk. (5.8)

In order to prove (5.8), temporarily fix an index pair (j, k) and recall that we are
summing the

(
N
2

)
equationsm`mp[(r`−rp)′]T (r`−rp)′′, where 1 ≤ ` < p ≤ N . Look
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at the sum of the
(
N
2

)
− 1 equations arising from (r` − rp)′′, where 1 ≤ ` < p ≤ N

and (j, k) 6= (`, p), and add together the terms which have a factor of rj−rk
‖rj−rk‖3

. This
process is equivalent to interchanging the order of summation on the right side of (5.7).
Observe that in order to obtain rj−rk

‖rj−rk‖3
either ` = j, k or p = j, k. The number of such

ordered pairs (`, p) 6= (j, k) for which either ` = j, k or p = j, k is(
N

2

)
−
(
N − 2

2

)
− 1 =

N(N − 1)

2
− (N − 2)(N − 3)

2
− 1 =

4N − 8

2
= 2N − 4,

where
(
N−2
2

)
is the number of ordered pairs containing neither j or k. These 2N − 4

ordered pairs will be paired up with opposite signs as will shortly discover. To explain
how the pairing occurs we analyze four mutually exclusive cases.

Case 1: ` = j and p 6= k, j. Note this implies that p > j. Then

(r`−rp)′′ = (rj−rp)′′ =
−G(mj +mp)(rj − rp)

‖rj − rp‖3
+G

N∑
i=1
i 6=j,p

mi(ri − rj)
‖ri − rj‖3

−G
N∑
i=1
i 6=j,p

mi(ri − rp)
‖ri − rp‖3

.

(5.9)
Since p 6= j, k, only i = k in second summand on the right side of (5.9) gives rise to
rj − rk, in which case we obtain

Gmk(rk − rj)
‖rk − rj‖3

=
−Gmk(rj − rk)
‖rj − rk‖3

.

We then left multiply the above vector by mjmp[r
′
j − r′p]T to obtain a summand of the

form
−Gmjmkmp[r

′
j − r′p]T (rj − rk)

‖rj − rk‖3
. (5.10)

Case 2: ` = k and p 6= j, k. This implies that p > k. Then

(r`−rp)′′ = (rk−rp)′′ =
−G(mk +mp)(rk − rp)

‖rk − rp‖3
+G

N∑
i=1

i 6=k,p

mi(ri − rk)
‖ri − rk‖3

−G
N∑
i=1

i 6=k,p

mi(ri − rp)
‖ri − rp‖3

.

(5.11)
Since p 6= j, k, only i = j in second summand on the right side of (5.11) gives rise to
rj − rk, in which case we obtain

Gmj(rj − rk)
‖rj − rk‖3

.
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We then left multiply the above vector by mkmp[r
′
k− r′p]T to obtain a summand of the

form
Gmjmkmp[r

′
k − r′p]T (rj − rk)

‖rj − rk‖3
. (5.12)

Case 3: ` 6= k, j and p = j. This implies ` < j. Then

(r`−rp)′′ = (r`−rj)′′ =
−G(m` +mj)(r` − rj)

‖r` − rj‖3
+G

N∑
i=1
i6=`,j

mi(ri − r`)
‖ri − r`‖3

−G
N∑
i=1
i 6=`,j

mi(ri − rj)
‖ri − rj‖3

.

(5.13)
Since ` 6= j, k, only i = k in the third summand on the right side of (5.13) gives rise
to rj − rk, in which case we obtain

Gmk(rj − rk)
‖rj − rk‖3

.

We then left multiply the above vector by m`mj[r
′
` − r′j]T to obtain

Gmjm`mk[r
′
` − r′j]T (rj − rk)

‖rj − rk‖3
. (5.14)

Case 4: ` 6= k, j and p = k. This implies ` < k. Then

(r`−rp)′′ = (r`−rk)′′ =
−G(m` +mk)(r` − rk)

‖r` − rj‖3
+G

N∑
i=1
i6=`,k

mi(ri − r`)
‖ri − r`‖3

−G
N∑
i=1
i 6=`,k

mi(ri − rk)
‖ri − rk‖3

.

(5.15)
Since ` 6= j, k, only i = j in the third summand on the right side of (5.13) gives rise
to rj − rk, in which case we obtain

−Gmj(rj − rk)
‖rj − rk‖3

.

We then left multiply the above vector by m`mk[r
′
` − r′k]T to obtain

−Gmjm`mk[r
′
` − r′k]T (rj − rk)

‖rj − rk‖3
. (5.16)

In all four cases, as evidenced by (5.10), (5.12), (5.14), and (5.16), there is a factor
of the form mjmkmα. We want to pairwise combine via the value of α. The above
four cases imply that α 6= j, k. However, α is free to be any other value from the set
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{1, ..., N}. This leads to following considerations: α < j, j < α < k, and α > k.
Suppose α > k. This occurs for all of the p in Case 2 and those p in Case 1 for which
p > k. Since the trace is linear, we can pairwise add (5.10) and (5.12) to obtain

−Gmjmkmp[r
′
j − r′p]T (rj − rk)

‖rj − rk‖3
+
Gmjmkmp[r

′
k − r′p]T (rj − rk)

‖rj − rk‖3

=
−Gmjmkmp[r

′
j − r′k]T (rj − rk)

‖rj − rk‖3

= Gmp
d

dt

mjmk

‖rj − rk‖
, p > k. (5.17)

Next consider α < j. This occurs for all of the ` in Case 3 and those ` in Case 4
for which ` < j. We pairwise add (5.14) and (5.16) to obtain

Gmjm`mk[r
′
` − r′j]T (rj − rk)

‖rj − rk‖3
+
−Gmjm`mk[r

′
` − r′k]T (rj − rk)

‖rj − rk‖3

=
−Gmjmkm`[r

′
j − r′k]T (rj − rk)

‖rj − rk‖3

=
−Gmjmkmp[r

′
j − r′k]T (rj − rk)

‖rj − rk‖3
, renamed ` as p

= Gmp
d

dt

mjmk

‖rj − rk‖
, p < j. (5.18)

Finally we have to consider when j < α < k. This occurs in the remaining p and
` of Cases 1 and 4 not covered by (5.17) and (5.18) respectively. We can pairwise add
(5.10) to (5.16) to obtain

−Gmjmkmp[r
′
j − r′p]T (rj − rk)

‖rj − rk‖3
+
−Gmjm`mk[r

′
` − r′k]T (rj − rk)

‖rj − rk‖3

−Gmjmkmp[r
′
j − r′p]T (rj − rk)

‖rj − rk‖3
+
−Gmjmpmk[r

′
p − r′k]T (rj − rk)

‖rj − rk‖3
, renamed ` to p

=
−Gmjmkmp[r

′
j − r′k]T (rj − rk)

‖rj − rk‖3

= Gmp
d

dt

mjmk

‖rj − rk‖
, j < p < k. (5.19)

If we add (5.17) through (5.19) together, we get

G
N∑

i=1,
i6=j,k

mi
d

dt

mjmk

‖rj − rk‖
.
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The above term is true for an arbitrary yet fixed (j, k), where 1 ≤ j < k ≤ N . By
summing over 1 ≤ j < k ≤ N , we obtain (5.8) as desired.

By combining (5.6) with (5.8) we obtain

1

2

∑
1≤j<k≤N

mjmk
d

dt
‖(rj − rk)′‖2 = GM

∑
1≤j<k≤N

d

dt

mjmk

‖rj − rk‖
.

We then integrate the above results to obtain the conservation of energy formula

T = GM [U + h], h constant, M =
N∑
i=1

mi (5.20)

U :=
∑

1≤j<k≤N

mjmk

‖rj − rk‖
and T :=

1

2

∑
1≤j<k≤N

mjmk‖(rj − rk)′‖2.

6 Inertia and the Lagrange-Jacobi Formula
We will use (5.20) to simplify the second derivative of inertia I , where

I :=
1

2

∑
1≤j<k≤N

mjmk ‖rj − rk‖2 . (6.1)

We claim that
I ′′ = 2GM [U + h]−GMU, (6.2)

a result known as the Lagrange-Jacobi formula. To prove (6.2) first observe that

I ′ =
∑

1≤j<k≤N

mjmk[rj − rk]T (rj − rk)′. (6.3)

Then

I ′′ =
∑

1≤j<k≤N

mjmk[(rj − rk)′]T (rj − rk)′ +
∑

1≤j<k≤N

mjmk[rj − rk]T (rj − rk)′′

= 2GM [U + h] +
∑

1≤j<k≤N

mjmk[rj − rk]T (rj − rk)′′, by (5.20)

= 2GM [U + h]

+G
∑

1≤j<k≤N

mjmk[rj − rk]T

−(mj +mk)(rj − rk)
‖rj − rk‖3

+
N∑
i=1
i6=j,k

mi(ri − rj)
‖ri − rj‖3

−
N∑
i=1
i 6=j,k

mi(ri − rk)
‖ri − rk‖3

 ,
15
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where the final sum made use of (5.1). It remains to simplify the expression in the large
square bracket. To do so, we will temporarily fix (j, k), vary (`, p) 6= (j, k) (where
1 ≤ ` < p ≤ N ), collect and add together all the terms that have a factor of rj−rk

‖rj−rk‖3
.

In other words, we must look at a typical summand in
∑

1≤j<k≤N [rj − rk]T (rj − rk)′′
with index (`, p), namely

m`mp[r`−rp]T (r`−rp)′′ = −
Gm`mp(m` +mp)

‖r` − rp‖
+Gm`mp[r`−rp]T [S1+S2], (6.4)

where

S1 :=
∑
i=1
i 6=`,p

mi(ri − r`)
‖ri − r`‖3

, S2 :=
∑
i=1
i 6=`,p

mi(ri − rp)
‖ri − rp‖3

.

This calculation utilizes the four case argument.

Case 1: ` = j and p 6= j, k. Note that p > j. Set i = k in S1 to obtain

−Gmjmkmp[rj − rp]T (rj − rk)
‖rj − rk‖3

. (6.5)

Case 2: ` = k and p 6= j, k. Note that p > k. Set i = j in S1 to obtain

Gmjmkmp[rk − rp]T (rj − rk)
‖rj − rk‖3

. (6.6)

We can add each term of Case 2 to a corresponding term of Case whenever p > k
to obtain

−Gmjmkmp

[
rTj − rTp − (rTk − rTp )

] rj − rk
‖rj − rk‖3

= −Gmjmkmp[rj − rk]T (rj − rk)
‖rj − rk‖3

= −Gmjmkmp

‖rj − rk‖
, p > k.

(6.7)

The remaining terms of Case 1 satisfy j < p < k.

Case 3: ` 6= j, k, and p = j. Note that ` < j. Set i = k in S2 to obtain

Gm`mjmk[r` − rj](rj − rk)
‖rj − rk‖3

. (6.8)

Case 4: ` 6= j, k and p = k. Note that ` < k. Set i = j in S2 to obtain

−Gm`mjmk[r` − rk](rj − rk)
‖rj − rk‖3

. (6.9)
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We add each term of Case 3 to a corresponding term of Case 4 with ` < j to obtain

−Gmjmkm`

[
−(rT` − rTj ) + (rT` − rTk )

] rj − rk
‖rj − rk‖3

= −Gmjmkm`[rj − rk]T (rj − rk)
‖rj − rk‖3

= −Gmjmkm`

‖rj − rk‖
, ` < j

= −Gmjmkmp

‖rj − rk‖
, p < j.

(6.10)

where in the last equality we renamed ` as p. The remaining terms of Case 4 (where `
is renamed as p) satisfy j < p < k and can be added to the corresponding remaining
terms of Case 1 to obtain

−Gmjmkmp

[
rTj − rTp + (rTp − rTk )

] rj − rk
‖rj − rk‖3

= −Gmjmkmp[rj − rk]T (rj − rk)
‖rj − rk‖3

= −Gmjmkmp

‖rj − rk‖
, j < p < k.

(6.11)

The results of (6.7), (6.10), and (6.11) imply that

I ′′ =
∑

1≤j<k≤N

mjmk[(rj − rk)′]T (rj − rk)′ +
∑

1≤j<k≤N

mjmk[rj − rk]T (rj − rk)′′

= 2GM [U + h]−G
∑

1≤j<k≤N

mjmk(mj +mk)[rj − rk]T (rj − rk)
‖rj − rk‖3

+G
∑

1≤j<k≤N

N∑
i=1
i6=j,k

mjmkmi[rj − rk]T (ri − rj)
‖ri − rj‖3

−G
∑

1≤j<k≤N

N∑
i=1
i 6=j,k

mjmkmi[rj − rk]T (ri − rk)
‖ri − rk‖3

= 2GM [U + h]−G
∑

1≤j<k≤N

mjmk(mj +mk)

‖rj − rk‖
−G

∑
1≤j<k≤N

∑
i=1

i=6=j,k

mjmkmi

‖rj − rk‖

= 2GM [U + h]−GM
∑

1≤j<k≤N

mjmk

‖rj − rk‖
= 2GM [U + h]−GMU,

which is precisely (6.2).
By using the definitions of T and U provided by (5.20), we may rewrite (6.2) as

I ′′ = 2GM [U +h]−GMU = GMU + 2GMh = 2T −GMU = T +GMh. (6.12)
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7 Conservation of Angular Momentum
Next we prove the following identity which shows that the sum of the angular momen-
tum is constant, namely that∑

1≤j<k≤N

mjmk[ (rj − rk)× (rj − rk)′ ] = c, c constant vector. (7.1)

In particular, by using the same four case pairing argument as previously discussed,
we will prove ∑

1≤j<k≤N

mjmk[ (rj − rk)× (rj − rk)′′ ] = 0. (7.2)

Since

d

dt
mjmk[ (rj − rk)× (rj − rk)′ ] = mjmk[ (rj − rk)× (rj − rk)′′ ],

by integrating both sides of (7.2) we obtain (7.1) as desired.

To prove (7.2), we will regroup the terms in the sum via common denominators
of the form ‖rj − rk‖3. For an arbitrary yet fixed pair (j, k) with 1 ≤ j < k ≤ N ,
we look for terms in (7.2) of the form Si,j

‖rj−rk‖3
and calculate their sum. In order to

efficiently find these terms, we vary (`, p) with 1 ≤ ` < p ≤ N , look at m`mp(r` −
rp) × (r` − rp)′′ on the right side of (7.2), expand (r` − rp)′′ via Newton’s equations
and show that the sum of all terms of the form

γ(r` − rp)× (rj − rk)
‖rj − rk‖3

, γ constant. (7.3)

is indeed zero. By then varying (j, k) over the range of 1 ≤ j < k ≤ N , we will have
accounted for all the terms in

∑
1≤j<k≤N mjmk[ (rj − rk)× (rj − rk)′′ ] and will have

proven (7.2).

First let (`, p) = (j, k), go back to (5.1) and observe that

(rj − rk)× (rj − rk)′′ =
−G(mj +mk)(rj − rk)× (rj − rk)

‖rj − rk‖3

+G

N∑
i=1
i6=j,k

mi

[
(rj − rk)× (ri − rj)

‖ri − rj‖3
− (rj − rk)× (ri − rk)

‖ri − rk‖3

]

= G
N∑
i=1
i 6=j,k

mi

[
(rj − rk)× (ri − rj)

‖ri − rj‖3
− (rj − rk)× (ri − rk)

‖ri − rk‖3

]
.

(7.4)
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None of the above terms of (rj − rk) × (rj − rk)′′ have denominator ‖rj − rk‖3. To
figure out how the other

(
N
2

)
− 1 terms m`mp(r` − rp)× (r` − rp) contribute terms of

the form (7.3), we use a familiar case/parity argument.

Case 1: ` = j and p 6= j, k. Note that p > j. Observe that

mjmp(rj−rp)×(rj−rp)′′ = Gmjmp

 N∑
i=1
i 6=j

mi(rj − rp)× (ri − rj)
‖ri − rj‖3

−
N∑
i=1
i 6=p

mi(rj − rp)× (ri − rp)
‖ri − rp‖3

 .
The only way to obtain a term of type (7.3) is to set i = k in the first summand, in
which case we get the following contribution

−Gmjmkmp(rj − rp)× (rj − rk)
‖rj − rk‖3

, p > j (7.5)

Case 2: ` = k and p 6= j, k. Note that p > k. Then

mkmp(rk−rp)×(rk−rp)′′ = Gmkmp

 N∑
i=1
i6=k

mi(rk − rp)× (ri − rk)
‖ri − rk‖3

−
N∑
i=1
i 6=p

mi(rk − rp)× (ri − rp)
‖ri − rp‖3

 .
The only way to obtain a term of type (7.3) is to set i = j in the first summand in
which case we get

Gmjmkmp(rk − rp)× (rj − rk)
‖rj − rk‖3

, p > k. (7.6)

Note that if p > k, we can pair up each term of Case 2 with a corresponding term of
Case 1, use the bilinearity of the cross product, and get a contribution of zero as seen
by the following calculation.

−Gmjmkmp

‖rj − rk‖3
(rj − rp)× (rj − rk) +

Gmjmkmp

‖rj − rk‖3
(rk − rp)× (rj − rk)

=
−Gmjmkmp

‖rj − rk‖3
[(rj − rp − (rk − rp))× (rj − rk)]

=
−Gmjmkmp

‖rj − rk‖3
[(rj − rk)× (rj − rk)] = 0.

The remaining contributions from Case 1 are the k − j − 1 terms for which j + 1 ≤
p ≤ k − 1, namely

−Gmjmkmp(rj − rp)× (rj − rk)
‖rj − rk‖3

, j + 1 ≤ p ≤ k − 1. (7.7)
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Case 3: ` 6= j, k and p = j. Note that ` < j. Note that

m`mj(r`−rj)×(r`−rj)′′ = Gm`mj

 N∑
i=1
i6=`

mi(r` − rj)× (ri − r`)
‖ri − r`‖3

−
N∑
i=1
i 6=j

mi(r` − rj)× (ri − rj)
‖ri − rj‖3

 .
The only way to obtain a term of type (7.3) is to set i = k in the second sum, in which
case (after renaming ` as p) we get the following contribution.

Gmjmkmp(rp − rj)× (rj − rk)
‖rj − rk‖3

, p < j. (7.8)

Case 4: ` 6= j, k and p = k. Note that ` < k. Note that

m`mk(r`−rk)×(r`−rk)′′ = Gm`mk

 N∑
i=1
i 6=`

mi(r` − rk)× (ri − r`)
‖ri − r`‖3

−
N∑
i=1
i 6=k

mi(r` − rk)× (ri − rk)
‖ri − rk‖3

 .
The only way to obtain a term of type (7.3) is to set i = j in the second sum, in which
case (after renaming ` as p) we get the following contribution.

−Gmjmkmp(rp − rk)× (rj − rk)
‖rj − rk‖3

, p < k. (7.9)

Notice that each term of Case 3 can be added to a corresponding term of Case 4 in
which p < j. Then by using the bilinearity of the cross product, we see from the
calculation below the result of this addition is zero.

Gmpmjmk

‖rj − rk‖3
(rp − rj)× (rj − rk)−

Gmpmjmk

‖rj − rk‖3
(rp − rk)× (rj − rk)

=
−Gmpmjmk

‖rj − rk‖3
[(−(rp − rj) + rp − rk)× (rj − rk)]

=
−Gmpmjmk

‖rj − rk‖3
[(rj − rk)× (rj − rk)] = 0.

The remaining contributions from Case 4 are the are the k − j − 1 terms for which
j + 1 ≤ p ≤ k − 1, namely

−Gmjmkmp(rp − rk)× (rj − rk)
‖rj − rk‖3

, j + 1 ≤ p ≤ k − 1. (7.10)
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Then it is a matter of adding together the corresponding terms of (7.7) and (7.10) and
show they the resulting sum is zero. In particular, for j + 1 ≤ p ≤ k − 1, we find that

−Gmjmkmp

lrj − rl‖3
(rj − rp)× (rj − rk)−−

Gmjmkmp

‖rj − rl‖3
(rp − rk)× (rj − rk)

=
−Gmjmkmp

‖rj − rl‖3
[(rj − rp + rp − rk)× (rj − rk)]

=
−Gmjmkmp

‖rj − rl‖3
[(rj − rk)× (rj − rk)] = 0.

8 Sundman’s Inequality and Total Collapse
Let us obtain Sundman’s two theorems regarding total collapse for our system of dif-
ferences. Following the exposition of Pollard [[11], Page 64], we must first obtain
Sundman’s inequality by estimating the norm of the angular momentum. Start with
(7.1) and apply the triangle inequality to obtain

‖c‖ := c ≤
∑

1≤j<k≤N

mjmk‖(rj − rk)× (rj − rk)′‖

=
∑

1≤j<k≤N

mjmk‖(rj − rk)‖, ‖(rj − rk)′‖,

since ‖(rj − rk) × (rj − rk)′‖ = ‖(rj − rk)‖ ‖(rj − rk)′‖ sin θ where θ is the angle
between ‖(rj − rk)‖ and ‖(rj − rk)′‖. Let

rjk := ‖rj − rk‖, vjk := ‖(rj − rk)′‖, 1 ≤ j < k ≤ N

The above becomes

c ≤
∑

1≤j<k≤N

mjmkrjkvjk =
∑

1≤j<k≤N

(
√
mjmkrjk)(

√
mjmkvjk).

If we take the preceding inequality, square it, and apply the Cauchy-Schwarz inequal-
ity, we find that

c2 ≤

[ ∑
1≤j<k≤N

(
√
mjmkrjk)(

√
mjmkvjk)

]2

≤

[ ∑
1≤j<k≤N

mjmkr
2
jk

][ ∑
1≤j<k≤N

mjmkv
2
jk

]
, Cauchy-Schwarz inequality

= 2I · 2T = 4IT = 4I[I ′′ −GMh], (8.1)
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where the last equality follows from (6.12). Inequality (8.1) is known as Sundman’s
inequality.

Next we prove the first of Sundman’s theorems regarding total collapse, namely
that total collapse occurs in finite time. Or as Pollard says, “ I → 0 as t → ∞
is impossible” [[11], Page 66]. The proof proceeds by contradiction. Suppose that
I → 0 as t → ∞. By the definition of I , this implies that ‖rj − rk‖ → 0 as t → ∞
whenever 1 ≤ j < k ≤ N . Then the definition of U implies that U → ∞ as t → ∞.
Since I ′′ = GMU + 2GMh, we deduce that I ′′ → ∞ as t → ∞. Hence there exists
t1 ∈ R such that I ′′ ≥ 1 whenever t ≥ t1. If we twice integrate both sides of this
inequality we obtain

I ≥ 1

2
t2 + at+ b, a, b ∈ R, t ≥ t1. (8.2)

But Inequality (8.2) implies that I →∞ as t→∞, a contradiction of the assumption
that limt→∞I = 0.

We next prove the second of Sundman’s theorem, which says that if total collapse
occurs, then the angular momentum is zero. The proof of this theorem make use of the
following lemma.

Lemma 8.1 Let f ∈ C2[a, b] and assume that f(x) > 0 whenever x ∈ [a, b), that
f ′′(x) > 0 for x ∈ [a, b], and that f(b) = 0. Then f ′(x) ≤ 0 whenever x ∈ [a, b].

Proof: First observe that f ′(b) ≤ 0 since by assumption a ≤ x ≤ b−, f(x) ≥ 0,
f(b) = 0, and

f ′(b) = limx→b−
f(x)− f(b)

x− b
= limx→b−

f(x)

x− b
.

Since f ′′ > 0, we know g(x) :=
∫ b
x
f ′′(s) ds ≥ 0, or equivalently that −g(x) =

−
∫ b
x
f ′′(s) ds ≤ 0. But since f ′(b)− f ′(x) = g(x), we deduce that

f ′(x) = f ′(b)− g(x) = f ′(b)−
∫ b

x

f ′′(s) ds ≤ 0,

whenever x ∈ [a, b]. 2

Once again we follow Pollard [[11], pp. 65-67] and suppose that total collapse
occurs at time t1. Without loss of generality we may assume that t1 > 0. This implies
that limt→t1I = 0. Also, as discussed above, we deduce that limt→t1U = ∞ and that
limt→t1I

′′ =∞. Therefore there exists a finite positive closed interval [t2, t1] such that
I ′′(t) > 0 whenever t ∈ [t2, t1]. By definition, I ≥ 0 and in particular I(t) > 0 for
t ∈ [t2, t1) with I(t1) = 0. Thus we may apply Lemma 8.1 to deduce that −I ′(t) ≥ 0
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whenever t ∈ [t1, t2]. Now we take Inequality (8.1) and multiply it by the positive
quantity −I ′(t)I−1(t) to obtain

−c2

4
I ′ I−1 ≤ −I ′ I ′′ + I ′GMh, 0 < t2 ≤ t ≤ t1. (8.3)

Now integrate (8.3) to obtain

−c2

4

∫ t

t2

I ′(s) I−1(s) ds ≤
∫ t

t2

[−I ′(s) I ′′(s) + I ′(s)GMh] ds. (8.4)

Since

−c2

4

∫ t

t2

I ′(s) I−1(s) ds =
c2

4
ln I−1(t) +K1, K1 =

c2

4
ln I(t2),

and since∫ t

t2

[−I ′(s) I ′′(s) + I ′(s)GMh] ds = GMhI(t)−1

2
(I ′(t))2+K2, K2 = −GMh(I(t2))+

1

2
(I ′(t2))

2,

we may rewrite (8.4) as

c2

4
ln I−1(t) ≤ GMhI(t)− 1

2
(I ′(t))2 +K ≤ GMhI(t) +K, K = K2 −K1.

(8.5)
Inequality (8.5) is equivalent to

c2

4
≤ GMhI(t) +K

ln I−1(t)
, 0 < t2 ≤ t ≤ t1. (8.6)

Since the numerator of the right side of (8.6) is bounded (recall I(t) → 0 as t → t1),
we deduce that

0 ≥ limt→t1
c2

4
≤ limt→t1

GMhI(t) +K

ln I−1(t)
= 0.

Hence c = ‖c‖ = 0, which in turn implies that the angular momentum c = 0.
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