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Abstract: This article addresses a challenge modeling novices face in model conceptualization: the 
recognition of behavior modes. Despite behavior modes being at the heart of system dynamics mod-
eling, there is no unifying taxonomy for them, making them harder to learn for beginners. The article 
proposes criteria a taxonomy should satisfy, critically reviews previous taxonomies in the literature, 
and then introduces a new consistent taxonomy based on slope and curvature with mode names 
that refer only to visual cues and free of references to prior mathematical or domain-specific 
knowledge. Evidence from an exploratory experiment suggests that novices actually have difficul-
ties classifying curves when using previous taxonomies. Links from these elementary modes to 
analogous terms in other taxonomies in diverse disciplines allow this taxonomy to be related to 
other ones. The article concludes by mentioning relevant limitations and future steps. 
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Introduction 
This article focuses on one important aspect of learning system dynamics: the ele-

mentary behavior modes and their recognition in the behavior of variables. The term var-
iable refers to a quantity that changes over time (Richardson and Pugh, 1989). When ob-
serving these quantities—each referring to a specific moment or interval of measure-
ment—over a sequence of measurements, they appear as a shape representing the varia-
ble’s behavior. This shape has been called behavior pattern (Barlas and Kanar, 1999; Boğ 
and Barlas, 2005; Ford, 1999), reference mode (Ford, 2019; Randers, 1980; Richardson and 
Pugh, 1989; Sterman, 2000), and behavior mode (Ford, 2019). Dictionaries usually define the 
term pattern as “a natural […] configuration,” a “reliable sample of traits, acts, tendencies, 
or other observable characteristics of a person, group, or institution”; a mode is “a partic-
ular form or variety of something” or “a particular functioning arrangement or condition” 
(Merriam-Webster, 2022). We use behavior for the original data—the quantities reported 
per measurement. The behavior modes are generic classes of behavior, according to a specific 
set of defining feature types and feature values. Behavior patterns are the sets of feature 
values a person can detect in behaviors when applying (intuitively or deliberately) a tax-
onomy of behavior modes. Recognizing the reference (behavior) modes that a model shall rep-
licate and explain is part of the model conceptualization phase (Randers, 1980; Richardson 
and Pugh, 1989; Sterman, 2000). 

Since one cannot recognize a behavior mode without knowing the modes, recogniz-
ing a certain behavior mode can be anything from trivial to challenging, depending on (a) 
prior knowledge and (b) possible classification ambiguities or conflicts when applying a 
taxonomy to recognize patterns. An experienced modeler with personal knowledge of the 
modes of behavior used in system dynamics (SD) will intuitively recognize them when 
looking at a behavior over time graph; not so a novice coming from an area with a different 
taxonomy of behavior modes, or someone with no prior behavior classification schema. 
Allegedly, newcomers may know alternative behavior modes used in other areas, such as 
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economics, management, ecology, or mathematics. Yet, just as novices, they cannot per-
ceive system dynamic behavior modes in observed behaviors without resorting to guid-
ance from the literature or from lecturers and experienced SD practitioners. 

The SD literature disseminates different taxonomies in its discussion of behavior pat-
terns and modes, developed for varying purposes. While Sterman (2000) addressed learn-
ers, others had more specific aspects of the modeling process in mind (Barlas and Kanar, 
1999; Ford, 1999), or strived to give a terminological overview (Ford, 2019). This enables 
experienced modelers to apply the taxonomy which best fits their needs. However, it also 
increases the effort required from novices to choose a convenient taxonomy and get ac-
quainted with the modes. As an initial step toward a terminology that best fits the circum-
stances and needs of modeling novices, this paper proposes a conceptual framework for 
discussing behavior mode taxonomies, critically analyzes three highly visible behavior 
mode taxonomies, and then proposes one set of elementary behavior modes which turn 
out to be conceptually consistent with the framework. 

This contribution is mainly conceptual, but data from an initial experiment with our 
students suggest that a large share of undergraduate students fail in simple classification 
exercises of elementary behavior modes prior to courses in SD. 

The remainder of this article is organized as follows. The second section introduces 
a conceptual background, discussing how patterns are intuitively recognized or have to 
be consciously categorized and proposing criteria for assessing behavior mode taxono-
mies. The third section applies these criteria to three previously published taxonomies; it 
also provides additional arguments for why some terms in these taxonomies are con-
founding for novices. The fourth section develops the taxonomy we propose, showing 
how the name labels for the elementary modes exclude any reference to aspects other than 
the visual cues of slope and curvature. The fifth section describes the two experimental 
tasks and their results. The discussion in section six provides some relevant theoretic con-
nections into the literature of learning and teaching mathematical modeling, and then we 
conclude by summarizing the main points and some limitations and further steps. 

Conceptual background 
Recognition of behavior patterns implies prior knowledge 

Consider the following exemplary case of behavior (Figure 1): the daily number of 
new COVID cases reported in Chile from the start of 2022 until Feb. 16, 2022. 

 
Figure 1: An exemplary behavior graph representing the daily number of new COVID cases re-
ported in Chile during the initial weeks of 2022 (data from https://www.gob.cl/coronavirus/cifraso-
ficiales). 
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Readers with SD background will effortlessly perceive patterns and immediately 
think of certain behavior modes, but readers without such prior knowledge will need to 
reflect, construct their own categories for classifying the shapes, and likely find them-
selves in need of guidance. Cognitive scientists have developed dual-processing theories 
of cognition to account for these two kinds of judging a situation. They distinguish be-
tween two distinct processing systems, where system 1 is active when the situation is fa-
miliar because it is quick and intuitive. The deliberative system 2 is only activated to pro-
cess surprising or unknown situations for the additional effort it requires (Kahneman, 
2011; Stanovich, 2012). Figure 2 depicts the two cognitive processes for assigning a shape 
to a behavior mode. Prior knowledge may exist as familiarity with concrete processes, 
mechanisms, or structures that are usually articulated as diagrams, as in most professional 
areas and scientific disciplines. However, it may also be abstract mathematical knowledge 
applicable to a class of concrete cases. 

 
Figure 2: Prior knowledge leads to recognition of behavior modes; the alternative is to analyze the 
shape deliberately, define characteristic features, and then assign a behavior mode. 

Prior knowledge builds up through repetition of experiences and is retrievable from 
long-term memory. Therefore, people are more likely to feel familiar with some terms 
than with others because they have seen them more frequently. Consider the differences 
in how frequently certain behavior mode labels appear on the Internet. Table 1 shows the 
number of general web pages, videos, and news entries replied by Google (on February 
25, 2021). 

Table 1: Frequency of name labels for behavior patterns on the Internet. 
Search term Hits at large Videos News entries 

Exponential growth 65,400,000 769,000 1,120,000 
Exponential decay 48,500,000 131,000 7,710 

Exponential decline 32,000,000 192,000 155,000 
Logarithmic growth 19,300,000 83,900 9,930 
Exponential collapse 16,800,000 121,000 70,200 
Asymptotic growth 13,500,000 40,100 1,820 
Asymptotic decay 6,370,000 9,010 433 

Asymptotic decline 4,610,000 8,860 1,480 
Logarithmic decay 7,680,000 34,300 124,000 

Logarithmic decline 7,220,000 16,800 3,430 
The typical terms to describe the shape of a behavior combine one word referring to 

the direction of change (“growth” when the slope is positive and “decay,” “decline,” or 

Re-
mem-
ber?

Recognize
pattern

Construct
pattern

Assign
mode
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“collapse” when it is negative) and one word for the change of slope (“exponential,” “as-
ymptotic,” or “logarithmic”). These frequencies suggest different degrees of availability 
of these terms when someone looks at a graph showing a variable’s behavior. On average, 
people will be more likely to recall “exponential growth” than any other term; this means 
that the intuitive system 1 will not recover and process the meaning of other terms, and 
so system 1 must construct it just-in-time. While many Internet users will recognize “ex-
ponential growth,” many other terms will demand cognitive effort to decide what they 
mean. 

“Growth” is generally used to describe curves with positive slope. When dealing 
with how variables behave over time, our mind handles time using spatial metaphors, as 
suggested by neuroscience (see chapter 10 of Buonomano, 2017); time becomes tangible 
through the analogy with movement in space. Frequently, these are orientation metaphors 
(refer to chapter 4 of Lakoff and Johnson, 1980), and one of them is “more is up.” There-
fore, quantities that become greater go up, and it seems straightforward to say “it grows”. 
However, we do not use “growth” for everything that goes up; the interest rate, the un-
employment rate, prices, the sea level, global temperatures, and the fraction of intensive 
care beds occupied by patients with COVID can increase, but we do not say “they grow.” 
Further, when such quantities become less, we do not speak of decay or crisis or even 
collapse, but of decrease. 

Desirable qualities of a taxonomy for classifying behaviors 
Since words are important features tagged onto concepts, and concepts are what we 

have available to recognize things in the world and make sense of them, it is important to 
have a set of defining items that comply to rules minimizing the cognitive load imposed 
on newcomers. A well-defined and clearly understandable set of modes—here referred to as 
taxonomy because it establishes a set of categories—can provide truly useful guidance. We 
describe a behavior mode using three items: 
• A name. 
• A description (text, possibly including mathematical expressions) of the mode’s char-

acteristic features that are used to identify the mode’s pattern in the behavior of a 
variable. 

• A behavior graph with the characteristic shape(s) as an iconic representation of the 
mode’s characteristic pattern(s). 
Then, a taxonomy of behavior modes should satisfy some criteria related to useful-

ness (necessary) and usability (desirable). 
1. Consistency. To be well-defined, two aspects of consistency are necessary. 

1.1. Matching consistency. Any behavior observed over a time interval must be 
matched by exactly one mode. Thus, the set of modes must be (a) exhaustive and 
(b) free of superpositions. Therefore, the description needs to contain actionable 
information for each of the feature types (e.g., “slope” or “change of slope”). The 
only exception could be that in a hierarchical taxonomy, one mode and one sub-
mode match a behavior. 

1.2. Internal consistency. Further, the defining items need to be internally consistent 
(free of contradictions) and free of ambiguities. The names of distinct modes shall 
only have similarities among one another if these similarities exist in the respec-
tive patterns. There also should be a 1:1 relationship between pattern feature and 
name. 

2. Usability. To be clearly understandable for newcomers, the taxonomy should be free of 
unnecessary aspects (for the sake of cognitive economy). 
2.1. Perceptive congruence. The mode descriptions should describe salient features of be-

haviors such as visual cues, which are usually accounted for intuitively by new-
comers, which spares newcomers unnecessary cognitive load. 
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2.2. Domain compatibility. For new modelers with prior knowledge from other do-
mains (e.g., management, economics, health, environment), the name labels need 
to be minimally different from existing taxonomies used in these domains. 

2.3. Detachment from causes. For complete novices (e.g., school kids, users and clients, 
or citizens at large), the names and the descriptions should minimize dependency 
on prior technical knowledge to avoid unnecessary activation of system 2. 

Ford (1999) contributed to criteria 2.1 and 2.3 when he argued that definitions of be-
havior patterns should be free of reference to the generating structure; this clearly favors 
consistency and avoids having to know the standard formulations of causal structure. Yet, 
the SD literature contains several taxonomies of behavior modes that are not mutually 
compatible, going counter to criterion 1, as shown below. Independently from SD, other 
areas of study use different sets of modes; even if the difference is only the name given to 
a behavior mode, the intention to establish a single name label will increase the cost of 
learning the SD behavior modes and collide with criterion 2. 

Critical examination of published taxonomies for classifying behaviors 
Three published taxonomies 

The SD literature consistently distinguishes between simple behavior modes that 
cannot be decomposed in simpler components and composite modes consisting of con-
catenated, simple modes. Richardson and Pugh (1989) already mentioned that one varia-
ble can display a series of behavior modes in consecutive time intervals. Taxonomies of 
behavior modes are implicit in the entire SD literature; most textbooks progress from sim-
ple structures that drive simple behaviors toward more complex structures and behaviors. 
However, the names given to modes and the defining descriptions are not always the 
same. This becomes visible when comparing the taxonomies in several publications that 
this section analyzes. 

Ford’s atomic behavior patterns 
By the end of the 20th century, (Ford, 1999) proposed a set of three “atomic” patterns 

based on the second derivative of the behavior, which “describes the movement of the net 
rate of change,” as shown in Table 2. 

Table 2: Ford’s atomic behavior modes. 
Label Description 

Linear 
The absolute value of the net rate of change remains constant; therefore, 

the speed of change over time is constant. (Second derivative = 0.) 

Exponential 
The absolute value of the net rate of change increases; therefore, the speed 

of change over time is increasing. (Second derivative >0.) 

Logarithmic 
The absolute value of the net rate of change decreases; therefore, the 

speed of change over time is decreasing. (Second derivative <0.) 
This taxonomy was meant for the search for dominant feedback loops in the causal 

structure of a problem because of the direct link from reinforcing and balancing loops to 
the exponential and logarithmic behavior patterns, respectively. Yet, the “atomic” taxonomy 
is also an attractive information source for newcomers; but for them, it has several prob-
lematic aspects. 

Ford’s exemplars accompanying the definitions considered only cases of increase 
(positive slope), but the definitions also apply for negative slopes. The increasing curves 
in Figure 3 (solid lines) correspond to Ford’s exemplars; the decreasing curves (dashed 
lines) are added for the discussion: 
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Figure 3: Ford’s atomic behavior patterns with positive and negative slopes. 

The descending version of the behavior patterns shows an accelerating decrease as 
exponential behavior pattern and a decelerating decrease as logarithmic behavior pattern. 
The adjective describing the acceleration of change over time is used consistently; accel-
eration is called exponential, and logarithmic describes deceleration. However, this collides 
with the two other taxonomies analyzed here (below). 

Table 3: The atomic behavior patterns as seen by the quality criteria. 
Criterion Evaluation 

Consistency  
Matching consistency Covers all elementary possibilities of second derivative. 
Internal consistency No contradiction detected. 

Usability  

Perceptive congruence 
First derivative (slope or direction of change) is salient for 

people, but not accounted for. 

Domain compatibility 

The descriptions are abstract. Newcomers will not need to 
replace their usual vocabulary. However, exponential behavior 

with a negative slope contradicts the widespread definition of 
exponential decay. 

Detachment from causes No links to causal structure detected. 
Table 3 shows how the atomic pattern taxonomy appears through the lens of the cri-

teria introduced above. The taxonomy is internally consistent, but its usability is debatable 
because it makes no use of the slope (first derivative), which is arguably a salient feature 
of curves. Additionally, the use of exponential collides with the widely used exponential 
decay for negative slopes. Finally, the label logarithmic may cause some confusion for goal-
seeking behavior; if one understands logarithmic in its strict mathematical sense, then goal-
seeking behavior would not classify for this label. 

Barlas and co-authors on basic behavior patterns 
Behavior patterns also play an important role in model validation tests to check if a 

variable’s simulated behavior replicates important features of a reference mode suffi-
ciently well. Barlas and co-authors have therefore developed a method for automated pat-
tern recognition based on a set of basic dynamic patterns which they ordered in six classes 
(Barlas and Kanar, 1999; Boğ and Barlas, 2005):  
• Constant 

Time

Exponential behavior

Logarithmic behavior

Exponential behavior

Logarithmic behavior

Values
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• Growth: linear, exponential, negative exponential and s-shaped. 
• Decline: linear, exponential, negative exponential and s-shaped (this class was not 

spelled out in the original articles, so we filled the labels in). 
• Growth-then-decline: growth-then-exponential decay to zero, growth-then-exponen-

tial decay to non-zero and growth-then-crash. 
• Decline-then-growth_ s-shaped decline and s-shaped growth. 
• Oscillatory: constant, with growth and with decline. 

The pattern recognition method extracts the first and second derivative of the data 
describing a variable’s behavior, building one separate segment for each pattern. First or-
der and second order polynomials were used to approach the shape of each original seg-
ment without letting random variations misjudge the respective pattern. Such processing 
is certainly beyond the possibilities of modeling novices, but these authors’ purpose was 
automating the process rather than making it easier to learn for novices. However, novices 
can learn and practice with stylized data and curves, and a simpler method can be applied 
to recognize slope and curvature in stylized curves. 

Table 4: The atomic behavior patterns as seen by the quality criteria. 
Criterion Evaluation 

Consistency  
Matching 

consistency 
Covers all elementary possibilities of the first and second derivative. 

Internal consistency 
S-shaped patterns can be further decomposed, and so can the more 

complex patterns with diverse sequences of growth and decline. 
Usability  
Perceptive 
congruence 

First derivative (slope or direction of change) is salient for people, 
but not accounted for. 

Domain 
compatibility 

The descriptions are abstract. Newcomers will not need to replace 
their usual vocabulary. However, in negative exponential growth, the 
label negative is redundant with a negative slope and can easily be 
confounded. Further, in the decline class, the two elementary non-

linear curves with negative slope would be labeled exponential decline 
and negative exponential decline, which is even easier to become 

confounding. 
 Additionally, exponential decline risks to be confounded with the 

technical term exponential decay with a negative slope contradicts 
the widespread definition of exponential decay. 

Detachment from 
causes 

The label exponential refers to mathematical functions representing 
the structure beneath the observable behavior pattern. 

The following Figure 4 illustrates why the pattern names risk to be confusing for 
novices, who will certainly perceive the slope but not necessarily the curvature. Albeit 
systematic and consistent in its hierarchical ordering into classes representing slope and 
class members representing curvature, the visual clues make come the word “negative” 
to mind for the class decline, so there are two novice questions: why is one pattern called 
“negative” if it represents growth? And why is only one pattern in decline explicitly la-
beled “negative”? The s-shaped patterns in both classes are equivalent to two of the previ-
ous patterns in the same respective class, so they can be considered as redundant in the 
growth and decline classes. Also, the growth-and-decline and the decline-and-growth classes 
are compositions of various patterns already defined in the growth and decline classes. 

Note that this will only be a risk if these pattern classes and its class members are 
alienated from their intended use and proposed to modeling novices. Yet, in the absence 
of a dedicated learning material for novices, and considering that these publications are 
freely available on the Internet, any novice in search of guidance can easily find, download 
and try to follow them. 
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Figure 1: The basic dynamic patterns growth and decline used by Barlas and co-authors. The curves represent the cases labeled (a) 
through (c) in Fig. 2.1 in Barlas and Kanar (1999) 

Sterman’s fundamental behavior modes 
In one of the most prominent textbooks, Sterman (2000) stated that the “most funda-

mental modes of behavior are exponential growth, goal seeking, and oscillation,” (p. 108). 
S-shaped growth, S-shaped growth with overshoot and oscillation, and overshoot and collapse are 
referred to as “common” modes of behavior. Learners make their first contact with the 
behavior modes as curves in graphs with positive slope, which are represented in Figure 
5: 

 

Figure 2: The fundmental and most common behavior modes in the business dynamics textbook 

Each of these modes is linked to a “simple feedback structure.” Later, the exponential 
function generates exponential growth (p. 265) and exponential decay (p. 274). Discussing ac-
celerating change using instances of increase is a tradition; since Malthus published his 
“Essay on the Principle of Population” in the late 18th century, the mathematical represen-
tation of the phenomenon—the exponential function—has led to the label exponential 
growth. When the values of a variable decrease at a rate proportional to the current level 
of the variable, the label changes to exponential decay, but then change decelerates instead 
of accelerating. 

Even if the textbook discusses virtually any shape of behavior, including collapse, 
readers must read far beyond the section where the fundamental modes are first an-
nounced. When judged through the criteria introduced above (see Table 5), the lack of 
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modes for accelerating decrease and for decelerating increase is likely to decrease the 
matching consistency. With respect to usability, the lack of slopes reduces perceptive con-
gruence and so does the fact that two modes describe a decelerating decrease. Addition-
ally, the name label goal-seeking implies structure concepts, which collides with detach-
ment from causes. 

Table 5: The fundamental modes as seen by the quality criteria. 
Criterion Evaluation 

Consistency  

Matching 
consistency 

Covers accelerating increase and decelerating decrease, but not 
decelerating increase and accelerating decrease 

Decelerating decrease matches with two modes (goal-seeking and 
exponential decay). 

Internal 
consistency 

No contradiction detected 

Usability  

Perceptive 
congruence 

The direction of change (slope) is not accounted for, and the unilateral 
slopes in the graphs may induce to neglect the respective other slope. 

Behaviors with decelerating increase can be matched with two 
example graphs (each belonging to a different mode); the slope 

matches with one of them, whereas the change of slope matches with 
the other. The same holds for behaviors with accelerating decrease. 

Domain 
compatibility 

The name labels are congruent with the widely used terms exponential 
growth and exponential decay. 

The word “growth” will not always fit with concrete variables (e.g., 
the sea level). Goal-seeking presupposes some familiarity with control, 

and it may feel extraneous in situations where there is no explicit 
goal. 

Detachment from 
causes 

Goal seeking alludes to the underlying causal structure; this can be 
helpful to recover the link between a behavior mode and the causal 
structure driving it, but only if you already know the underlying set 

of causal structures. However, this should not be assumed of 
newcomers from other areas or individuals without prior 

mathematical training. 

Behavior modes in Ford’s system dynamics glossary 
Approximately 20 years later, Ford (2019) published a glossary of SD terms and con-

cepts, establishing en passant yet another set of behavior modes as parts of the glossary: 
asymptotic growth/decay, exponential behavior, goal-seeking behavior, exponential growth (or col-
lapse), and exponential decay. Even though it is not the purpose of a glossary to establish a 
taxonomy for classifying variable behaviors, the fact of including a series of behavior 
modes as part of the glossary makes them available for readers to use for that purpose. 
Novices are likely to use this glossary as an orientation aid. Table 6 summarizes the char-
acteristic traits. 

Table 6: Ford’s glossary entries regarding behavior modes. 
Label Description (emphasis in quotes added by the author) 

Exponential 
behavior 

The “change in a stock variable is proportional to the size of the variable 
itself.” (p. 373). 

Exponential 
growth (or 

collapse 

 “[…] occurs when the rate of increase or decrease in a stock variable is 
proportional to the size of the stock at that point in time, so as to accelerate its 

change.” (p. 373). 
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Exponential 
decay 

“[…] occurs when the rate of increase or decrease in a variable […] is 
proportional to how far the stock is from its equilibrium, so as to slow down its 

rate of change.” (p. 373). 

Goal-seeking 
behavior 

“[…] the system moves towards an equilibrium or target condition. The 
flow that changes the stock value is typically modeled as a fraction of the 

difference between the equilibrium condition (or target) and the current 
condition. Therefore, the further the system is from the goal, the more it 
changes towards that goal and as it approaches the goal, the increase or 

decrease slows.” (p. 373). 

Asymptotic 
growth/decay 

“[…] goal-seeking behavior produced by negative feedback. The control 
stock moves towards the goal, slowing down as it approaches the goal.” (p. 

369). 
Two of the name labels contain the word “behavior,” and one can safely interpret 

that growth, decay, and collapse are just particular types of behavior. The labels appear to 
imply a hierarchy based partly on the first derivative and partly on the second (as opposed 
to the case of the atomic behavior modes). Yet, a closer examination reveals some difficul-
ties. 

According to these definitions, exponential growth or collapse refers to accelerating 
change over time with a positive or a negative slope, which is equivalent to exponential 
behavior in the atomic behavior modes. However, now exponential behavior allows exponen-
tial growth and exponential decay (which is equivalent to Sterman’s fundamental modes), 
but not exponential collapse. The new definition of exponential behavior does not specify if 
change over time increases or decreases. However, from the fact that the rate of increase 
or of decrease is proportional to the stock level, it follows that change accelerates for in-
creases and decelerates for decreases. 

This is equivalent to using the exponential function—a mathematical representation 
of causal structure—to replicate exponential behavior. However, labeling the behavior 
modes based on the mathematical representation of the causal structure beneath the be-
havior collides with the call for defining the behavior modes without reference to the 
causal structure. Further, the use of “exponential” is not consistent across the published 
definitions, which can confuse newcomers. 

The behavior modes asymptotic growth/decay and exponential decay are identical, with 
only two minor differences: (a) “equilibrium” and “goal” are only identical if one sup-
poses that an equilibrium may exist without an explicit goal, and that “goal” implies an 
explicit statement, and (b) decay always implies a negative slope. Both are synonymous 
to goal-seeking behavior (which implies the concept and existence of a goal, and the name 
label speaks of the causal structure instead of the behavior shape). In each case, change 
over time is slowing down (deceleration). Arguably, the term asymptotic is closer to the 
shape of behavior than logarithmic in the definitions of the atomic modes, which is seman-
tically closer to the mathematical structure. 

The assessment of the criteria shown in Table 7 suggests that both consistency and 
usability have weaknesses. 

Table 7: The modes in the glossary as seen by the quality criteria. 
Criterion Evaluation 

Consistency  

Matching consistency 

Decelerating decrease behaviors match with exponential decay, 
asymptotic decay, goal-seeking, and exponential behavior. 

Decelerating increase behaviors match with asymptotic growth 
and goal-seeking. 

Internal consistency 
The hierarchical relationship between “behavior” and 

“growth” and “decay” and “collapse” is not made explicit. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2022                   doi:10.20944/preprints202210.0261.v1

https://doi.org/10.20944/preprints202210.0261.v1


 11 of 24 
 

 

“Exponential” in exponential collapse contradicts “exponential” 
in exponential behavior. 

Usability  
Perceptive congruence The first and the second derivative are accounted for. 

Domain compatibility 

The name labels are congruent with the widely used terms 
exponential growth and exponential decay, except for exponential 

collapse. 
The word “growth” will not always fit with concrete variables 
(e.g., the sea level). Goal-seeking presupposes some familiarity 
with control, and it may feel extraneous in situations where 

there is no explicit goal. 

Detachment from causes 

Goal seeking alludes to the underlying causal structure; this can 
be helpful to recover the link between a behavior mode and 
the causal structure driving it, but only if you already know 

the underlying set of causal structures. However, this should 
not be assumed of newcomers from other areas or individuals 

without prior mathematical training. 

Critical appraisal of the three taxonomies 
The taxonomies have some relevant differences between one another. First, there is 

diversity in the salient features accounted for, which is important for the perceptive congru-
ence criterion. Referring to the salient features of behaviors to be classified, the “atomic” 
taxonomy uses only the second derivative in its descriptions and only positive slopes in 
its graph examples. The “basic dynamic patterns” use both slope and curvature, but they 
use name labels that risk confusion and have redundant patterns. The descriptions of the 
“fundamental” modes use the second derivative, and names and graphs limit themselves 
to unilateral slopes. The modes included in the “glossary” account for the first and second 
derivatives in names and descriptions. 

Second, the use of the term exponential in the name labels of the modes is diverse. In 
the “atomic” modes, exponential is equivalent to “acceleration” for positive and negative 
slopes. The “fundamental” modes use exponential as equivalent to “proportional change” 
for positive and negative slopes, leading to acceleration for positive slopes and decelera-
tion for negative ones. In the “glossary,” exponential stands for “acceleration” in exponential 
growth and collapse, but it means “proportional change” for exponential behavior, exponential 
decay, and exponential growth. 

Figure 4 recapitulates the matching consistency of each taxonomy. It shows a curve 
for each mode identified by name, description, and graph. The “fundamental modes” in-
clude two dotted curves because the taxonomy does not identify their shape. The “system 
dynamics glossary” has several modes for two of the shapes, violating the criterion. 
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Figure 3: The matching consistency of each behavior mode taxonomy 

Rounding up, consider which mode(s) the taxonomies would assign to the initial ex-
ample of behavior (Figure 1). The gray curve in Figure 5 smooths the weekly ups and 
downs in the daily number of reported COVID cases and suggests three different behavior 
episodes. First, it increases at an accelerating rate during the first 4 weeks. Second, in the 
following 2 weeks, the increase slows down. Third, in the last week, it starts to decrease 
progressively. All three taxonomies would lead novices to classify the first episode expo-
nential growth. The second episode is different; the “atomic” taxonomy suggests calling it 
logarithmic, whereas it is asymptotic growth or goal-seeking according to the “glossary.” Our 
lecturing experience with Chilean freshmen over the past 18 years suggests that novices 
easily get used to identifying exponential growth, but they need considerable effort to learn 
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the modes for the second episode. The “fundamental” modes’ description allows classify-
ing this episode as goal-seeking, even if the graph given in the definitions does not show a 
curve with positive slope. The third episode is exponential in the “atomic” taxonomy and 
exponential collapse according to the “glossary.” Again, practical lecturing experience sug-
gests that learning this takes individuals without prior mathematical knowledge great ef-
fort, as also the experiments described below confirm. There is no classification for this 
shape in the taxonomy of “fundamental” modes. 

 

Figure 4: Classification example 

Mathematical functions as name givers 
The predominance of the terms exponential and logarithmic may mislead novices for 

another reason, too; contrary to what many modeling newcomers might expect, the math-
ematical functions with these names can generate a wide range of behavioral shapes. 
There is no 1:1 relationship between these behavior shapes and the specific functions. To 
see this, consider the following curves generated by an exponential function, a power 
function, and a logarithmic function. The following instructions (using a Mathematica 
notebook) generate the curves displayed in Figure 6. 
• Exponential: 1 * 1.1^n, 1 * 0.5^n, −1 * 1.1^n, −1 * 0.5^n, running n from 0 to 10 
• Power: 1 * 1.1^x, 1 * 0.5^x, −1 * 1.1^x, −1 * 0.5^x, running x from 0 to 10 
• Logarithmic: 1 * Log[x], −1 * Log[x], running x from 0 to 10 
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Figure 5: Different types of functions can generate very similar curves 

Figure 6 shows a dashed-dotted curve when the exponential function and the power 
function apply a positive rate of change equal to 0.1 to an initial value of 1 and a dash-dot-
dot curve when the initial value is −1. The reader may mentally simulate a situation where 
only the curve is visible (no hint at the function type). The black and the dotted curves 
represent what happens if one uses an exponent smaller than 1. Visibly, the logarithmic 

Exponential function: f(x) = a * x n

Power function: f(x) = a * b x

Power function: f(x) = ln(x)
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atomic pattern (asymptotic mode in the glossary) can also be generated by an exponential 
function or a power function. 

By all means, the degree of abstraction of these curves is higher than the equations in 
an SD model. We use the X axis to represent time; however, the mathematical functions 
are independent of these considerations. 

The point of showing these curves is that when you can only see the curve, there is 
no hint to the causal structure in the shape itself. Accordingly, it is debatable what the 
advantage of using structural terms in the names of behavior modes may be; we argue 
that calling accelerating change “exponential” is opaque for someone who is not used to 
the mathematical functions and implies a link to one mathematical formulation in partic-
ular. Turning to decelerating change, the label “logarithmic” can be even misleading. 

A general set of elementary behavior modes 
After identifying and analyzing the weak points of the prior definitions, this section 

proposes a taxonomy that is exclusively based on the directly observable features of a 
variable’s behavior, does not impose new labels on practitioners of other areas, and that 
is internally free of ambiguities and contradictions. The term “elementary” avoids repeat-
ing “atomic” or “fundamental.” It makes sense because these modes are the elements used 
to organize the overall behavior of variables. Other modes such as S-shaped growth or over-
shoot and collapse are referred to as the “compound” modes. 

There are six elementary behavior modes of change, graphically represented in Fig-
ure 7. A seventh mode is “steady state,” but it is trivial to recognize and not further dis-
cussed here. The taxonomy uses two features: (a) the direction of change and (b) the be-
havior of the speed of change (or curvature). Both features are salient in BOT graphs and 
easy to detect, even in tabular form. In the figure, dv refers to the change of value, and dt 
stands for the change of time from period to period. Subindices represent the points in 
time, so for example, dv1,2 is the change of value observed during dt1,2, that is, between 
moment 1 and moment 2. Then, the direction of change is the sign of dvt,t+1 (remember that 
this is for humans looking at reported data, not for a computational model simulating 
continuous time). It is also easy to decide if the speed of change is constant, increasing or 
decreasing—independently of the direction of change: 

If dvt,t+1 = dvt+1,t+2, then constant. 
If abs(dvt,t+1) < abs(dvt+1,t+2), then increasing. 
If abs(dvt,t+1) > abs(dvt+1,t+2), then decreasing. 
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Figure 6: The elementary behavior modes with their generic names 

With respect to consistency, the matching consistency criterion is satisfied; there is ex-
actly one mode for each combination of direction and speed of change. The names of these 
modes are reminiscent of movement, figuratively answering the question “in which di-
rection is this going, and at which speed?” The names, descriptions, and graphs are inter-
nally consistent. Turning to usability, accounting for slope (direction of change, first deriv-
ative) as well as for change of speed (second derivative) assures perceptive congruence. A 
list of synonyms (Table 8) assures domain compatibility, and detachment from causes is 
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achieved by only referring to features of the behavioral shape to be classified: direction of 
change and speed of change. 

Table 8: Synonyms of the elementary behavior modes. 
Elementary behavior mode Synonyms 

Constant increase Constant growth, linear growth 
Accelerating increase Exponential growth, explosive growth, expansion, recovery 

Decelerating increase 
Asymptotic growth, logarithmic growth, goal-seeking 

growth 
Constant decrease Constant decline, linear decline 

Accelerating decrease Collapse, exponential collapse 
Decelerating decrease Exponential decay, asymptotic decay, goal-seeking decline 
Compliance with the criteria is higher than in the three taxonomies analyzed here, as 

summarized in Table 9. 

Table 9: The elementary behavior modes as seen by the quality criteria. 
Criterion Evaluation 

Consistency  
Matching 

consistency 
There is a 1:1 relationship between each type of shape and the 

modes. 

Internal consistency 

No contradiction or ambiguities. The name label of each mode only 
refers to the visible features of the first and the second derivative, 
and there is no semantic collision between the words participating 

in the mode names. 
Usability  

Perceptive 
congruence 

It is expected that the first derivative is an intuitive feature even for 
absolute modeling novices; the second derivative may not be 

intuitive, but it is identified with precision in the mode 
descriptions. 

It remains to be seen which features actually are intuitive by 
empiric research. 

Domain 
compatibility 

The synonyms conserve domain compatibility. 

Detachment from 
causes 

The names and the descriptions of the modes do not contain 
elements implying or referring to causal structure. 

Empirical experiments of identifying and classifying atomic behavior modes 
Up to here, the article has discussed three established taxonomies and one proposed 

taxonomy devised by system dynamicists. However, how do naïve individuals (without 
technical prior knowledge) categorize curves displaying the behavior of variables? With 
two features, there are diverse possibilities: one can focus on the direction of change, or 
on the curvature, or on both features. Which features would naïve individuals pay atten-
tion to? A second question is which of the taxonomies is learnable with less effort? 

Experimental design 
To learn more about these questions and the difficulties modeling novices as naïve 

individuals have in identifying and classifying behavior modes, we ran a two-stage ex-
periment, separated by a short break. In the first task, students had to group graphs to-
gether. They received a description of the importance of classifying behavior over time 
and then had to classify 12 graphs containing two cases of each elementary behavior mode 
as shown in Figure 7. The graphs were abstract, with only the label of the two axes (time 
and value). The two examples for each elementary mode differed only in the steepness of 
their curves. Experienced dynamicists will easily see that there are two instances of each 
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elementary mode. However, as the numbering suggests, the examples come in an order 
that blurs the salience of the underlying modes; for instance, accelerating decrease appears 
in graph numbers 2 and 11, and decelerating increase is the mode in graph numbers 7 and 
10. 

 
Figure 8: Twelve examples of behavior to be classified in task 1. 

The students were free to form as many groups as they deemed appropriate and had 
to give each group a name and describe shortly the distinctive characteristics of each 
group. In the second task, they received three examples of accelerating increase labeled as 
“exponential growth” and three of decelerating increase labeled as “asymptotical 
growth.” The task then was to draw a curve representing the opposite of each mode, 
which implies the modes accelerating decrease and decelerating decrease, respectively. 
The instructions of the experiment can be found in the supplementary material. 

Participants were recruited from the pool of undergraduate students in business in-
formatics at the University of Talca. Overall, 49 students in their first and second years of 
study with no prior knowledge of SD participated in the experiment. 

Results 
Of the 49 participants, less than half correctly classified six groups, suggesting that 

their categorization accounted for both defining features of the elementary modes (the 
direction of change and the change of speed or curvature), as shown in Table 10. However, 
actual recognition was lower than that: from the 24 students who correctly identified six 
groups, only 19 assigned them correctly. Furthermore, four students assigned graphs to 
more than one groups. For individuals who focus on only one of the defining features, it 
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would have been logical to classify the 12 graphs into two groups; yet, only one student 
did so. This means that half of the students cannot have grouped the 12 graphs according 
to the defining features of the elementary modes. 

Table 10: Results from classification exercise. 
No. of groups No. of students Percentage 

2 1 2.0 
3 10 20.4 
4 11 22.4 
5 3 6.1 
6 24 49.0 

This interpretation solidifies when considering that there was a great variability in 
the naming of the groups: from mere numbering to phantasy names and actually employ-
ing some mathematical description. The mathematical description ranged from “steady 
rise,” “steady drop,” “rising graph,” “partial descending graph” to “linear graph,” “con-
stants,” “exponential graph,” or “logarithmic graph,” and some included references to 
“wave” or “fluctuation.” Aside from non-characterizing labeling, one could identify a 
greater number of students who actually tried to express with their labeling the charac-
teristics of the group; however, this only resulted in correct labeling in some cases, and 
not necessarily for the students who rightly identified six groups. 

The characterization of the group revealed that only very few students could describe 
their groups accurately. It was easiest for the group with linear growth, where a substan-
tial share described it correctly. For the group with exponential growth, some correctly 
identified and described the observed patterns, but for the remaining groups, the potential 
for an accurate description was very low. Overall, the students did not achieve matching 
or internal consistency. 

We also found several judgmental expressions in the group’s description, for exam-
ple, “subtle,” “not possible to stabilize,” “controlled growth,” “drastic fall,” or “success.” 
There has also been one incident where the labeling of the y-axis with “v” (for value or 
“valor” in Spanish) has been mistaken for sales (“ventas” in Spanish), together with some 
corresponding interpretation for the groups. 

In the second task, we asked the students to draw one curve for exponential decay 
and one for asymptotic decay. Table 11 shows the summary for the two graphs, together 
with the respective frequency. Note that some students basically used the same behavior 
mode for both cases. 

Table 11: Results from drawing task. 

Exponential decrease1 # Asymptotic decrease # 

 

23 

 

19 

 
1 The English translation here is somewhat different from the logic of the selected Spanish wording. While exponential 
growth (“crecimiento exponencial”) is unambiguous, the opposite (“decrecimiento exponencial”) could be translated as 
either exponential collapse or exponential decay, which are, of course, very different phenomena. While this fact could 
have contributed to some of the confusion in the experiment, it only reinforces the central point of the paper. 
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18 

 

18 

 

6 

 

5 

Other 2 Other 7 
Total 49 Total 49 

Discussion of results 
The findings appear to be in line with reported difficulties of students’ recognition of 

exponential growth (Ellis et al., 2012). Furthermore, as Thompson and Carlson (2017) 
stated, students might need to have concepts of function in mind to think about integra-
tion, differentiation, and the organic relationship between them in efficient ways. One 
might speculate whether students need to make some approximations of differentiation 
before they can sort the graphs into coherent groups, or whether there are yet unknown 
mechanisms at work. What remains furthermore unclear is how students envision quan-
tities or variables varying (Thompson and Carlson, 2017). It appears to be the case that 
detecting “correct” patterns also requires covariational reasoning (Ferrari-Escolá, 
Martínez-Sierra, and Méndez-Guevara, 2016) on the part of the students. 

Regarding the second task, Paoletti (2020) argued that students may assign different 
meanings to graphical and analytical representations of inverse functions. Specifically, 
students may make an “in-the-moment functional accommodation to their inverse func-
tion meanings in the graphical context” (Paoletti, 2020). In our example, however, it is not 
necessarily true that the students recognize the possibility to inverse a function, or that 
the “two meanings” of the graphical and verbal representation led to assignment errors; 
still, the high failure rate in the second task and the naming of the groups in the first task 
suggest that the mapping between verbal and graphical representations is a difficult task 
for the students. 

Presmeg and Nenduradu (2005) supported this finding by showing problems in 
transferring algebraic and graphical representations for an exponential function. Difficul-
ties in understanding exponential growth are well-documented, and even teachers appear 
to struggle in transferring mathematical knowledge as in analysis of exponential growth 
to recognize this phenomenon in nature or to generalize rules (Ellis et al., 2016). 

While there are no studies explicitly treating the problem of verbal versus graphical 
representation of a function, there are known differences in brain activities in accessing 
arithmetic facts, visual number form, and the verbal system (Dehaene and Cohen, 1995). 
Mathematical intuition, which might be at play in a crude form at least in the second ex-
periment, may emerge from the interplay of linguistic competence and visuospatial rep-
resentations (Dehaene et al., 1999). If this is the case, an ex-ante knowledge of verbal and 
graphical representation of common behavior modes cannot be expected of participants, 
if they have not learned it beforehand and internalizing mathematical ability is character-
ized by a shift in activation in different cerebral areas (Zamarian, Ischebeck, and Delazer, 
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2009). This means that a highly consistent and usable scheme for identifying elementary 
behavior modes is even more relevant. 

Discussion 
At the merely conceptual level, the proposed taxonomy of elementary behavior 

modes has some advantages over the three previous taxonomies: 
1. It covers all possible elementary combinations of the first and second derivatives. 
2. There is one and only one mode for every possible combination. 
3. The name labels are consistent with the combined derivatives and free of semantic 

links into the realm of causal structure or mathematical representations. 
4. The synonyms make it tolerant of any discipline or application domain with a proper 

taxonomy. 
However, is it worth the effort to revise the taxonomies already in use in SD? Alt-

hough being from a small sample, our data suggest that at least students without some 
prior mathematical competence intuitively classify curves in ways that do not facilitate 
model conceptualization, and that the typical labels of behavior modes can indeed in-
crease the difficulty of learning the required categories. Insofar as freshmen and second-
year students represent the wider group of mathematically naïve individuals, there ap-
pears to be a need for reconsideration and improvement. 

SD is not the only discipline with an established set of behavior modes for classifying 
curves. Researchers and practitioners in different areas deal with different problems and 
different context, looking at reality through different conceptual lenses. Using area-spe-
cific name labels for typical shapes of behavior allows reducing cognitive load and is 
therefore rational. The fact that the causal structures are isomorph and that the same math-
ematical formulations are used is secondary for the predominant work situations. 

One may categorize behavior shapes into modes according to diverse criteria: the 
direction of change (slope, first derivative), change of speed (second derivative), or both. 
Use of the second derivative is typical in mathematics and revealing for the terms used. 
The sign of the second derivative can be positive, zero, or negative, but is called “concav-
ity” in mathematics. If the second derivative is positive, the numerical representation of 
the slope is increasing—becoming more positive or less negative; this is called “concave 
up,” and “concave down” refers to a curve becoming less positive or more negative. 

In the case of economics, the business cycle is a concatenation of modes comprising 
four phases, and one can use the behavior modes to classify them, as shown in Table 12. 

Table 1: Behavior modes of the business cycle 

Phase 
Modes 

Atomic Fundamental Glossary Elementary 

Expansion Logarithmic Goal-seeking 
Asymptotic growth, goal-

seeking 
Decelerating increase 

Recession Exponential ? Exponential collapse Accelerating decrease 

Depression Logarithmic Goal-seeking 
Asymptotic degrowth, 

goal-seeking, exponential 
behavior 

Decelerating decrease 

Recovery Exponential Exponential growth 
Exponential growth, 
exponential behavior 

Accelerating increase 

The “atomic” taxonomy focuses on the acceleration behavior and leaves the direction 
of change out of consideration. This orients the search for generative causal structures; but 
at the same time, individuals interested in economics may feel a cognitive dissonance be-
cause there is no difference between increases and decreases in economic production. 
Economists may also wonder why the peak and the through of the business cycle would 
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be goals, to speak of goal-seeking behavior. The definitions in the glossary are ambiguous; 
different modes match with the shapes and can be used to detect relevant patterns. 

Another case are the diverse uses of logistic growth in economics, marketing, innova-
tion, population dynamics, epidemiology, and others. The S-shaped growth curve can be 
decomposed in episodes, which can then be classified by the three sets of definitions, as 
shown in Table 13. 

Table 2: Behavior modes of logistic growth 

Episode  
Modes 

Atomic Fundamental Glossary Elementary 

 

Exponential Exponential growth 

Exponential 
growth, 

exponential 
behavior 

Accelerating 
increase 

 

Logarithmic Goal-seeking 

Asymptotic 
growth, goal-

seeking, 
exponential 

behavior 

Decelerating 
increase 

Modelers interested in marketing, who know the Bass model, as well as public health 
modelers who know the SIR model, can doubtlessly fare well with the “atomic” or the 
“fundamental” modes. They may find it bewildering that the market saturation reveals 
an unstated goal, or that the goal of a virus would be to make the entire surviving popu-
lation resistant. Again, the definitions in the “glossary” are ambiguous, as in the case of 
the business cycle. 

Even if a single discipline such as SD adopts a taxonomy of behavior modes based 
on general criteria such as consistency and usability, it would be pointless to call all other 
disciplines to adopt that taxonomy. Rather, the SD field can teach modeling novices a tax-
onomy consisting of modes that are explicitly linked to the modes established in other 
disciplines. For instance, learning the elementary models may even facilitate learning the 
relevant mathematical structures or learning about the business cycle, as exemplified in 
Table 14. 

Table 14: Elementary behavior modes with synonyms. 

System dynamics 
Other disciplines 

Mathematics Economics 
Accelerating increase Exponential growth Recovery 
Decelerating increase Logarithmic growth Expansion 
Accelerating decrease ? Recession 
Decelerating decrease Exponential decay Depression 

At this stage, further research to answer several empirical questions will help to ad-
vance the discussion. 
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1. Which visual features do novice modelers use when they categorize behavior graphs 
when the variables shown are abstract (have no conceptual link into previously 
known application domains)? 

2. Which visual features do newcomers from other disciplines (economics, manage-
ment, public policy, health, ecology, etc.) use when they categorize behavior graphs 
when the variables shown are concrete (belong to a domain where their prior 
knowledge will guide their classification)? 

3. Does the use of other taxonomies impair the recognition of behavior modes in trans-
fer tasks? For example, suppose individuals are randomly assigned to one of two 
conditions, either the “elementary” taxonomy or one of the other taxonomies. They 
receive a set of examples with only positively sloped curves, but curvature varying 
between positive and negative. One possible task is then “draw a curve for each of 
the modes when the slope is negative,” and another possible task is handing out ex-
amples with negatively sloped curves and prompt “give the corresponding names.” 
Would individuals using the “elementary” taxonomy draw correct curves and give 
the correct name more frequently and/or in less time? 

Conclusion 
SD is characterized by examining the relationship between structure and behavior. 

Establishing this relationship requires practitioners to identify elementary behavior 
modes in time series, as these behavior modes can be directly linked to stock and flow 
structure. Establishing this link is important both in the early stages of model building 
and in the model’s validation. Hence, this identification is one important piece in the over-
all modeling process. 

However, the elementary behavior modes come in different names, stemming from 
their underlying mathematical function or from naming traditions within each field. The 
field of SD is no exception in this respect, with different published taxonomies for the 
behavior modes. In this article, we discussed the taxonomies of Ford (1999), Sterman 
(2000). (Barlas and Kanar, 1999) and Ford (2019) and highlighted similarities and differ-
ences. Examination of these prior taxonomies according to the criteria of consistency and 
usability has revealed some inconsistencies and usability limitations, as far as the needs 
of novices are concerned. While these inconsistencies such as differences in naming con-
ventions may be of little concern for experienced modelers since they already know what 
is meant, an experiment with novices suggests that these limitations make a difference for 
those without such prior knowledge. We discovered that both the classification and nam-
ing of elementary behavior modes pose significant challenges for college students without 
prior knowledge of SD. Only about half of the students were able to correctly identify 
groups with identical elementary behavior modes, but without being able to properly dis-
cuss their characteristic features. Furthermore, a majority of them could not draw a graph 
of behavior modes corresponding to given information. It appears therefore plausible to 
conclude that differences in taxonomy can pose a significant hurdle for newcomers to SD. 

We propose a new taxonomy for the elementary behavior modes, which is oriented 
at their mathematical properties of the first and second derivatives, but uses name labels 
that are semantically independent from mathematical concepts and only refer to visual 
clues. While persons with a profound mathematical knowledge or experts in SD might 
not find much novelty in this taxonomy, the new taxonomy is targeted at novices in SD 
without strong prior mathematical knowledge and teachers/university professors for in-
troductory courses in SD. The proposed taxonomy can help both because of its simplicity 
and systematic application scheme and can be applied in fields with different naming tra-
ditions. 

Several limitations need to be mentioned. First, the data from one experiment allow 
only cautious statements regarding novice difficulties in learning about behavior classifi-
cation. Additional data about frequent classification errors or learning hurdles—espe-
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cially with the proposed taxonomy—are called for. Second, proposing a taxonomy is ef-
fectless unless it becomes part of learning materials. This is an invitation for instructional 
designers and lecturers to develop such materials and collect evidence on their effects for 
novices. 

We close by underlining that pattern recognition in SD remains a manual task, as it 
is an essential part of model conceptualization and building. Rather than intending to 
overthrow existing taxonomies, we hope that the proposed taxonomy can minimize some 
of the confusion novices in SD have in getting to know the central concepts of the field; 
easing the early learning work for beginners is an important first step toward high-quality 
modeling. 
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