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Abstract

Bacillus thuringiensis (Bt) is a spore-forming bacterium that produces insecticidal
proteins and other virulence factors and is considered one of the most successful
bioinsecticides available to control pests in agriculture. Bt strains have been reported as
endophyte or rhizospheric bacteria, but little is known about the implications of this
property of Bt in crop protection. Here, we review if Bt can establish as an
endophyte/rhizobacterium and evaluate if Bt as an endophyte/rhizobacterium can
simultaneously act against different phytopathogens (fungi, bacteria, insects and viruses)
plus promote plant growth. The implications of the proposed review will broaden our
understanding of Bt as a versatile entomopathogen by exhibiting differential behavior

depending on context.
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1. Introduction.

Bacillus thuringiensis (Bt) is an aerobic and entomopathogenic bacterium
belonging to the Bacillus cereus group. Bt-related studies mainly focus on its insecticidal
activity due to its entomopathogenic properties'=3. However, the natural ecology of Bt is

poorly understood. Bt is ubiquitous in the soil but it is unclear whether it exists in the bulk
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soil in an active form or whether this is merely a ‘sump’ where spores are deposited for
possible future consumption or distribution. The possible activity of Bt in the rhizosphere
is also poorly studied with some indications that associations with roots may have a role
in soil colonization*. Meanwhile, some studies have indicated that Bt may exist within
plant tissues as a rhizospheric/endophytic bacterium, with implications for crop
protection, as a bioprotectant and biofertilizer’.

Endophytic bacteria exist inside the plant tissues and this gives them an ability to
contact with the plant’s cells continually and to influence directly the plant host’s
metabolism!%12, Several studies have reported that rhizospheric/endophytic Bt isolates
can stimulate both plant growth!*=*° and resistance against pathogens and pests®31-48,
Endophytic locations may also be advantageous since the toxicity of the Bt strains is
affected by UV light (toxin inactivation) and flushing away of spores by precipitation
(toxin washing)**>1. As a result, to reduce the number of the chemical pesticide
applications and improve plant production, it is of great interest to search for endophytic
Bt isolates, which inhabit the internal or associated plant tissues, are less influenced by
environmental factors and potentially more integrated with plant metabolism and which
produce insecticidal proteins, in addition to virulence factors against phytopathogens®2-
54.

Here, we overview whether Bt as an endophyte/rhizospheric bacterium can act
simultaneously against insect pests and/or phytopathogens (fungi, bacteria or virus).
Moreover, we evaluate the role of Bt as a biofertilizer and bioprotectant in inoculated
plants. This approach to the ecology of Bt could represent a potential alternative of Bt to

be used as bioinoculant instead as spray to improve the resistance to biotic stresses.

2. Translocation of Bacillus thuringiensis into plant tissues and

interaction with other plant growth promoting bacteria.


https://doi.org/10.20944/preprints202210.0254.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2022 doi:10.20944/preprints202210.0254.v1

Plants in the environment live in association with diverse, taxonomically structured
communities of microorganisms. The plant microbiota can be understood as a multitude
of microorganisms (virus-like particles, bacteria, fungi, and oomycetes) that grow
associated with plants roots®. It has been reported that the most common bacteria present
in the plant microbiome are bacteria from the genera Pseudomonas, Bacillus,
Burkholderia, Stenotrophomonas, Micrococcus, Pantoea and Microbacterium®®,
Therefore, it has been suggested that the endophyte microbiome may be a subpopulation
of the rhizosphere inhabiting bacterial®.

2.1. Presence of Bacillus thuringiensis in plant tissues samples and vertical
transmission

Bt have been isolated from different plant tissues (root exudates, leaves samples,
stems, etc)1423:2428.303843 and rhizosphere soil samples?®25°, Specifically, Bt has been
isolated from different agroeconomic crops (Figure 1). Regarding the Bt distribution in
the plant tissues, it was present throughout the plant (roots, stem, leaves, etc.)*”*® where
the in the rhizosphere and roots the abundance of Bt was higher than in the rest of the
plant tissues (stem and leaves, etc.)®"°°. These results suggests that the soil can act as a
reservoir and the roots can act as a gate for Bt to be translocated to the plant tissues, in
the aim to increase the likelihood of infecting invertebrate hosts?*. In addition, Garcia-
Suarez et al, 2017%° reported the presence of Bt in the seeds of Arabidopsis thaliana Bt
colonized plants. Thus, it has been suggested that the Bt showed a vertical transmission
in Bt colonized plants.
2.2. Interaction of Bacillus thuringiensis with other plant growth promoting bacteria.

Microbial interaction is established between a group of microorganisms that
interact with each other to establish and maintain the relationship, which can be positive
(mutualism, proto-cooperation and commensalism) or negative (competition, parasitism,

predation and ammensalism)®°. In the case of the interaction of Bt with other plant growth
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promoting bacteria (PGPB) (Burkholderia phytofirmans, Pseudomonas fluorescens,
Rhizobium leguminosarum and Azospirillum brasilense), include playing roles in the
colonization efficiency, plant growth, plant nodulation (Figure 1)?426305961-63 Thg
reports published up to date?>?33061 showed a wide range of plant response to the co-
inoculation of Bt plus PGPB bacteria. Vidal-Quist et al., 2013% reported that the co-
inoculation with B. phytofirmans or P. fluorescens in A. thaliana showed no effect on Bt
colonization levels. Rojas-Solis et al., 2015°® evaluated five different strains of P.
fluorescens plus Bt in Zea mays (corn), where the combinations of P. fluorescens UM16
+ Bt UM96 had beneficial interaction (total fresh weight, hypocotyl length and root
length) with the plant, while separately the P. fluorescens and Bt strains showed broad
potential for colonizing the rhizosphere and promoting tomato plant growth. Mishra et al.,
2009 indicated that Bt -KR1 when co-inoculated with R. leguminosarum-PR1 increased
the nodule number, shoot weight, root weight, and total biomass, over rhizobia
inoculation alone in Pisum sativum (pea) and Lens culinaris (lentils). Almeida et al.,
20213 reported that Bt RZ2MS9 when co-inoculated with Azospirillum brasilense

showed no effect on the dry weight of maize roots and shoots.

3. Toxicity of Bacillus thuringiensis isolates with endophyte/rhizospheric

behavior against invertebrate pests.

Most of the information on the insecticidal activity of Bt has been obtained
applying the Bt products or its invertebrate-active proteins (belonging to a range of
structural classes®*) externally’=3 or expressing the toxin genes in GMO crops. However,
the toxicity of Bt acting as a endophyte/rhizospheric bacterium is not well characterized.
The toxicity results reported to date of Bt associated with plants corroborate that Bt can
be toxic to different kinds of phytopathogens (fungi, bacteria, viruses and oomycetes) and

predators (insects, nematodes)!®>16:18:31-3840.4143-4865 (Eigyre 1). Activity against the
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different targets (insect, bacteria, fungi and oomycetes) will be discussed in the following
sections.
3.1. Activity against insect pests in plants colonized with Bt strains in lab conditions.

A range of Bt strains (var kurstaki (Btk), var israelensis (Bti), var. thuringiensis
(Btt), var azawai (Bta) and recombinant Bt strains) have been used to colonise different
plants (wheat, potatoes, beans, cotton, cabbage and orange tree) prior to tests of
insecticidal activity against Lepidoptera (Tricoplusia ni, Plutella xylostella and
Spodoptera frugiperda), Coleoptera (Leptinotarsa decemlineata) and Hemiptera (Aphis
gossypii, Schizaphis graminum and Diaphorina citri)*3840:43444647 The mortality of the
respective pests in the plants colonized with Bt increased were compared to the non-
treated plants (NT), the results are summarized in Table 1. The different Bt inoculated
crops (cabbage, cotton, wheat, potatoes, peanut, orange tree) showed an increase in the
toxicity against insect pests. Interestingly, the increase in the toxicity compare to the NT
plants have been reported in all the crops (Table 1). Regarding the toxicity differences
among the Bt isolates in brassica, cotton, potatoes, wheat and orange tree could may be
due to the fact that Bt colonizes the plant in a phylogeny dependent manner?*. Further
analysis is need it to determine if the variability in the reported toxicity data is due to the
action of Bt toxins, the activation of plant defence (Systemic Acquired Resistance (SAR)
and Induced Systemic Response (ISR)) or the increase plant toxicity it is not a general
effect of the endophythism, it could be Bt strain-plant dependent process.

As regard the effect in the insects fed with plants colonized with Bt isolates,
Veselova et al., 2019* report a reduction in the insect fecundity of Schizaphis graminum
(spring green aphid, a major pest that feed mainly Poaceae plants like wheat, corn, oat,
etc.) in 7-day-old wheat seedlings for the Bt isolates B-6066 and B-5689. Although da
Costa et al., 2020% reported no mortality of S. frugiperda fed in cotton plants regardless

of the form of inoculation, in 11-dat old cotton Bt colonized plantules for four Bt isolates
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tested (51450, S1905, S2122 and S2124). The Bt strain showed the highest adhesion of
the spore/crystal complex to the seed coats, so it was selected for toxicity in vitro assays
of leaves collected at 18-, 23- and 30-day old Bt colonized plantules. The Bt strain was
not toxic at the spore concentration 10° CFU/mg and 108 CFU/mg but S. frugiperda larvae
showed a weight reduction in plants grown from seeds treated with Bt isolate S2122.
3.2. Toxicity against insect pests of Bt strains isolated from plants naturally or
artificially colonized.

Few reports are published that provide toxicity of isolated Bt strains from the
plants naturally colonized®**! or artificially inoculated®*° with Bt isolates. To date, three
reports>3*4! reported toxicity of isolated Bt from colonized (natural®® and artificial>*
bacterial colonization) plants of cotton, lavender, poinsettia and Arabidopsis thaliana.
Monnerat et al., 2003*° and Garcia-Suérez et al., 2021*' performed toxicity assays after
the Bt strains were isolated form the plant. Specifically, a set of different techniques of
feeding assays (leaf disk, surface contamination and drop-feeding methods) were
conducted against Anticarsia gemmatalis, Spodoptera frugiperda, Manduca sexta and
Aedes aegypti respectively (Table 2). The toxicity data of the respective Bt isolates after
being isolated from the plant tissues indicate that the respective Bt strains were toxic.
Specifically, the Bt isolates LBIT-1250L and LBIT-1251P were 2.5 and 4.1 times more
active than the comparator standard strains (Bti and Btk) (Table 2). Monnerat et al.,
2003%° and Garcia-Suarez et al., 2021*! do not indicate the mortality of the respective
pests in the Bt-inoculated plants. Therefore, it cannot be determined if Bt kept their
toxicity as a endophyte/rhizobacterium or free-living bacterium.

In the case of Lin et al., 2021° a 1-week-old A. thaliana plants was inoculated with Bt
407 Cry  and transfer to steril media. Bot incubations were done for a period of 48h. These
steps were repeated for 40 transfers. Because of the experimental evolution experiment,

two evolved Bt lineages E and F showed an increase in the activity compared to the
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ancestor Bt 407 Cry in in vivo toxicity assays Specifically, the Bt lineages E and F
showed a significant several fold decrease in LDso compared to the ancestor strain, via
injection into the hemolymph of Galleria mellonella insect larvae (Table 2). Also, in in
vitro assays the evolved Bt lineages E and F showed an increased hemolytic zone
compared with the ancestor.

3.3. Protective effects of Bt against phytopathogens (fungi, bacteria, viruses and
oomycetes).

In addition to the reported toxicity against insect pests, some Bt isolates showed
protective effects against a wide range of phytopathogens (fungi, bacteria, viruses and
oomycetes) (Figure 1). The protective effects of these Bt isolates have been demonstrated
in vitrot>16:183133354865 and in Bt colonized plants®2343642 \With regards the toxicity
spectrum of these Bt isolates, they have been reported to be toxic against pathogenic fungi
(Aspergillus niger, Alternaria alternata, Botrytis cinerea, Colletotrichum graminicola,
Fusarium oxysporum, Fusarium verticillioides, Pythium ultimum, Verticillium dahliae,
Verticillium longisporum, Urocystis agropyri,), bacteria (Xanthomonas citri subsp. Citri
and Ralstonia solanacearum [R. solanacearum discussed in section 7]), potato viruses
(Potato virus Y (PVY), Potato virus M (PVM), and Potato virus S (PVS) [commented in
section 8]) and oomycetes (Phytophthora infestans)®1618:31-37:424548,57.65

Briefly, Bt isolated tested in vitro toxicity assays demonstrated that the bacteria
from natural/artificial colonized plants grown as a free-living bacterium (culture media)
showed activity against the respective phytopathogens assayed!>16:1831-33:354865 Thege
phenomena have been reported previously*® and contribute to the Bt pathogenicity.
Regarding the Bt colonized plants®23* a reduction in the plant symptoms or the number
of infected plants against phytopathogenic fungi (B. cinerea and U. agropyri) is shown.
Martinez-Absalén et al., 20143 reported that the barrel medic plants (Medicago truncalia)

inoculated with Bt UM96 and B. cinerea showed a reduction in the disease symptoms
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(chlorosis, presence of grey mould, root browning and necrosis). Also, the protective
effect was observed in plants first inoculated with Bt UM96 strains and infected with B.
cinerea. Tao et al., 20143 reported that the twelve varieties of wheat inoculated with Bt
strains 58-2-1 and 37-1, showed a different toxicity profile against U. agropyri. The strain
58-2-1 showed activity against U. agropyri in nine wheat varieties and no activity in three
wheat varieties. As soon as the Bt strain 37-1 showed activity on the seven varieties and

no toxicity on the remaining five wheat varieties.

4. Plant growth promotion and pathogenicity traits of Bacillus

thuringiensis strains.

Bacteria within the taxonomic class Bacilli include well-known bacteria with
endophyte/rhizopheric activity (Bacillus megaterium, Bacillus polymyxa, Bacillus
subtilis, Bacillus amyloliquefaciens, Bacillus pumilus) available in commercial
biofertilizers®. The endophyte/rhizopheric Bacilli bacteria can act as PGPB, stimulating
the acquisition of resources and modulation of plant growth and development®!l, As a
member of this class, Bt can also stimulate plant growth and health. Bt strains may exhibit
plant growth promotion traits that are common to other well-known PGPB of the class
Bacilli®. Plant growth promotion traits described for Bt include: synthesis of
phytohormones such as IAA (indole acetic acid)!*-1821-2857 and ACC-deaminase®®’-
19.21.24.2627 - piological Nz fixation***°, ammonia production (NHs)**'®, phosphate
solubilization'*2%%7, production of sideophores'’-1%257 and volatile organic compounds
29,30.

Also, Bt colonized plants exhibit traits that increase the plant protection against
phytopathogens. Those traits are a set of enzymes that impair or reduce the development
of phytopathogens (fungi, bacteria and viruses). It has been reported that Bt could produce

the enzymes amylase, cellulase, proteases, pectinase, xylase!®®’, gluconase®®,
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chitinases®>% AiiA lactonase®” and RNAse activity*2. Regarding the role of the Bt toxins
in the insect mortality increase in Bt colonized plants it is not well understood. The plants
inoculated with different strains of Bt showed an increase in the insect mortality compare
to the non-treated plants (Table 1 and 2). But little it is known if the mortality reported is
caused by the Bt toxins, secondary metabolites produced by Bt, the activation of the plant
defence response, etc. Further research will be need it to determine the role of the Bt

toxins in the insect mortality reported in the Bt colonized plants.

5. Applications of the Plant Growth Promotion traits of Bacillus

thuringiensis in phytoremediation.

Related with the activity of Bt as a PGPB, the plants colonised with endophytic
Bt improve their resistance against abiotic stresses, heavy metal and chemical
bioremediation. Improvement of plant tolerance to soil contamination (heavy metal and
chemical contamination) has been found to correlate with IAA and ACC-deaminase
production by the endophytic Bt strains®?%?’. The ACC-deaminase activity of
endophytic/rhizospheric bacteria regulates the biosynthesis of ethylene in inoculated
plant roots, generating longer roots and greater root density®®°, Babu et al., 2013?* and
Sharma et al., 2016*° also reported a significant increase in the root and shoot length in
Vigna radiata (mung bean) and Alnus firma (park tree) when colonised with Bt isolates,
respectively. High concentrations of ethylene in the roots are common in plants under
stress conditions, causing various physiological changes (including tissue abscission,
short root length and senescence)®®®. The bacterial enzyme ACC deaminase acts by
degrading the plant ACC, the direct precursor of ethylene (generating a-ketobutyrate and
ammonia) and preventing ethylene accumulation and, therefore, helping the plant to
reduce the abiotic stress, promoting its growth and survival’®. For the role of the IAA, it

has been proposed, that the roots of the plant exude various compounds to the rhizosphere,
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such as sugars, organic acids and amino acids like tryptophan Glick et al.,2014%°. PGPB
can assimilate tryptophan, an essential precursor of IAA synthesis, then produce IAA to
induce the transcription of auxin response factors, promoting plant growth. Batista et al.,
202128 reported that the endophytic Bt strain RZ2MS9 harbours the complete set of genes
required in two of the four main pathways for IAA production (indole-3-pyruvate (IPA)
and tryptamine (TPM) pathways). The IAA content (time range: 3h to 30h, IAA
concentration range: 0.06 to 0.20 pg/ml with an IAA production peak at 21h with a
concentration of 0.20 ug/ml) is cell density dependent when Bt RZ2M9 are in LB medium
supplemented with 1 g/l of I-tryptophan (Trp), having a constant production in the log
phase and a production peak in the stationary phase. At this concentration of Trp Bt
RZ2M9 produces almost five times more IAA during the stationary phase than in the
control medium (LB without Trp). Finally, the application of the Bt strain RZ2MS9 to
Solanum lycopersicum Micro-Tom (tomato) increased the shoot dry weight by 24%;
modified MT root architecture increasing average lateral root length by 26%; inhibited
the axial root growth and changed root histology (elongation of the root cortical cells with

intensified mitotic activity).

6. Plant defense response to the inoculation with Bacillus thuringiensis

isolates.

The plant defense response describe a range of adaptations evolved in the plants
to reduce the damage and improve their survival and reproduction efficiency. The general
model indicate that the SAR is a "whole-plant” resistance response that occurs following
an earlier localized exposure to an abiotic/biotic stress. Meanwhile the ISR is a
mechanism of plants that is activated by bacterial colonization’*~"3. The ISR resembles
the SAR pathway but acts through different signalling pathways. Induction of SAR is

through salicylic acid (SA) and ISR requires jasmonic acid (JA) and ethylene (Et)
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signalling pathways’*~". Regarding the plant response some reports suggest that there is
no uniform, instead there seem to be different responses depending on the eliciting
microbial strains, involving JA/ET signalling as well as SA signalling pathways’+"".

In the case of Bt colonized plants, the interaction between plant tissue and Bt
triggers the plant defence responses (Systemic Acquired Resistance (SAR)*® and
Induced Systemic Response (ISR)%+"). Plants colonized with Bt after being exposed to
phytopathogenic bacteria, fungi or aphids showed as part of their physiological response
an increase in the production of H20O2 and the activity of the following enzymes:
gluconase, chitinase, ascorbate peroxidase, polyphenol oxidase and phenylalanine
ammonia lyase3®4478-80 (Figure 2). The signalling pathways (SAR and ISR) activated in
the Bt colonized plants after been infected with a phytopathogen, are not consistent
among the different reports published up to date (Figure 2). Hyakumachi et al., 2013%¢
and Takahashi et al., 20143 showed that in Solanum lycopersicum (tomato) colonised
with Bt (37) or inoculated with cell free extract (filtrated supernatant) (36), respectively,
and exposed to the bacterial wilt of tomato, Ralstonia solanacearum, induced ISR in the
leaf, stem and main root tissues, but not in the lateral root tissue. In addition, the plants
colonized/inoculated with Bt showed an up-regulation of several SA-responsive defence-
related genes (PR-1(P6)%¢3"4"8 PR-2, PR-1b1(p14), P4, PR-4, PR-P69E, PR-P69G?')
and down-regulation of the JA-responsive defence-related genes (Proteinase inhibitors 11
(PI-11) and CEVI57 (PI-CEVI57)*"). Burkhanovaet al., 201778 and Veselova et al., 2019*
studied Triticum aestivum (wheat) colonised/inoculated with two different Bt strains (B-
5689 and B-6066) and exposed to the phytopathogenic fungus Septoria nodorum or the
aphid Schizaphis graminum reported the up-regulation of the SA-responsive defence-
related genes (PR-1 and NADPH-oxidase), JA-responsive defence-related genes (PR-6
gene) but no difference in regulation of the PR-9 gene (SA and JA-dependent signalling

cascade). Finally, Sommer et al., 20218! described that in Arabidopsis thaliana inoculated
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with Bti and not exposed to any phytopathogen, the plant defence response activated was
a different signalling pathway than the SAR or JA signalling pathway responses. More
research will be needed to determine if the same/different plant infected with the

same/different strains of Bt might activate the SA or JA signalling pathways.

7. Effectiveness of the application of Bacillus thuringiensisor it’s

metabolites in field conditions.

To date few reports have been published about the successful use of Bt as a in field
conditions!6:425982-84 ‘Sporokan et al., 2020* evaluate the efficiency of potatoes colonized
with Bt in the control of L. decemlineata and potato viruses (Potato virus Y (PVY), Potato
virus M (PVM), and Potato virus S (PVS)) in two different growth seasons. With regards
the control of L. decemlineata in field conditions, a reduction in fecundity (number of
eggs per plant) was statistically significant in two (Bt B-5351 (4.6 + 2.2) and Bt B-6066
(~7.0 £ ~2.0)) of the three Bt-treated potatoes compared to the water-treated plants (14.0
+ 4.5). In addition, all three strains produced a reduction in the number of insects in the
early and final larval instar was observed. Particularly, plants treated with Bt B-6066 and
B-5351 showed the lowest values for the early instar larvae, meanwhile for the final instar
larvae the Bt B-5689-treated plant showed a reduction in the number of larvae of 50%
compared to the 33 % reduction in the potatoes treated plants with strains B-5351 and B-
6066. When infection by potato viruses was assessed, a significant reduction in the
incidence (infected plants/plot) was observed for PVS, PVM and PVY in the two growth
seasons. For PVS, PVM and PVY the Bt isolate B-6066 showed the greatest incidence
reduction in the all the potato virus (single or double inoculated) with between 0-15%
infected plants compared to the 40-70% of water-treated control potato plants.

Regarding the efficacy of Bt as PGPB, there are few published studies on the use of

Bt or its combination with other PGPB (Burkholderia ambifaria)® or commercial
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biofertilizer microbial agents (Azospirillum brasilense)®® in field conditions.
Bandopadhyay et al., 20208 reported a significant increase in seed germination, shoot
height, root length, leaf diameter, vigor index, fruit weight, seed weight, total fresh weight
and dry weight of Abelmoschus esculentus (okra) colonized with Bt. Also, the A.
esculentus colonized with Bt showed increases of 68% in protein content in leaves, 70%
catalase activity, 52% peroxidase activity, 66% soluble sugar content, 34% protein
content and more than 75% phosphorus content compared to untreated plants. Ferrarezi
et al., 2022°° reported the use in field conditions of Bt isolate RZMS9 with A. brasilense
in maize fields, the treatment of Bt RZ2MS9 + A. brasilense in maize plants significantly
increased plant height by 2.8% and 2.6% and stalk diameter by 9% and 6.9%, while the
inoculation of Ab and Bt RZ2MS9 individually do not differ from the control. Also in
field conditions, the inoculation with Bt had no effect either on the composition of the
maize-associated bacterial community (Gammaproteobacteria, Betaproteobacteria,
Actinobacteria, Alphaproteobacteria, Cytophagia, and Bacilli) or on the total bacterial
biomass. However, significant differences in the richness and in the community structure
have been detected in the different plant niches analyzed.

As an alternative to inoculate the whole PGPB to the plant, Ismail et al., 20211°
compared the effect of applying exogenously plant hormones (IAA, benzyl adenine (BA))
and metabolites of Bt PB2 in Phaseolus vulgaris (beans). The metabolites of Bt PB2 were
obtained from the supernatant (incubated 6 days at 28°C) with ethyl acetate (1:1 v/v 10 h
at 4°C). The solvent layer (containing metabolites) was separated and evaporated to get
the crude metabolites. A concentration of 100 ppm was applied to the plant leaves from
up to down with a spray atomizer, the treatments were done at 15-, 30- and 50-days old
seedlings. As a result, the bacterial metabolites of Bt PB2 surpassed the exogenously
applied hormones in increasing the plant biomass, photosynthetic pigments, carbohydrate

and protein contents, antioxidant enzyme activity, endogenous hormones, and yield traits.
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8. Conclusions.

Bt synthesizes an extraordinary diversity of insecticidal proteins and has
demonstrated its potential and safety as a biocontrol agent over more than five decades.
Over this time Bt has been used in field conditions as sprays or, more recently, generating
GMO that encode Bt pesticidal proteins. With the current knowledge Bt can also be
considered as a new promise PGPB that it is able to promote the plant growth and act
against phytopathogens in addition to insect pests.

However, many questions remain about the soil microbial ecology of Bt: What is
the role of endophytic/rhizospheric Bt strains within the plant? How frequently are these
strains distributed in nature? How does Bt interact with other members of the plant
microbiome? Further experimentation is need to answer these questions and expand our
knowledge of Bt as a highly versatile entomopathogen able to adapt to different

environments.
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TABLES

Table 1. Toxicity of orange tree (Citrus sinensis var osbeck), peanut (Phaseolus vulgaris

var. cacahuate 72), cabbage (Brassica campestris var. chinensis and B. campestris hybrid

Matsukaze Sakata), potatoes (Solanum tuberosum var Early Rose breeds), wheat (Triticum

aestivum var salavat yulaevk) and cotton (Gossypium sp and Gossypium var delta-opal)

colonized with Bt strains to insect pests.

Endophyte-containing

Bt strain [serotype]

25-day-old plants

Crops/ Mortality (% £SE) Reference
o (gene content)
Infection time
D. citri
(Treatment 1/Treatment 2) (5 DAD*
Orange three S1302 [ND]
. . . 05, 0+3.
(Citrus sinensis (crylAb, cry3A) 90.0+5.96 a/68.0 £ 3.27 d
var osbeck) S1450 [kurstaki]
3-month-old plants (crylAb, crylAc, crylB, crylAa, 77.0+6.67ab/ 70.0+2.11d
cry2Aa)
$1989 [israelensis]
(cry4B, cryl0, cryll, or cytlA) 82.0+6.96ab/42.0+2.49¢
Recombinant strains
S2211 [ND] (crylAa) 50.0 + 8.94 ab/ —
$2209 [ND] (cry1Ac) 44.0+9.91 b/ — 43
S2396 [ND] (cry1B) 26.0 £ 5.81 be/ —
S2212 [ND] (cry2Aa) 51.3+9.35ah/36.0 £ 2.67 ef
S2036 [ND] (cry4A) 36.0 +5.82 b/36.0 + 2.67 ef
S2037 [ND] (cry4B) 62.0 £ 7.06 ab/ —
S2492 [ND] (cry10) 65.0 + 5.83 ah/66.0 £ 1.63 d
S2038 [ND] (cry11) 60.0 + 5.94 ah/66.0 + 1.63 ef
S2035 [ND] (cyt1A) 62.0 + 8.00 ab/54.0 + 3.40 ef
S2210 [ND] (cry1Ab) (NC) 33.0+£8.70 be/ —
H20 (NT) 14.4+£2.06¢/30.0+2.11f
S. graminum (7 DAI)
Wheat B-6066 [ND] (ND) 36.3+3.5
(Phaseolus vulgaris  B-5689 [ND] (ND) 331452 1
var. cacahuate 72) HO (NT 192819
7-day-old plants 20 (NT) T
L. decemlineata (3 DAI)
Potatoes B-5689 [thuringiensis] (ND) 33.3+3.1
(Solanum tuberosum var  B-55351 [kurstaki] (ND) 60.0 + 10.6 46
early rose)
H20 (NT) 6.7+05

d0i:10.20944/preprints202210.0254.v1
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Table 1 cont. Toxicity of orange tree (Citrus sinensis var osbeck), peanut (Phaseolus
vulgaris var. cacahuate 72), cabbage (Brassica campestris var. chinensis and B.
campestris hybrid Matsukaze Sakata), potatoes (Solanum tuberosum var Early Rose breeds),
wheat (Triticum aestivum var salavat yulaevk) and cotton (Gossypium sp and Gossypium

var delta-opal) colonized with Bt strains to insect pests.

Endophyte-containing )
Bt strains [serotype] )
Crops/ Mortality (% £SE) Reference
o (gene content)
Infection time

T. ni (7 days DADT

Penaut HD73 [kurstaki]
(Phaseolus vulgaris (crylAc) + gfp 48£3.0 10
var cacahuate 72)
14-day old plants H20 (NT) 23+4.0
Aphis gossypii (5 days DAN*
Cotton 29 [ND] (ND) 76.0+4.0a
(Gossypium sp) 40 [ND] (ND) 60.0+26b
Young leaves 616 [aizawai] (ND) 63.3+2.9b 4
1168 [ND] (ND) 73.3+29a
1576 [aizawai] (ND) 56.6 +3.7b
H20 (NT) 0.0+0.0
Pak Choi Pieris brassicae (3 days DAI)
Brassica campestris
var. chinensis 2810-S-6 [ND] (ND) 35+ NA 84
5-week old plants
H20 (NT) No mortality observed
P. xylostella — S. frugiperda
(7 days DAI)
Cabbage and Cotton
HD1 kurstaki crylAa,
Brassica (hybrid Matsukaze  crylAb, c[rylAc, cr]y2A) (+ g):‘p 10+ NA —20 £ NA
Sakata) (single inoculated plants)
28-day old plants 38

HD1[kurstaki] (crylAa, crylAb, 10 £ NA — 25 + NA

Cotton crylAc, cry2A) + gfp
(Gossypium var (weekly inoculated plants)
Delta-Opal)

28-day old plants H20 (NT) No mortality observed

SE: Standard error

ND: The serotype or gene content of Bacillus thuringiensis strains have not been

determined.
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NT: Non treated plants, water used as a negative control.

DAI: The insect toxicity assay have been performed for at least 3, 5 and 7 days,
respectively, when the plant reach to their specific development time (7-, 14-, 25-, 28- day
old plants®404446 5.week old plants®, 3-month-old plants*® and young leaves*’). All the plants had
been inoculated with their respectively Bt isolates prior to perform the toxicity assays.
NC: Negative control, recombinant strain S2210 harbouring the gene crylAb: the CrylAb
protein is not active against D. citri.

NA: The standard error was not determined in the bioassays with P. xylostella, S.
frugiperda and Pieris brassicae.

* Data (mean £ SE) followed by the same letter in each treatment did not differ
statistically. See Melatti et al., 2010*” (Student-Newman Keuls test P < 0.05) and Dorta
etal., 2019* (GLM with a quasi-binomial distribution plus post hoc Tukey—Kramer test;
P < 0.05) for further details of the statistical analyses performed.

t The standard error has been interpolated from the graph published in Garcia-Suarez et

al., 20174°.
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Table 2. Toxicity of the Bt isolates from different plant sources (naturally colonized or

artificially colonized) and then reisolated from their respective plant tissues.

Plant source of the

Bt strains [serotype]

] ] Insect pest Mortality Reference
isolated Bt strain (gene content)
Dose-response assays
LC50 (ng/ml) FL95
Lavender LBIT-1250L  [ND]  (Cry4-type
(Lavar_ldu_la A. aegypti duplex , Cryll-type, and Cytl-type)* 68 6.0-8.0
angustifolia)
Bti [israelensis] 17.6 13.0-24.2
41
LC50 (ng/cmz) FLogs
Poinsettia LBIT-1251P [ND] (Cry1-type)* 1.4 1.2-1.7
(Euphorbia M. sexta HD1 [kurstaki] 5.8 4574
pulcherrima)
LCso (CFU/larvae)t
Thale cress Bt 407 Cry ~6,000 + 1,000
(Arabidopsis G. mellonella Bt 407 Cry lineage E ~1,500 + 300 5
thaliana) Bt 407 Cry lineage F ~1,000 + 200
Mortality (%) of 150pl
final culture
S1974 [ND] (crylAa, crylAb, 100
crylAc, crylB)
S1979 [ND] (crylAa, crylAb, 100
crylAc, crylB)
S1983 [ND] (crylAa, crylAb,
100
S. frugiperda crylAc, crylB)
Cotton S1985 [ND] (crylAa, crylAb, 39
. and 100
(Gossypium sp) A. gemmatalis crylAc, crylB)
S1986 [ND] (crylAa, crylAb, 100
crylAc, crylB)
S1987 [ND] (crylAa, crylAb, 100
crylAc, crylB)
S1989 [ND] (crylAa, crylAb, 100

crylAc, crylB)

ND: The serotype or gene content of Bacillus thuringiensis strains have not been

determined.

* The gene content of the respective Bt isolates, was determined by protein profile

(protein band size). Since the gene content have not been confirmed with molecular

techniques (PCR or whole genome sequencing (WGS)), it be considered as preliminary

data.t The LC50 and the standard error for G. mellonella has been interpolated from the

graph published in Lin et al., 2021.
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Figure 1. Role of Bt as endophyte/rhizospheric bacterium and their implications in the control of different kinds of phytopathogens.
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Plant defense response of plants inoculated with Bacillus thuringiensis

Gene regulation activity

Physiological response of the plant

Dong-Jun et al., 2011%
(Cucumber)

4 Chitinase activity (1-4 DAI}

4 Gluconase activity (1-4 DAI)

4 Peroxidase activity (GPOD) (1-4 DAI)
4 Ascorbate peroxidase activity (1-4 DAI)

Akram et al., 20137
(Tomato)
4 Peroxidase activity (PO) (1-5 DAI)

4 Polyphenol oxidase activity (PPO) (1-5 DAI)

4 Phenylalanine ammonia lyase (PAL) activity
(1-5 DAI)

Burkhanova et al., 20177
(Wheat)
4 H,0, production in infected wheat plant
4 Peroxidase activity (0-3 DAI)
4§ Catalase activity (0-3 DAI}

Veselova et al., 201944
(Wheat)
4 H,0, production in infected wheat plant
4 Peroxidase activity (0-3 DAI)
- Catalase activity (0-3 DAI)

Hyakumachi et al., 201336
(Tomato)
Induction of the ISR in the leaf, stem and main
root tissues, but not in the lateral root tissue.
4 Chitinase activity (0-2 DAI)
4 Gluconase activity {0-2 DAI)

4 PR-1gene. SA-dependent signalling cascade

Takahashi et al., 20147
({Tomato)
Induction of the ISR in the leaf, stem and main
root tissues, but not in the lateral root tissue.
4 SA-responsive defence-related genes
Pathogenesis-related proteins (PR-2, PR-
1b1(p14), PR-1{P6), P4, PR-4, PR-PGIE,
PR-PESG) and b-1,3-glucanase
& {JA)-responsive defence-related genes
Proteinase inhibitors Il {PI1-11) and CEVIS7
(PI-CEVI57)

Burkhanova et al., 201778
(Wheat)
PR-1 gene (BtB.066 + B-5689)
SA-dependent signalling cascade
Increased the accumulation of PR-6
A" gene [BtB.0GE + B-5689)
IA-dependent signalling cascade
PR-9 gene (BtB.066 + B-5689)
SA and JA-dependent signalling cascade

Veselova et al., 201944
(Wheat)
NADPH-oxidase (BtB.0G6)
SA-dependent signalling cascade
+ PR-6 gene (BtB.066 + B-5689)
Ja-dependent signalling cascade
4 PR-9 gene (BB.0G6 + B-5689)
54 and JA-dependent signalling cascade

Sommer et al., 2021 (4rabidapsis thaliana)™®
Induction of the ISR by a different signalling pathway of SA or JA response. The ISR
depends on functional pathogen-induced 5A accumulation and signalling

B PR1 0h and 6h post-infection. SA-dependent signalling cascade
B PDF1.2 and V5P2 Oh and 6h post-infection. JA-dependent signalling cascade

Figure 2. Plant defence response of plant inoculated with endophytic Bt strains. Pink right arrows indicate

gene up-regulation, orange right arrows meaning slightly gene up-regulation while the Green down arrows

indicate gene down-regulation. See References section for the whole citation of the reports indicated in the

figure.
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