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Abstract

We point out an inconsistency in Newton’s equations of celestial mechanics. A set of
differential equations implied by Newton’s equations are shown to be free of this inconsistency.
We then investigate the integrals of motion associated with this relative difference system.
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1 Introduction

Over the course of the millennia of years, numerous astronomical observations and measure-
ments of celestial bodies were made by earthbound humans. The twentieth century ushered in
an era of human made objects orbiting earth or traveling in space. Observations and measure-
ments from earth or from other moving bodies viewed theoretically as point masses require
the utilization of coordinate systems in which the origin O coincides with the center of mass
of one of these point masses. Note that this choice of origin does not necessarily coincide
with the center of mass of the entire /V-body system. It goes without saying that these point
masses accelerate and decelerate during their travel. By fixing the origin O on the point mass,
Newton’s equations become an inconsistent system.

Newton’s equations of the N-body problem are important theoretical and computational
tools used throughout the study of celestial mechanics. As a case in point, Newton’s equations
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are the leading term in certain general relativity celestial mechanics equations proposed by
Einstein, Infeld, and Hoffman [2]. In special relativity, Newton’s equations may be viewed
as the leading term in celestial mechanics equations that undergo expansion in terms of the
parameter ¢!, where c is the speed of light. Compare e.g. with Feynman [[4], Chapter 3].

Surprisingly, an analysis of the Kepler problem for 2-body problem reveals a paradox in
the simplest setting of the N-body problem.

2 A Paradox For the Two-body Problem

Suppose that we have a fixed origin O in space from which we take measurements of the
position and the velocity of two point masses m; and mg. If the position vector of m; is given
by the 3 x 1 vector r1(t), (which for ease of exposition we denote as r1), and the position
vector of my is given by the 3 x 1 vector ry(t) or 7. Newton’s equations for acceleration
imply that

T/ll(t) _ Gmg(T‘Q — 1"1)’ T‘/Q/(t) _ Gml(T1 — 7‘2)

where G is the gravitational constant and ||7(¢)| = v7Tr. Note that ™ is a 1 x 3 vector. Now,
as in the case of a central force problem, we set in the equations of (2.1)

—
=0,

; 2.1

|ro — 13 r1 — 723

r(t) =0 = 7 (t) = " (t) 2.2)

where ﬁ = [0,0, O]T. The assumption of (2.2) is equivalent to placing m, on O, or in other
words taking all measurements from m;. See Figure 1. The second equation of (2.1) then

mPx L0 m?® I
0 -t -
—
- - -

origin not on point mass origin on point mass

Figure 1: Change of Origin
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ed

Equation (2.3) is the Kepler problem and is known to have conic section r2(6) = 1 Tecosp Asa

solution. But what happens to the first equation of (2.1)? It becomes

- Gm2r2

= . (2.4)

72|
The only possible solution to (2.4) is H:ﬁ = ﬁ, which in turn implies ||r2|| = co. To obtain
a meaning for the solution ”:ﬁ = 0, we proceed with the following heuristic description

which is justified rigorously via compactification; see Y. I. Gingold and H. Gingold and/or H.
Gingold, and D. Solomon [5, 6]. Supplement R3 by an ideal set

ID := {ocU}, where U € R and ||U|| = 1, (2.5)

and create
UER? := {R*} U ID. (2.6)

Then coU may be considered a constant solution “at infinity” (critical point or equilibrium
point) of (2.4), where ||ocoU|| = oo. This way we can add elements like coU as legitimate
constant solutions to the equations of celestial mechanics. This is consistent with setting ro =
ooU in (2.4) since

GmQHOOU” - Gm2 Gm2

U~ ool ~ o0 "

Thus, if we supplement R? with a collection of ideal * points at infinity”, which we denote
as ool (U any arbitrary unit vector in R?), and if we assume (2.3) and (2.4) form an initial
value problem with finite initial conditions ry(tg) # r2(to), 7}(to), 75(to), the simultaneous
solution of (2.3) and (2.4) leads to the conclusion that r9(¢) is both a conic section and a
constant vector coUU. Hence, for the aforementioned initial value problem, the system of (2.3)
and (2.4) is an overdetermined system with no consistent solution.

Geometrically, there is a one-to-one mapping between U ER? and a closed subset that is
a “bowl” on the unit sphere S* [5, 7]. Alternatively, there is a one-to-one mapping between
UER3 and a “parabolic bowl” in R* [3, 6]. For either one of these two compactified geo-
metric realizations of U ER3, given P, P, €¢ U ER3, we determine d(Py, P,) via the chordal
distance. By construction, since S* and the “parabolic bowl” are compact in R%, d(Py, P,) is
always finite. And indeed the chordal metric in both instances makes U ER? into a complete
metric space [3, 5, 6, 7].

So how can one avoid this quandary? One possible way is to define the origin independent

relative system

G —
(r—r2)" = — (ml‘;f?z«iﬂg ), .7)

- . . . .
Then when r; = 0, i.e. when m; corresponds with origin O, Equation (2.7) becomes

G(mq +mo)r
() = Gt ma)rs ﬁrzng 22 2.8)
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a modified Kepler problem. Observe that if m1m., 1is very small, as is the case with the Earth
as compared to the sun, Equation (2.8) is a very good approximation to (2.3).

3 A Paradox For the Three-body Problem

Now assume from a fixed origin O we record the position of three point masses, m, ma, and
ms as the 3 x 1 vectors r1(t), r2(t), and r3(t) respectively. Then Newton’s law of planetary
motion leads to the following system of three nonlinear second order differential equations.

_ Gmga(ra —r1) | Gmg(rz —r1)

"t 3.1

n) = T P Irs — 1P G-
Gmi(ry —r2)  Gmg(rs —re)

") = 3.2

o A [ 2
Gmi(ry —rs)  Gma(re —r3)

"(t) = 33

U P R G-

Once again, let us see what happens to the above_;/stem when m; corresponds to O, i.e. when
" —

= 0. Since r; = 0 implies that } = r/ = 0, Equations (3.1) through (3.3) respectively

become
— GmQT‘Q Gm37‘3
_ 3.4)
[r2]l? [rs]|®
Gmiry  Gma3(rs —r3)
ri(t) = — (3.5)
20 =" ¥ s —ralP
Gmirs  Gma(re —13)
() = — (3.6)
AL T R e E
Equation (3.4) implies that
3
mgrz _ _m37’3§ )= _m3||'r2||3 (3‘7)
72l 73l ma||7s||

If we take the norm of (3.7) we find that

ms||ra||?
[rall = mallr Hg” r3|| <= ||rol| 7> *HT?)H = el = H?“sH (3.8)

By substituting (3.8) into (3.7) we obtain the relation

Py = — |2y (3.9)
ms
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We now place (3.7) and (3.9) into (3.5) to obtain
\/WTQ rl Gmimz 3 . G (T3 + %m)
2l = : )

ms3 ma 73| H <r3 4 %73) H

1
=Gms @-i- "3

m (1 fm) | TP

:Gmg[ (r—kr) +m2m3} r3
ma (vms + /m2)? |33

The above calculations show that

3
G <m3>2 |:m1(\/ 3+ /M ) +m2m3:| r3 (3.10)
’ ma (vms + /m2)? [[r3|?
However, if we substitute (3.9) into (3.6) we obtain
7”” o Gm11“3 Gm2 (1 + \/ %) T3
3T 3 3 3
T3 m r3
I3l (1 + /m%) 3]l
mo T3
=-G |m + 5 3
(15 /z) |
e [ml(\/ 5+ /m2)” + m2m3] T3 3.11)
(vms + /m2)? I3l

Since (3.10) must equal (3.11) we have the relation

(Zi> e e - (M e e e

In order for (3.12) to be valid, either one of two possibilities occurs. First I H3 =

0 which implies that 73 = ooU, a contradiction to the assumption of finite initial
conditions, or

3
2
(%) =1 <= m3 =ms. (3.13)
mo

ec Thus if the system in question does not satisfy (3.13), Newton’s equations (3.1)
through (3.3) lead to a paradox if m; is taken to be the origin O. However if the
system in question does satisfy (3.13) we can substitute (3.13) into (3.9) and (3.8) to
obtain

ro(t) = —r3(t) and 2] = |lrs()]|l- (3.14)
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Then the system of three equations given by Equations (3.4) through (3.6) reduces to

s " ms

rn=0  and 7’2:—7*:’3’:G[m1+?] "3

I3

B (3.15)
and the second equation of (3.15) is a modified Kepler equation which has a conic

section curve as a solution. Furthermore, if 7; = 0 and 73 and r3 satisfy (3.14) we
see that the center of mass of the three bodies

miry -+ MaTe + M3rs 6}
= =T1.
mi + Mo + M3

In summary, the above discussion shows that we can not freely choose the origin O
to be centered on a point mass m;, since unless the other point masses obey “antipodal”
symmetry conditions, the choice of 1 = 0 in the system of Newton’s equations given
by (3.1) through (3.3), leads to the paradoxical conclusion of my and mgs escaping to
“infinity”. In order to do so in a manner that avoids contradiction, we propose to use
an origin invariant model of relative differences, namely

G(m1 + m2)<7“1 — 7”2) _ Gmg(Tl — 7”3) GM3<T2 — 7”3)

ri—1r9) = — (3.16)

=) e = ra]P s = rolP
(r1 — 1) = ~ Gmy(r — 7;2) ~ Glmi + m3)(’f‘13— r3)  Gmy(ry — 7;3) (3.17)

|1 — 7| |1 — 73| 7o — 73|
If we putr; = ﬁ into (3.16) and (3.17),we obtain the consistent system
T‘/2/ _ _G('rm + Zlg)?”g _ Gm3§3 _ Gmg(r2 — 23) (318)
[[72]] 73] [re — 73|

on _ Gmgrg G(m1 —|— m3>7"3 . Gm2(7“2 — 7"3) (319)

|7“2||3 ||7’1 —7”3||3 ||7“2—7”3||3

If ms and mg are small compared to my, Equations (3.18) and (3.19) are perturbations
of (3.5) and (3.6). Also since the system of equations given by (3.18) and (3.19) does
not have an analog of Equation (3.4), it is not overdetermined.

4 Well Posed Origin Anywhere Consistent System

As the examples of the previous two section demonstrate, it is desirable to have a sys-
tem of differential equations for the N-body problem that has the following properties:

a. The system of differential equations is consistent with any coordinates system
whose origin is any point in space.
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b. Any singularities free initial value problem has a unique solution with a continu-
ous second derivative on some interval containing the initial point.

We propose to call such systems of differential equations well posed origin any-
where consistent. For the theory of ordinary differential equations see e.g. [1, 9, 10,
12].

Any Newtonian N-body problem has at least two inconsistencies built in it. Recall

that the original Newton system of /V nonlinear second order differential equations is
given by

1<j<N. (4.1)

Fix the origin of coordlnate system at the point mass m;, where j # N. Substitute

ri(t) = ri(t) = ri(t) = T into each of the N equations associated with (4.1). Then

for any legitimate initial conditions, the jth differential equation becomes

[Irs(to) >’

GZ m;ri(to) ri(to) # ri(to) # 0 whenever i + k. 4.2)
1?5]

On the other hand the initial values chosen with ry (to) # 6> can be made contradic-
tory to (4.2) by the additional choice

m;ri(te)  —2mpyry(to)
G = , 4.3)
Z [ri (o) |7 (to) [I?
1#]

since (4.3) when substituted in (4.2) implies that

Z m;T; t() mN’f‘N(to) _ _mNTN(t()) 7& —
(o) ||3 [ (o) I [ (o) I
1#3

Thus we get a contradiction to the desired well posedness.

Another contradiction in Newton’s /N-body problem is obtained as follows. Recall
that the origin is centered on the point mass m;, where 7 # N. Choose initial values
in (4.1) as r;(ty) = 6,U, where §; > 0 and U is a constant unit vector. Then (4.2)
becomes

. H?“z to ||3 ||7” to H?’ Hn to H3
z#] l#] 17&]
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Since by construction Zz 1 ( to)” <= > (), we obtain a contradiction.
i#]

We now generalize the origin invariant model of the relative differences to /V point
masses m;, where 1 <7 < N. When doing so we obtain a system of N — 1 nonlinear
second order differential equations which is well posed origin consistent anywhere.
Let O be any origin, and 7;(t) be the position of m;. The origin invariant model of
relative differences consists of NV — 1 nonlinear second order differential equations of
the form

m; 7"
GZ T Z
i ||7“z—7“1||3 ||7‘ —Tk||3
z;:ék

||7“1 — 71— (1 —Tz)||37

m[ry — e — (ry — ;)]
— < k< .
GE:W—wﬂ3 G§ 2<k<N, (44)
7,75k

where the dependent variables of (4.4) are (A := 71(t) — r4(t))i_,. Contrast (4.4)
with the original Newton system of /N nonlinear second order differential equations
(4.1). Unlike Newton’s system (4.1) which is only invariant under inertial translations
c(t) (recall that this means that ¢”’(t) = 0), the relative difference system (4.4) is
invariant under any arbitrary translation ¢(¢). This is because

i =1, = (r1+ct)” — (ri + ()"

B Gm;( rz+c (1) (rl—l—c ) Gm;( n+c — (re +¢()))
Z Irs + e(t) = (r+ c(@)I° Z Iri(t) (Tk +e()IP

-G ~G . 2<Kk<N. (45
Z ||r —n||3 Z Hr —m||3 ()
z#k

Furthermore, any solution to an initial value problem of (4.4) is also invariant under
arbitrary translations c(t).

The last sentence leads us to consider how a solution to an initial value problem
of Newton’s system (4.1) is related to an initial value problem of the relative differ-
ence system (4.4). Clearly any solution to an initial value problem of (4.1), where
(rj(t0))1<j<n With 75(to) # ri(to) for j # k and (75(t0))1<j<n denote the 2V initial
values, is a solution to the initial value problem of (4.4) with 2( N —1) initial conditions
(rux(to) := r1(to) — r&(to))2<k<n and (r{;(to) == ri(to) — i, (to))2<k<n-

On the other hand, if we start with the relative system and initial conditions
(rk(to))1<k<n and (7.(to))1<<k<n associated with Newton’s system (4.1), we can
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form the initial conditions (71x(%y))2<k<ny and (7, (to))2<k<n and obtain an initial
value problem associated with the relative difference system (4.4). Because (4.4) is
independent of origin, we may solve the aforementioned initial value problem for
r1 = 0 and find solutions for (Tj)j-v:Q relative to the origin at m; since the N — 1
equations of (4.4) become

P Tl e =l —TkIIS ’

m,r; Gmr m;(r; —
GZ Lk GZ 2<k<N  (46)
7,;&1@

Then to find the position of m, relative to my, take the _a>bove initial value problem
of (4.4) and using the independence of origin, set 7y = 0 in the N — 1 equations of

(4.4) to obtain
Gmpyry m;(r; — Tg) GmNTk
(r1 Sy ) -G (4.7
Z H?‘ —7“1H3 [[r4][3 Z Hn—mH?’ [ER I
wék:
and
—ry)  Gmpyr N s
=G — -G L (4.8)
Z II?" —7"1H3 [[r4[3 ; il

We then solve the system of differential equations given by (4.7) and (4.8) to determine
the positions of m; through my_; relative to my. Thus (4.6) and (4.8), when used in
succession, show how a solution of (4.4) is also a solution of (4.1).

The discussion in the preceding paragraphs demonstrate a principle of indetermi-
nation which states that unless we identify the origin O with a point mass m,;, we
cannot determine the position, velocity, and acceleration of my, where k # j.

Another system, closely related to (4.4) and invariant under arbitrary translations
c(t), is

mu;\ T
=G AN — 1<i<k<N 49
7y Zun—mP Z||r—mu3’ SJ<k=N, @9
i#£7 i#k

where the dependent variables are (A, := 7;(t) — 74(t))1<j<k<n. System (4.9) con-
sists of (];/ ) equations and is generated by the the N — 1 equations (r; —7,)",2 < p <
N since

(rj —ry)" = (r1—mp)" — (r1 —r;)"  whenever j # 1. (4.10)

Because the right side of the equations of (4.1) involves differences of the form r; —r;,
where i # j, System (4.9) could be technically preferable to (4.4) since the solutions
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to (4.9) will directly calculate these differences without involving the subtractive step
of (4.10). Furthermore, given initial conditions (r(¢y))1<k<n and (r}(to))1<<r<n Of
(4.1), we form the initial conditions (rjx(to) := 7;(to) —7%(t0) )1<j<r<n and (1 (to) :=
7%(to) =7}, (t0))1<j<k<n and obtain an initial value problem associated with (4.9). Since
(4.9) 1s independent of origin, we can use the principle of indetermination, exactly as
we did for System (4.4), and determine the position, velocity, and acceleration of each
individual point mass m;, where 1 < 5 < .

Because of this correspondence between solutions of (4.1), (4.4), and (4.9), and
the fact that both (4.4) and (4.9) have the advantage of being origin independent, we
propose utilizing both (4.4) and (4.9) as independent systems to model the N-body
problem.

In the next four sections we analyze the integrals of motion associated with (4.9)
and obtain conservation of energy and conservation of angular momentum results anal-
ogous to those of the System (4.1).

5 Conservation of Energy

Newton’s laws of motion for the N-body problem result in a system of (];7 ) nonlinear
second order differential equations of the form

m, r; —
(r) GZ -G Z
||7“z—7“3||3 ||7“ —Tk||3
175] 'L#k

:—G(mj+mk)(rj—rk)+G2N:m‘[ T T T
L

i=1
1#7,k

where we assume 1 < j < k < V.

Take each equation in (5.1) and multiply both sides by m;my[(r; — ri)'|”. The
resulting left side is

mymy d[[(r; — 1)1 (r; = 12)’]

mymil(ry = )17y = ) =

2 dt

mymy dl|(r; = ri)|I”
= 52
5 7 ; (5.2)

10
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while the resulting right side is 7' (j, k) + 1»(j, k), where

—Gmymy(m; +my)[(r; — i)' (r; — 78)

Ti(j, k) = (5.3)
l[r; — &l
N
To(j, k) :== Gm;my[(r; — )" mz{ LT T } (5.4)
2(] ) J k[( J k)] ; Hri_TjH?’ ”ri_rkng
i#7,k
Observe that
) ri—1
Ty(j, k) = =Gmymu(m; + ma)[(rj — )| —2——
75 — il
1
= ijmk(mj + mk)[(Tj — Tk;>/]T {V(Tj_rk)m:|
J
d m;my
=G(m; + my)————— (5.5)
) G g — el
Then use (5.2) and (5.5) to sum together
mamg d||[(r; — r)'||?
S mml )y =y el o n
1<j<k<N 1<j<k<N
1<j<k<N 1<j<k<N
d m:m .
=G 3 mrm) G S DGR,
1<j<k<N kI <j<ken
(5.6)
where
T G al Ty — ’f’j s — Tk
1<j<k<N 1<j<k<N Z;j}k ¢ J '
5.7

The goal is to show that

N
Yo nGh= Y (M-m—- ) L M= my. (5.8)

1< . dtH’l" —’I’kH —
<j<k<N 1<j<k<N k=1

In order to prove (5.8), temporarily fix an index pair (j, %) and recall that we are
summing the () ) equations m¢m,[(r¢—1,)']% (r¢—1,)", where 1 < ¢ < p < N. Look

11

d0i:10.20944/preprints202210.0277.v1
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at the sum of the (}) — 1 equations arising from (r, — r,)”, where 1 </ < p < N

and (7, k) # (¢,p), and add together the terms which have a factor of ”7;]_—;’“”3 This

process is equivalent to interchanging the order of summation on the right side of (5.7).

Observe that in order to obtain ”:_j__r’;c’“” 5 either ¢ = j, k or p = 7, k. The number of such
J

ordered pairs (¢, p) # (j, k) for which either ¢ = j, k orp = j, k is

where (N o 2) is the number of ordered pairs containing neither j or k. These 2N — 4

ordered pairs will be paired up with opposite signs as will shortly discover. To explain
how the pairing occurs we analyze four mutually exclusive cases.

Case 1: ¢/ = j and p # k, j. Note this implies that p > j. Then

—G(my +my)(rj — 1) |~ il =) = Ml — 1)
(Té_rp)” _ (Tj-?“p)” — J P/\"J +G -G .
s =7l ; i =751 ; Iri = 7
i#j,p i#£5,p
5.9
Since p # j, k, only i = k in second summand on the right side of (5.9) gives rise to

rj — T, in which case we obtain

Gmy(rg, — ;) _ —Gmy(rj — i)

3 3
71— 74l |75 — 7l

We then left multiply the above vector by mm,[r; —}]" to obtain a summand of the
form
—ijmkmp[r; — T;]T(Tj — k)

I = rill?

(5.10)

Case 2: ¢/ = k and p # j, k. This implies that p > k. Then

N N
-G - i(ri — i(ri —
(re=ry)" = (rp—rp)" = (my +myp) (ry — rp) e Z m;(r r;;) c Z mi(r; — 7p)
i=1 HTZ - Tk‘” i=1 ”Tl - rp”
i#k,p i#k,p

6.11)
Since p # j, k, only ¢ = j in second summand on the right side of (5.11) gives rise to
rj — T}, in which case we obtain

3
[l = 7ll

Gm(r; —ry)

.
|75 — 7l

12
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We then left multiply the above vector by mym,,[rj, — 7}]" to obtain a summand of the
form

Gmjmpmy[r), — r;]T(Tj — )

: (5.12)
|75 — 7l

Case 3: ¢ # k,j and p = j. This implies ¢ < j. Then

N N
—G(my + mj)(gg - TJ)+G Z m;(r; — rg) c Z mg(r; — 7“]3)‘
e = 4 = lri = el = lri =4
i, i,
(5.13)
Since ¢ # j, k, only ¢ = k in the third summand on the right side of (5.13) gives rise
to r; — 1y, in which case we obtain

(re—rp)" = (re—rj)" =

Gmy(r; —ry)

T
75 = 7l
We then left multiply the above vector by mgm;[ry — 74]" to obtain

Gmjmemy[r), — r;]T(rj — )

- (5.14)
7 — 7l

Case 4: { # k, j and p = k. This implies ¢ < k. Then

N N
(Te—rp)” _ (W—Tk)// _ —G(mg +my)(re — T1) +G Z w_(} Z M
s — 7l
(5.15)
Since ¢ # j, k, only i = j in the third summand on the right side of (5.13) gives rise

to r; — 1, in which case we obtain

3
i=1 HTZ - TZH i=1
ik ik

3
[l7e = 4

—Gm;(rj — &)

3
75 = 7l
We then left multiply the above vector by mmy[r, — 7] to obtain

—Gmmemy[ry, — ) (r; — i)

: (5.16)
Iry = 7l

In all four cases, as evidenced by (5.10), (5.12), (5.14), and (5.16), there is a factor

of the form m;m;m,. We want to pairwise combine via the value of a. The above
four cases imply that o # j, k. However, « is free to be any other value from the set

13
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{1,..., N}. This leads to following considerations: o < 7, j < a < k, and o > k.

Suppose a > k. This occurs for all of the p in Case 2 and those p in Case 1 for which

p > k. Since the trace is linear, we can pairwise add (5.10) and (5.12) to obtain
—Gmymymy[r — rl’,]T(rj —rg)  Gmymgpmy|ry, — r;,]T(rj — 1)

3
75 — 7l

3
75 — 7l
—ijmkmp[r} - TZ]T(TJ — T
= 3
75 — 7l

d mjmy

& T > k. 5.17
ailr -l 7 C-17)

Next consider o < j. This occurs for all of the ¢ in Case 3 and those ¢ in Case 4
for which ¢ < j. We pairwise add (5.14) and (5.16) to obtain

Gmymgmy[ry — T;]T<7“j —Tk)

3
|75 — 7l

= Gm,,

—Gmymemy[ry, — )" (r; — i)
3
[ — 7]
—Gmgmpmylry — 1] (r; — 1)
3
[r; = 7l
—Gmymymy[r; — )T (ry — 1)
3
[y — 7]

d mjmy

—_— < 1. 5.18
il - P ©-18)

, renamed ¢ as p
=Gm,—

Finally we have to consider when j < o < k. This occurs in the remaining p and

¢ of Cases 1 and 4 not covered by (5.17) and (5.18) respectively. We can pairwise add
(5.10) to (5.16) to obtain

—Gmgmymy v — " (rj — 1) —Gmymemy[ry, — ri]T (r; — 1)

3

[ — 7l
—Gmimymy, [7‘; — )T (r; — 1)

3

Ir; — 7l

—ijmkmp[r;- — 7 )T (r; — 1)

3
[ — 7l
—ijmkmp[r} — r;,]T(rj — k)

- , renamed ¢ to p
75 = 7l

Ir; — ril®

d mm )

EWfE%W j<p<k. (5.19)
J

If we add (5.17) through (5.19) together we get

=Gmy,

d m;my
G _ TR
Z Yty —rill”

z;ﬁ] k
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The above term is true for an arbitrary yet fixed (7, k), where 1 < 7 < k < N. By
summing over 1 < 7 < k < NN, we obtain (5.8) as desired.

By combining (5.6) with (5.8) we obtain
d 9 d mjmy
My — || (75 =GM —J =
Z m]mkdtH(r] H Z dt “7”] _ Tk”
1<j<k<N 1<j<k<N

We then integrate the above results to obtain the conservation of energy formula

N
T =GM[U + h], h constant, M = Zmi (5.20)
m;my 1
U:= Z m and T := 3 Z mymy|(r; — )|
1<j<k<N W7 Tk 1<j<k<N

6 Inertia and the Lagrange-Jacobi Formula

We will use (5.20) to simplify the second derivative of inertia /, where

> mgmy |y =il 6.1)
1<j<k<N
We claim that
I"=2GM[U + h] — GMU, (6.2)

a result known as the Lagrange-Jacobi formula. To prove (6.2) first observe that

Z mymylr; — )’ (r; — 1) (6.3)
1<j<k<N
Then
> mymi(ry =) =)+ D mymilry — " (ry = )"
1<j<k<N 1<j<k<N
=2GM[U + h] + Z mymy[r; — i) (r; — )", by (5.20)
1<j<k<N
— 2GMU + ]

+ @G Z mjmk[rj _ Tk]T _(mj + mk)(rjé— Tk) i Z mi(ri — T‘j) _ Z mi(ri — Tk)

— ||’

s = 511°

1<j<k<N Iy — 7l
i,k i,k

15
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where the final sum made use of (5.1). It remains to simplify the expression in the large
square bracket. To do so, we will temporarily fix (7, k), vary (¢,p) # (j, k) (Where
1 < /¢ < p < N), collect and add together all the terms that have a factor of —2—~

lrj=ricll®*
In other words, we must look at a typical summand in 3, ;v [rj — 74]" (r; —74)"
with index (¢, p), namely

Gmym,(mg + my,)

|7e — Tp”

mi(r; — mi(r; —
Si=2 o T

HH—TH HH—TM
7,?5[ P 17% P

+Gmymy[re— Tp]T [S1+Ss], (6.4)

mymy[re— Tp]T(W - Tp)” = -

where

This calculation utilizes the four case argument.

Case 1: / = j and p # j, k. Note that p > j. Seti = k in S to obtain

~ Gmyymgmy[r; —rp)" (rj —11)

3 (6.5)
75 = 7
Case 2: ¢/ = k and p # j, k. Note that p > k. Set i = j in S} to obtain
ijmkmp[rk — TP]T(Tj — rk’) ) (6.6)

3
75 — 7l

We can add each term of Case 2 to a corresponding term of Case whenever p > k

to obtain
Ti—T Gmympmy|r; — )T (r; —r
_ijmkmp [r;.(’_rg_(g_ T)} J kgz_ J'k p[] k]g(a k)
75 = 7l 75 = 7|
_ _ijmkmp’ bk
75 =7
(6.7)
The remaining terms of Case 1 satisfy j < p < k.
Case 3: ( # j, k,and p = j. Note that £ < j. Seti = k in S to obtain
Gmemjmy[ry — rjl(rj —Tg) 6.8)
75 = 7l
Case 4: { # j,k and p = k. Note that ¢ < k. Seti = j in S, to obtain
—Gmymimy|ry — i) (r; — rk)‘ 6.9)

3
75 = 7]

16
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We add each term of Case 3 to a corresponding term of Case 4 with ¢ < j to obtain

ri—T Gmymgpmylr; — re] T (r; —r
—Gm;mymy [_(7’? - r;f) +(rf — 7"1:5)} ’ - 3= = el k]3 ; x)
75 = 7l 75 = 7l
Gm.
_ Tk (<
75 = 7l
ey
= _—mjmkmp’ p<J
75 = 7l
(6.10)

where in the last equality we renamed ¢ as p. The remaining terms of Case 4 (where ¢
is renamed as p) satisfy j < p < k and can be added to the corresponding remaining
terms of Case 1 to obtain

T T T T Ty =Tk ijmkmp[rj - Tk]TO"j — T}
b j
G
= T o <
[r; — il

6.11)

The results of (6.7), (6.10), and (6.11) imply that

> il =) =) > mgmlry — ] (= )"

1<j<k<N 1<j<k<N

mimy.(my; + my)[r; — re] T (r; — x)

=2GM[U+h -G Y

1<j<k<N ||7“j - rk”

mymemglry — ri]t (ri — mymemg|ry — ri)? (ri — )
+GZZJ |TJ GZZ]VJ

1<]<k<N 1 1 i Ty || 1<j<k<N i=1 % _TkH

=2GM[U +h] -G 2: mymi(m; + ) e E: }: g

1<j<k<N lrj =7l 1<j<ksN =t [rj — il
= 2GM[U +h] - GM Y mﬂm’“ — 2GM[U + h] — GMT,
1<]<k<N i =il

which is precisely (6.2).
By using the definitions of 7" and U provided by (5.20), we may rewrite (6.2) as

I" = 2GM[U +h) — GMU = GMU +2GMh = 2T — GMU = T+ GMh. (6.12)
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7 Conservation of Angular Momentum

Next we prove the following identity which shows that the sum of the angular momen-
tum is constant, namely that

Z mymg| (r; —ri) X (r; — 1) | = ¢, ¢ constant vector. (7.1)
1<j<k<N

In particular, by using the same four case pairing argument as previously discussed,
we will prove
Z mymgl (r; —ri) x (r; —rg)"] = 0. (7.2)
1<j<k<N
Since

d o "
gl (g = 1) X (rj =) ] = myma (ry — ) > (ry = )",

by integrating both sides of (7.2) we obtain (7.1) as desired.

To prove (7.2), we will regroup the terms in the sum via common denominators
of the form ||r; — r¢||>. For an arbitrary yet fixed pair (j, k) with 1 < j < k < N,

we look for terms in (7.2) of the form . S‘TJ P and calculate their sum. In order to
1Tk

efficiently find these terms, we vary (¢,p) with 1 < ¢ < p < N, look at mgm,,(r, —
1p) X (r¢ — 7,)" on the right side of (7.2), expand (1, — 7,)"” via Newton’s equations
and show that the sum of all terms of the form

Y(re —1p) X (15 — 7%)
3
|75 — 7l

, ~ constant. (7.3)

is indeed zero. By then varying (7, k) over the range of 1 < j < k < N, we will have
accounted for all the terms in 3, _, .y mymi[ (rj — 1) X (r; —rg)" ] and will have
proven (7.2).

First let (¢, p) = (j, k), go back to (5.1) and observe that

(rj —7m3) X (rj —m)" = —G(my +mi)(rj — i) X (1 —13)

75 = r&l?

N

e . [(rj—rk)x (ri —m) (rj—rk)x(ri—rk)]
(]

i#7,k

N
oS m {(Ty—rk)x(ﬁ—rj)_(Ta—rk)x(m—rk)}
- 1

i=1 ||TZ _r]||3 ||T’L _T’i‘||3

i#],k
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None of the above terms of (r; — i) X (r; — ri)” have denominator ||r; — rx||*. To
figure out how the other () — 1 terms mym,,(r; — 7,) % (ry — 7,,) contribute terms of
the form (7.3), we use a familiar case/parity argument.

Case 1: ¢/ = j and p # j, k. Note that p > j. Observe that

EN:m‘(r’_r)X(T'—T') X ma(ry — ) X (i — 1)
m;my,(rj—r,) X (r;—r,)" = Gmym, J Hr-p— 7“-”32 i) _ i\T5 —Tp i —Tp
— y a
# ’ %

The only way to obtain a term of type (7.3) is to set ¢ = k in the first summand, in
which case we get the following contribution

_ Gmymymy(r; —1p) X (1 — 18)

3 P> (7.5)
75 = 7l

Case 2: ¢ = k and p # j, k. Note that p > k. Then

Nm‘(r —7p) X (1; — 1) Nm‘(r — 1)) X (r; — 1)
memy(re—rp) X (re—rp)" = Gmgm,, E i\"k ||7=Ap_ TkHSZ k) Tk —7Tp i —Tp
— : a
Z;Ilc Z;;

The only way to obtain a term of type (7.3) is to set ¢ = j in the first summand in
which case we get

Gmjmpmy,(ry — rp) X (rj —1%)

3 , p > k. (7.6)

75 = 7l
Note that if p > k, we can pair up each term of Case 2 with a corresponding term of
Case 1, use the bilinearity of the cross product, and get a contribution of zero as seen
by the following calculation.

Gm,; Gm.
e g =) X (g = ) - () (7 = i)
75 = 7l I75 = 7l
—Gm,;mpm
= W [(rj —rp = (1 — 1)) X (rj — )]
J
—Gmmpm
= W [(rj =) X (rj — i) = 0.
J

The remaining contributions from Case 1 are the £k — 7 — 1 terms for which j + 1 <
p < k — 1, namely

~ Gmymymy,(ry — 1) X (rj —18)

. jH1<p<k-1 (7.7)
lry = ll®
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Case 3: ¢ # j, k and p = j. Note that / < j. Note that

mi(re — i) X (ri —74) al my(re —ri) X (r; —rj)
mem;(ro—r;) X (re—r;)" = Gmgm; | Y — Kllr-]_reH?’Z o T —
i=1 4

i#l i#]

The only way to obtain a term of type (7.3) is to set ¢ = k in the second sum, in which
case (after renaming /¢ as p) we get the following contribution.

Gmgmgmy(r, — 1) X (1; — 1)

: . p<i 7.8)
|75 — 7l

Case 4: ( # j, k and p = k. Note that ¢ < k. Note that

1" mi(ré_rk) X (7"1‘—7%) al mi<T€_rk) X (Ti_rk)
Mgmk(Tg—Tk)X(Tg—T’k) = Gmgmk Z || ) 3 — 3

p ri — 7| — [[ri = 7]

i#l i#k

The only way to obtain a term of type (7.3) is to set ¢ = j in the second sum, in which
case (after renaming ¢ as p) we get the following contribution.

_ijmkmp(rp — 1) X (r; — 1))

5 . p<k (7.9)
|75 — 7l

Notice that each term of Case 3 can be added to a corresponding term of Case 4 in
which p < j. Then by using the bilinearity of the cross product, we see from the
calculation below the result of this addition is zero.

Gmymymy, Gmym;my,
T (0 = 73) % (0 = 1) = R (= ) X (3 = )
! j
—Gmym,;my,
- W [(_(TP - Tj) +7p — Tk) X (7“]' — ’l“k)]
j
—Gm,m;my,
= () X (=] = 0.
j

The remaining contributions from Case 4 are the are the £ — 7 — 1 terms for which
J+1<p<Ek—1,namely

_ Gmymymy(rp — i) X (rj — 1)

- . jtl<p<k—1. (110
|75 — 7l
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Then it is a matter of adding together the corresponding terms of (7.7) and (7.10) and
show they the resulting sum is zero. In particular, for j + 1 < p < k — 1, we find that

Gmjmm,, Gm;mgm,
_17“;'——7“l||3<rj — ) x =) = _Hrj_—rlHB(rP — 1) X (rj = 7%)
—Gmimpm
- s 1)1y 1 )
J
—ijmkmp
R [(rj = &) X (rj —73)] = 0.
j

8 Sundman’s Inequality and Total Collapse

Let us obtain Sundman’s two theorems regarding total collapse for our system of dif-
ferences. Following the exposition of Pollard [[11], Page 64], we must first obtain
Sundman’s inequality by estimating the norm of the angular momentum. Start with
(7.1) and apply the triangle inequality to obtain

lell :=c < > mymyl|(ry — i) x (r; — )|

1<j<k<N
= >l =)l g = ),
1<j<k<N
since ||(r; — i) x (rj — i)' || = ||(r; — )| ||(7; — 7%)’|| sin @ where 6 is the angle

between ||(r; — 7¢)|| and ||(r; — 7)’[|. Let
rig = lry =l vpee= =)l 1<i<k<N
The above becomes
c< Y mymgrgv = Y (Ve (Vg mgog).
1<j<k<N 1<j<k<N

If we take the preceding inequality, square it, and apply the Cauchy-Schwarz inequal-
ity, we find that

2 < Z (\/mjmkrjk)(\/mjmkvjw]

L1<j<k<N

< Z mjmkr?k] [ Z mjmkv?k] , Cauchy-Schwarz inequality
L1<j<k<N 1<j<k<N

=21 -2T =4IT =4I[I" — GMHA], (8.1)
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where the last equality follows from (6.12). Inequality (8.1) is known as Sundman’s
inequality.

Next we prove the first of Sundman’s theorems regarding total collapse, namely
that total collapse occurs in finite time. Or as Pollard says, “ I — 0 ast — oo
is impossible” [[11], Page 66]. The proof proceeds by contradiction. Suppose that
I — 0 ast — oo. By the definition of /, this implies that ||r; — 74| — 0 ast — oo
whenever 1 < j < k < N. Then the definition of U implies that U — co as t — oo.
Since " = GMU + 2GMh, we deduce that [” — oo as t — oco. Hence there exists
t;1 € R such that I” > 1 whenever ¢ > t;. If we twice integrate both sides of this
inequality we obtain

1
[2§t2+at+b, a,beR, t>t. (8.2)
But Inequality (8.2) implies that [ — oo as ¢ — oo, a contradiction of the assumption

that lim; ./ = 0.

We next prove the second of Sundman’s theorem, which says that if total collapse
occurs, then the angular momentum is zero. The proof of this theorem make use of the
following lemma.

Lemma 8.1 Let f € C?[a,b] and assume that f(x) > 0 whenever x € [a,b), that
f"(x) > 0 forx € [a,b], and that f(b) = 0. Then f'(x) < 0 whenever z € |a, b).

Proof: First observe that f'(b) < 0 since by assumption a < = < b7, f(z) > 0,
f(b) =0, and

@ = f0) o fla)
x—0 x—0b

Since f” > 0, we know g(z) := ff f"(s)ds > 0, or equivalently that —g(x) =
— f; f"(s)ds < 0. Butsince f'(b) — f'(x) = g(x), we deduce that

.f/(b) = hmx—>b*

b
f(@) = £'6) — gla) = £/(b) - / F"(s)ds <0,

whenever x € [a, b]. O

Once again we follow Pollard [[11], pp. 65-67] and suppose that total collapse
occurs at time ¢;. Without loss of generality we may assume that ¢; > 0. This implies
that lim,_,,, I = 0. Also, as discussed above, we deduce that lim;_,;, U = oo and that
lim;_,4, I” = oo. Therefore there exists a finite positive closed interval [¢5, t1] such that
I"(t) > 0 whenever t € [ty,t1]. By definition, I > 0 and in particular /(¢) > 0 for
t € [tg,t1) with I(¢1) = 0. Thus we may apply Lemma 8.1 to deduce that —I'(¢) > 0
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whenever ¢t € [t,t5]. Now we take Inequality (8.1) and multiply it by the positive
quantity —I'(¢)I~!(t) to obtain

2
—CZ]’ V< I I" 4 'GMh, 0 <ty <t<t. (8.3)

Now integrate (8.3) to obtain

2 t t
- / I'(s) I (s) ds < / —I(s) I"(s) + T'(s)GMB] ds.  (84)
to to
Since
C2 t C2 C2
——/ I'(s)I™*(s)ds = —InI'(t) + K1, Ky = —1nl(ty),
1/, 1 1
and since

/ [ 0() (s) + I'(5)GME] ds = GMhI(t)—%(I’(t))QJrKQ, Ky = —GMh([(tg))Jr%(I’(tg))Q,

to

we may rewrite (8.4) as

2
1
sz I7N() < GMRI(H) = S(I'(0)° + K < GMAI(t) + K, K =Ky — Ky,
(8.5)
Inequality (8.5) is equivalent to
2 GMhI(t)+ K
— < <t <t .
1S ln[ﬁl(f;) s O0<ty<t<ty (86)

Since the numerator of the right side of (8.6) is bounded (recall I(t) — 0 as t — t;),
we deduce that

2 GMhI(t) + K

0 Z hmt_nflz S hmt_>t1 o [*1<t) = 0.

Hence ¢ = ||¢|| = 0, which in turn implies that the angular momentum ¢ = 0.
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