
 

 

Article 

Modularization Method to Reuse Medical Knowledge Graphs 
Maricela Bravo 1, *, Darinel González-Villarreal 1 , José-A. Reyes-Ortiz 1, and Leonardo-D. Sánchez-Martínez 1 

1 Universidad Autónoma Metropolitana; mcbc@azc.uam.mx, darinelrammstein@gmail.com, 
jaro@azc.uam.mx, ldsm@azc.uam.mx 

* Correspondence: mcbc@azc.uam.mx 

Abstract: During the creation and integration of a health care system based on medical knowledge 
graphs, it is necessary to review and select the vocabularies and definitions that best fit the 
information requirements of the system being developed. This implies the reuse of medical 
knowledge graphs; however, full importation of knowledge graphs is not a tractable solution in 
terms of memory requirements. In this paper we present a modularization-based method for 
knowledge graph reuse. A case study of graph reuse is presented by transforming the original 
model into a lighter one. 
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1. Introduction 
Knowledge graphs in the medical area have become enormously relevant to support 

medical research development and to facilitate exchange of clinical data and scientific 
advances. That is the case of the well-known NCBO BioPortal , a medical ontology 
repository, where multiple health institutions publish their ontologies or knowledge 
graphs. In this article we describe a modularization-based method for reutilization of 
portions of medical knowledge graphs into a general model maintaining reasoning 
efficiency.  

Reutilization of knowledge graphs occurs during the design and integration of 
multiple semantic representation models (ontologies or knowledge graphs) with the aim 
of generating a complete representation model to solve the requirements of intelligent 
information systems or expert systems. Reutilization of a knowledge graph or ontology is 
the task of completely or partially importing a model into another. The reuse of a 
knowledge graph may involve carrying out a process of modularization and adaptation 
or mapping from one model to another.  

The process of reusing a knowledge graph begins with the search and selection of the 
graphs or ontologies that are considered appropriate to complete the definitions required 
by the system. Once the knowledge graphs to be reused have been identified, it is 
necessary to review in detail how this integration will be carried out. To address this 
problem, the following questions should be considered: 

Is it necessary to import the entire model or only a part of the model is required? 
Is it necessary to adjust or make adaptations between the imported model and the 

host model? 
What is the most suitable modularization approach?? 
What is the computational cost of each option? 
This article describes a general method for generating and reusing knowledge graph 

modules. This method arises from the need to integrate a general knowledge graph for 
managing electronic patient records. During the process of designing and integrating the 
general knowledge graph, a great disadvantage was observed in reusing some biomedical 
ontologies. This is mainly because most of these ontologies are very large and complex. 
Therefore, it was necessary to develop a method that would allow obtaining useful 
information for the general graph by extracting modules. 
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As a result, four modules of knowledge graphs were obtained that were imported 
into the general knowledge graph. The resulting knowledge graph functioned adequately 
for the information needs required for the project. 

The rest of the paper is organized as follows: in Section 2 a review on modularization 
of knowledge graphs is presented, in Section 3 the method to generate and reuse medical 
knowledge graphs modules, in Section 4 the application of the method to generate the 
Medicament knowledge graph module is presented, in Section 5 the application of the 
method to generate the Disease knowledge graph module is described, in Section 6 the 
integrated knowledge graph modularization system is presented, in Section 7 two 
evaluation approaches are described, an finally in Section 8 conclusions are presented. 

2. Modularization of Knowledge Graphs 
One of the first attempts to address modularization of representation models was 

reported by Alan Rector in 2003 [1], who stated the importance of modularity as a key 
requirement for ontologies to achieve reutilization, maintainability, and evolution. 
Modularization of ontologies was defined as the task of decomposing an ontology into 
independent disjoint skeleton taxonomies. 

In 2006 Schlicht and Stuckenschmidt [2] described a modularization approach aiming 
at supporting the distribution of knowledge in a P2P network. Authors describe the 
requirements of reasoning efficiency, robustness and maintainability; and propose the 
following structural criteria: connectedness of modules, stating that the efficiency of 
distributed computation is closely related with the degree of interconnectedness of the 
generated modules; size and number of modules, this criteria has a strong impact on the 
robustness; and redundancy of representation, the use of redundant representations will 
improve robustness at the cost of increasing maintenance. The goal of this approach is to 
apply modularization on a given ontology with the purpose of splitting it considering 
numerical aspects, such as: size, number of modules and modules interconnectedness.  

From a logic-based perspective a series of contributions have been reported by a 
research group led by Bernardo Cuenca and Ian Horrocks. In 2006 [3] Cuenca et al. 
described the notion of a module from a model-theoretic perspective as a self-contained 
unit within the ontology. They stressed additional module requirements such as: the 
scope of the module, its size, and the correct interpretation of the module. Later in 2007 
[4] Cuenca et al. presented an approach to extract modular fragments from ontologies 
preserving the minimal conditions. They defined a module with respect to a signature S, 
aiming at reducing the cost of importing external ontologies they proposed to import only 
a fragment of given ontologies preserving the meaning of the terms imported. 

Based on the afore mentioned references a module can be defined as a self-contained 
knowledge unit within the knowledge graph, where a module has a clearly defined scope, 
its size, and a correct interpretation of the module. 

Whereas modularization can be defined as the task of decomposing a knowledge 
graph into independent disjoint modules, splitting it considering modules size, number 
of modules and modules interconnectedness. 

Accordingly, knowledge graph modularization should address the following 
criteria: 

a) Facilitate reutilization, and evolution of knowledge graphs. 
b) Maintain reasoning efficiency. 
c) Keep the balance between robustness and maintainability. 
d) Enable distribution of knowledge in open networks. 
e) Support connectedness of modules. 
 
The concepts of module and modularization are closely related to the process of 

reusing knowledge graphs, since the purpose is to extract modules from knowledge 
graphs so that they can be imported into another model, ensuring that the semantic 
definitions and relations are not lost while maintaining the efficiency of reasoning. 
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Therefore, in the rest of this article we will use the concept of Knowledge Graph Module 
(KGM) as the resulting product of modularization process. 

In 2009 Pathak et al. [5] presented a survey on modular ontologies techniques that 
are based on logical formalisms and graph theories. They state that modular ontologies 
techniques are crucial for the biomedical domain, since most popular ontologies are large 
and complex. Therefore, the development of tools for managing multiple distributed 
ontologies will benefit reasoning performance. Authors stablish that an ontology module 
should be self-contained and logically consistent. Also defined the goals of ontology 
modularization: partial reuse, complexity, ownership and customization, efficient 
reasoning, and tooling support. Finally, authors outlined evaluation criteria and 
requirements: localized semantics, correct reasoning, transitivity, safe reuse and 
decidability. 

In Courtot M. et al. [6] authors presented the Minimum Information to Reference an 
External Ontology Term (MIREOT) guidelines to aid the development of the Ontology of 
Biomedical Investigations (OBI). The purpose of this guide is to import the minimum 
required reference from an external ontology, for this the authors propose three cases, 
depending on what is required as a reference, all of them generally require that the 
identifier or URI (currently IRI) of the class or term reference be included. The method 
described in this article agrees to keep the unique identifier of each concept or class, but 
includes more relevant details of each concept, avoiding an overload in the memory of the 
reasoner. 

One of the main trade offs of ontology modularization is to determine the level of 
expressiveness that you want to maintain from the original knowledge graph. However, 
the higher the level of expressiveness, the lower the ability to reason with large knowledge 
graphs and the efficiency will be very poor. Regarding this problem, Algergawy et al. [7] 
introduced the Ontology Analysis and Partitioning Tool (OAPT), a framework for 
analyzing and partitioning ontologies. However, the main approach used by the authors 
is to partition an ontology into modules and then apply evaluation criteria. Instead, in this 
article we focus on the extraction of specific information or knowledge that needs to be 
included in another knowledge graph of a particular purpose. The original graphs are not 
partitioned into modules. 

In 2012 Alan Rector et al. [8] presented use cases for modular development of 
ontologies by using the import mechanism of OWL. According to the authors, ontology 
modularization concerns two topics: module extraction, which consists of separating 
existing ontologies into modules; and modular development, which resembles modular 
software engineering. In this article we present a modularization method that combines 
aspects of both cases, on the one hand, the general design of the knowledge graph is done 
with a modular development approach from the beginning; and on the other hand we 
present a semi-automatic method to perform the extraction of modules for reuse. 

In 2021 Shimizu, Hammar & Hitzler [9] described the reasons why ontologies are not 
frequently reused as follows: differing representational granularity, lack of conceptual 
clarity in many ontologies, lack and difficulty of adherence to good modeling principles, 
lack of support in ontology engineering tools. 

Another relevant issue that we deal with in the modularization method described in 
this paper is related to the way biomedical ontologies are developed, most of which do 
not have A-Boxes, they are mainly designed with T-Boxes. This represents a difficulty for 
their reuse, in case of establishing an is_A relationship between an object and a class, the 
interpretation is that the object is a member of that class, which generates misleading 
interpretations. 

Although there are various approaches and studies presented for the reuse of 
ontologies or knowledge graphs, there are still difficulties for this practice to become a 
reality. In this paper we present a module extraction approach that depends on a careful 
design of the concepts and relationships that are required to be reused. 

3. Method to Generate and Reuse Medical KGM 
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To describe the analysis and decision-making process that was carried out, this 
section first presents the system that required a method for reusing knowledge graphs. 
Specifically, the analysis of information requirements of the system required the search, 
selection, and reuse of various external knowledge graphs. This system is based on the 
specification of a comprehensive knowledge graph to support the representation and 
management of Electronic Health Records (EHR) of patients. We start from a base model 
that was designed with the aim of representing patient profiles. This base model was first 
reported in [10]. 

 
Figure 1. Knowledge graph for the representation and management of Electronic Health Records 
(EHR). 

Figure 1 shows the general EHR model, which depicts in highlighted color the 
concepts that require reutilization of medical vocabularies: Medicament, Disease, 
Symptom, and Laboratory. 

As a result of the analysis of conceptual requirements of the initial representation 
model, it was necessary to find reliable and scientifically valid sources of information for 
the inclusion of concepts about medical knowledge. Therefore, to complete this model, 
we decided to reuse vocabularies and definitions from external references. A series of 
searches were executed in BioPortal, resulting in the list of ontologies shown in Table 1. 

Table 1. NCBO Ontologies identified for reuse. 

Acronym Description Ontology 

SYMPT 
The Symptom Ontology has been 
developed as a standardized ontology for 
symptoms of human diseases. 

http://purl.obolibrary.org/obo/sym
p.owl 

LOINC 
 
Logical Observation Identifier Names 
and Codes (LOINC) 

 
http://purl.bioontology.org/ontolo
gy/LNC/ 

NDF-RT 
 
National Drug File - Reference Terminology 
Public Inferred Edition 

 
http://evs.nci.nih.gov/ftp1/NDF-
RT/NDF-RT.owl 

DOID 
 
A hierarchical controlled vocabulary for 
human disease representation 

 
http://purl.obolibrary.org/obo/doid.ow
l 

1 Tables may have a footer. 
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To reuse each of these knowledge graphs various methods exist, for instance, 
importing full models into a general knowledge graph. However, importing a complete 
model is not a good alternative, this is because the number of axioms that are imported 
are added, making the integrated representation model intractable in terms of the memory 
resources that would be required to make use of it. Therefore, a different approach should 
be defined and implemented. 

We considered using a modularization-based method for reutilization of knowledge 
graphs, this method consists in the transformation of part of the knowledge graph 
definitions that are relevant for the specific model being integrated. For each of the general 
concepts highlighted in Figure 1, we defined and implemented the following procedure 
(method) that allowed the modularization and reutilization of knowledge graphs.  

1. Select the knowledge graph or ontology that will be reused. The knowledge 
graph must be downloaded and analyzed locally. 

2. Identify the relevant data or attributes that will be reused to complete the 
conceptualization into the knowledge graph being integrated. 

3. Define and implement data structures using the Object-Oriented Programming 
paradigm to allow the clearest and most efficient handling of the concepts of interest. 

4. Implement a program to query the knowledge graph using SPARQL and 
automatically obtain the list of concepts of interest. 

5. Define and construct the model of the knowledge graph that will be used to 
contain the concepts and attributes of interest. 

6. Develop a program to automatically populate the knowledge graph with the 
list of concepts obtained. 

The application of this method for each of the required concepts is described in the 
following sections. 

 
Figure 2. Method to generate and reuse medical KGM. 

4. Medicament KGM 
For the representation of an EHR it is necessary to specify the medications that a 

patient may be taking, or that will be indicated as part of his pharmacological treatment. 
Therefore, it is necessary to use a medical vocabulary of drugs. 

To obtain a Medicament KGM, we implemented the method to generate and reuse 
medical KGM as follows: 

4.1. Selection of the knowledge graph 
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For the representation of medicaments concepts and relations we selected the NDF-
RT knowledge graph. NDF-RT is the National Drug File - Reference Terminology 
produced by the Veterans Health Administration. Figure 3 shows a snapshot of the 
NDF-RT model as visualized in Protégé editor.  
 

  

(a) (b) 

Figure 3. This figure shows a partial view of the NDF-RT ontology, specifically the N0000160630 
class is highlighted which represents “Metformin hydrochloride 500 MG Oral Tablet”. (a) Presents 
the relations of N0000160630 with other classes; (b) Presents the details of the relations or properties 
of the N0000160630 concept. 

 
As can be seen in Figure 3, the NDF-RT knowledge graph is very complex and is not 

an intuitive model to understand. This is in part because the medical information it 
represents is highly specialized and technical. However, the structure of the ontological 
model is also difficult to understand. For example, class naming is based on a 
nomenclature established in the design principles indicated by the NCBO for the 
publication of ontologies in BioPortal. As a result of this naming convention, class names 
do not provide any clue of which drugs they represent, it is necessary to expand the classes 
to identify the class that groups the entire hierarchy of drugs. Additionally, it is necessary 
to explore all the annotations to know the specific details of each concept. 

Another problem that is observed with this knowledge graph is the fact that all the 
represented concepts are organized mainly using class definitions, that is, there are no 
individuals as member of the classes, which represents a difficulty in establishing a 
relationship between objects according to what is established in the base model shown in 
Figure 1. 

Despite the difficulties that this model presents, NDF-RT is quite useful to be reused 
within the EHR because it defines concepts that relate drugs to diseases, for example, may-
treat and may-prevent relationships, which we consider relevant. 

 

4.2. Identification of the data and attributes to be imported 
In order to review and analyze the NDF-RT knowledge graph was saved it in Turtle 

syntax. For the extraction of medicament products, we selected only the “Drug Products 
by VA Class”, which represent clinical pharmaceutical products that can be ordered. As 
an example, the code shown in Figure 4 describes the concept N0000160630, that identifies 
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the drug product “Metformin hydrochloride 500 MG Oral Tablet”. Based on this code we 
can identify the important attributes that should be considered, for instance: the 
RxNorm_Name, the RxNorm CUI , units, strength, and NUI, among others. 

 

 
Figure 4. Excerpt from the NDF-RT representation of the N0000160630 class, that identifies the drug 
product “Metformin hydrochloride 500 MG Oral Tablet”. 

The set of relations or roles that NDF-RT uses can be extracted from a different part 
of the definitions, the code shown in Figure 5 presents the set of drug relationships with 
other concepts, for example, mechanism of action, physiological effects, clinical kinetics, 
among others. 

 
Figure 5. Excerpt from the NDF-RT representation of, that describes the list of properties of the 
N0000160630 class. 

NDF-RT:N0000160630 NDF-RT:RxNorm_Name "Metformin hydrochloride 500 MG Oral Tablet" ; 
                   NDF-RT:code "C45762" ; 
                   NDF-RT:Level "VA Product" ; 
                   NDF-RT:Units "MG" ; 
                   NDF-RT:Product_Component NDF-RT:N0000148391 ; 
                   NDF-RT:Status "Active" ; 
                   NDF-RT:NUI "N0000160630"^^xsd:string ; 
                   NDF-RT:RxNorm_CUI "861007" ; 
                   NDF-RT:VANDF_Record " 

<VANDF_Record>50.68^12369^</VANDF_Record> 
<VA_File>50.68</VA_File> 
<VA_IEN>12369</VA_IEN>" ; 

                   NDF-RT:Print_Name "METFORMIN HCL 500MG TAB" ; 
                   NDF-RT:UMLS_CUI "C0978483" ; 
                   NDF-RT:Display_Name "METFORMIN HCL 500MG TAB" ; 
                   NDF-RT:Product_Component_Qualifier " 

<Product_Component>METFORMIN HYDROCHLORIDE</Product_Component> 
<Strength>500</Strength> 
<Unit>MG</Unit><VA.IEN>3556</VA.IEN>" ; 

                   rdfs:label "METFORMIN HCL 500MG TAB [VA Product]" ; 
                   metadata:prefixIRI "N0000160630"^^xsd:string ; 
                   NDF-RT:VA_National_Formulary_Name "METFORMIN TAB,ORAL" ; 
                   NDF-RT:VUID "4012735" ; 
                   NDF-RT:Strength "500" . 

###  http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT.owl#N0000160630 
NDF-RT:N0000160630 rdf:type owl:Class ; 
                   rdfs:subClassOf NDF-RT:N0000029185 , 
                                   NDF-RT:N0000148391 , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT: ; 
                                     owl:someValuesFrom NDF-RT:N0000135761 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:CI_with ; 
                                     owl:someValuesFrom NDF-RT:N0000000999 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:CI_with ; 
                                     owl:someValuesFrom NDF-RT:N0000001866 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:CI_with ; 
                                     owl:someValuesFrom NDF-RT:N0000003529 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:has_Ingredient ; 
                                     owl:someValuesFrom NDF-RT:N0000006631 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:has_MoA ; 
                                     owl:someValuesFrom NDF-RT:N0000000225 
                                   ] , 
                                   [ rdf:type owl:Restriction ; 
                                     owl:onProperty NDF-RT:has_PE ; 
                                     owl:someValuesFrom NDF-RT:N0000008646 
                                   ] , 
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4.3. Define and implement data structures 
To extract and represent medicament information using an object-oriented 

paradigm, the JavaTM classes shown in Figure 6 were implemented. The Medicament 
class includes the attributes that were selected for their relevance. It should be noted that 
a lighter extraction of the concept attributes is performed. On the other hand, the Property 
class is used as a helper class in extracting all the important relationships that drugs can 
have with other concepts. The OntologyUtils class is an important class in which all the 
information extraction methods have been implemented, as well as the ontology 
population methods. The DrugOntologyCreation class represents the main program in 
which the data extraction, transformation, and module generation tasks are executed in 
sequence. 

 

 
Figure 6. Class diagram of the Medicament KGM creation. 

4.4. Implement a program to query the knowledge graph 
To obtain the information from the NDF-RT knowledge graph, we implemented a 

JavaTM program using the API RDF4J that allowed issuing SPARQL queries through 
which a list of objects with the previously defined types were generated. The purpose of 
the first query in Table 2 is to obtain the list of medications and their basic attributes, the 
second query obtains the entire set of relationships that are all characterized as properties. 

 

Table 2. SPARQL queries executed to retrieve the list of Medicament objects from NDF-RT. 

SPARQL Query Typed Collection Returned 
PREFIX NDF-RT: <http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT.owl#> 

SELECT distinct ?medicament ?label ?units ?strength ?nui ?cui ?name  

 WHERE {  

     ?medicament rdf:type owl:NamedIndividual .  

     ?medicament rdfs:label ?label .  

     ?medicament NDF-RT:Level "VA Product" . 

     ?medicament NDF-RT:Units ?units .  

     ?medicament NDF-RT:Strength ?strength .  

     ?medicament NDF-RT:NUI ?nui .  

List<Medicament> listMed; 
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     ?medicament NDF-RT:RxNorm_CUI ?cui .  

     ?medicament NDF-RT:RxNorm_Name ?name .  } 

PREFIX NDF-RT: <http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT.owl#>  

SELECT ?property ?value ?valueLabel  

 WHERE {  

     NDF-RT:" + medId + " rdf:type owl:Class .  

     NDF-RT:" + medId + " rdfs:subClassOf ?s1 .  

     ?s1 owl:onProperty ?property; owl:someValuesFrom ?value 

. 

     ?value rdfs:label ?valueLabel .  } 

List<Property> listProps; 

1 SPARQL queries that are embedded into java code that produce a list of Medicament objects. 

4.5. Define and construct the model of the knowledge graph 
For the construction of the Medicament KGM that represents the data about drugs, 

it is necessary to design and implement the conceptual model of the target module graph, 
which is, the T-Box of the ontology. Therefore, and considering the types of data (or 
objects) returned by queries, the ontological model presented in Figure 7 was designed. 
This model represents a different view than the original NDF-RT knowledge graph. The 
resulting KGM is a simplified and much lighter version of the original, this model has 
more intuitive named concepts and relationships that facilitate reuse in another 
knowledge graph. For instance, it is clearer that a given instance of the Medicament 
concept may treat, or may diagnose, or may prevent any instance of the Disease concept. 

 

 
Figure 7. Model of Medicament KGM based on the NDF-RT ontology model. 

 
According with the NDF-RT documentation , the following classes (concepts) are 

defined as follows: 
a) Medicament. This concept is at the core of the hierarchy in NDF-RT. It includes 

classifications of medications, generic ingredient preparations used in medications, and 
orderable drug products. 

b) Clinical Kinetics. Represents a collection of concepts describing the absorption, 
distribution, and elimination of drug active ingredients. 

c) Chemical Ingredient. Represents chemicals or other drug ingredients, 
organized into a chemical structure classification hierarchy. 

d) Mechanism of Action. Represents molecular, subcellular, or cellular effects of 
drug generic ingredients, organized into a chemical function classification hierarchy. 

e) Physiological Effect. Concerns tissue, organ, or organ system effects of drug 
generic ingredients, organized into an organ system classification hierarchy. 

f) Dose Form. Represents specific hierarchy of administered medication dose. 

Disease
hasDiseaseName:string

PharmacoKinetics
hasPharmacoKineticsName:
string

PhysiologicalEffect
hasPhysiologicalEffectName:
string

Medicament
hasNUI:string
hasUnits:string
hasIRI:string
hasLabel:string
hasStrength:string
hasRxNormName:string
hasRxNormCUI:string

ChemicalIngredient
hasChemicalName:string

MechanismOfAction
hasMechanismOfActionName:
string

DoseForm
hasDoseDescription:
string

mayPrevent

hasPharmacoKinetics

hasCIPE

hasSiteOfMetabolism

mayTreat
hasPhysiologicalEffect

hasCIChemicalClass

hasCIWith

hasCIMoA

mayDiagnose

hasIngredient

hasActiveMetabolites

induces

hasDoseForm
hasMoA
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g) Disease. Represents pathophysiologic as well as certain non-disease 
physiologic states that are treated, prevented, or diagnosed by an ingredient or drug 
product. May also be used to describe contraindications. 

 
The following semantic relations (object properties) are defined as follows: 
a) CI Chemical class. This relation is used to specify that a medicament is 

contraindicated with a chemical ingredient. 
b) Has ingredient. Relation used to indicate that a medicament has a chemical 

ingredient. 
c) Has active metabolites. Relation used to indicate that a medicament has active 

metabolites. 
d) Has PE. This relation is used to specify that a medicament has a physiological 

effect. 
e) CI PE. Relation used to indicate that a medicament is contraindicated with a 

physiological effect. 
f) Has dose form. This relation correlates the medicament with its form of dose. 
g) Has MoA. This relation is used to specify that a medicament has a mechanism 

of action. 
h) CI MoA. Relation used to indicate that a medicament is contraindicated with a 

mechanism of action. 
i) Induces. Relation used to indicate that a medicament induces a disease. 
j) May diagnose. Relation used to indicate that a medicament may diagnose a 

given disease. 
k) May prevent. Relation used to indicate that a medicament may prevent a 

disease. 
l) May treat. Relation used to indicate that a medicament may treat a disease. 
m) CI with. This relation is used to specify that a medicament is contraindicated 

with a given disease. 
n) Has PK. Relation that indicates that a medicament has a clinical kinetics 

(absorption, distribution, and elimination of drug active ingredients). 
o) Site of metabolism. Relation used to indicate that a medicament has a site of 

metabolism. 
 

4.6. Develop a program to automatically populate the knowledge graph 
Finally, a general JavaTM program was developed for the construction of the 

Medicament KGM, which integrates the information retrieval programs and the ontology 
population methods. The general procedure consists of the following steps: read the list 
of medicaments from the NDF-RT knowledge graph, recover the properties of the 
medicaments, populate the Medicament KGM with the list of medicaments, and finally 
for each medicament instance, populate the list of properties and update the Medicament 
KGM. 
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Figure 8. Main program in which the data extraction, transformation, and module generation tasks 
are executed in sequence. 

 

5. Disease KGM 
One of the most important concepts of an EHR is that of diseases. There are various 

definitions of disease in dictionaries or in the medical literature, here we present some 
general definitions: 

“Disease, any harmful deviation from the normal structural or functional state of an 
organism, generally associated with certain signs and symptoms and differing in nature 
from physical injury.” (Encyclopedia Britannica)  

“(an) illness of people, animals, plants, etc., caused by infection or a failure of health 
rather than by an accident.” (Cambridge Dictionary) 

“A disease is an illness which affects people, animals, or plants, for example one 
which is caused by bacteria or infection.” (Collins Dictionary) 

To obtain a Disease KGM we implemented the method to generate and reuse medical 
KGM as follows: 

5.1. Selection of the knowledge graph 
Considering the management of information for an EHR, a disease is associated with 

the person or patient to whom the file refers; likewise, a disease is associated with a set of 
signs and symptoms. Therefore, we have decided to reuse the DOID knowledge graph for 
this purpose. The Human Disease Ontology (DOID) was developed with the collaboration 
between biomedical researchers coordinated by the University of Maryland School of 
Medicine, Institute for Genome Sciences. 

Figure 9 shows a partial view of the DOID ontology, as can be seen, this model 
presents a complex class structure, and the names are not intuitive either. If there is a 
requirement for obtaining the information of a particular disease, it is necessary to know 
the specific id with which it has been classified to do a search and read all the tags added 
as annotations of the concept. Of course, with a well-developed search tool, the use of this 
type of model is feasible, but it still requires knowledge and experience dealing with this 
kind of vocabularies. 

 

public class DrugOntologyCreation  
{ 

public static void main(String[] args)  
 { 
  OntologyUtils util = new OntologyUtils(); 
   
  //Step 1. Read the list of medicaments and register them into the ontology 
  List<Medicament> listMed = util.getListOfMedicamentsNDFRT(); 
   
  //Step 2. Obtain the relationships for each medicament 
  List<Property> listProps = util.getPropertiesOfMedicaments(listMed); 
  util.completeDoseFormProperties(listProps); 
   
  //Step 3. Write medicament objects into the Ontology 
  util.populateMedicamentOntology("Ontologies/Medicament.owl", listMed); 
   
  //Step 4. Write properties into the ontology 
  util.populatePropertiesOfMedicaments("Ontologies/Medicament.owl", listProps); 

 }} 
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(a) (b) 

Figure 9. This figure shows a partial view of the DOID ontology, specifically the DOID_10247 class 
which represents “pleurisity” a disease. (a) Presents the relations of DOID_10247 with other classes; 
(b) Presents the details of the relations or properties of the DOID_10247 concept. 

5.2. Identification of the data and attributes to be imported 
To execute this revision the DOID knowledge graph was saved in Turtle syntax. The 

code shown in Figure 10 describes the concept DOID_9352, which corresponds to the 
diabetes mellitus type 2 disease. Based on this code we can identify important attributes 
and relations, such as: obo:IAO_0000115 which is an annotation property used for 
defining and explaining the meaning of a class or property; oboInOwl:hasDbXref is a 
qualifier that allows cross referencing other data bases, enabling the recovery of 
information about the disease by querying the included references; 
oboInOwl:hasExactSynonym is a property used to include synonyms of the disease; and 
rdfs:label which is used to describe the disease. 
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Figure 10. Excerpt from the DOID ontology describing the DOID_9352 concept which corresponds 
to the diabetes mellitus disease.  

5.3. Define and implement data structures 
To extract and represent disease information as a list of objects the JavaTM classes 

shown in Figure 11 were implemented. 
 

 
Figure 11. Class diagram for the extraction of disease concepts from the DOID ontology, and 
ontology population of the Disease KGM.  

 

5.4. Implement a program to query the knowledge graph  
To obtain the information from the DOID knowledge graph, we implemented 

various JavaTM programs using the API RDF4J , these programs execute the SPARQL 
queries shown in Table 3. The first query retrieves the data of diseases from DOID 
ontology, the rest of the queries are used to complete the definitions with other important 
data such as the synonyms of each disease, the parent classes, and the set of data base 
cross references for each disease. It is important to note that the information retrieved and 
included in the new ontology contains IRI references to enable further queries in case that 
additional information of a particular disease is required. 

 

###  http://purl.obolibrary.org/obo/DOID_9352 
obo:DOID_9352 rdf:type owl:Class ; 
              rdfs:subClassOf obo:DOID_9351 ; 
              obo:IAO_0000115 "A diabetes mellitus that is characterized by high blood sugar, 

insulin resistance, and relative lack of insulin."^^xsd:string ; 
              oboInOwl:hasDbXref "EFO:0001360"^^xsd:string , 
                                 "ICD10CM:E11"^^xsd:string , 
                                 "KEGG:04930"^^xsd:string , 
                                 "MESH:D003924"^^xsd:string , 
                                 "NCI:C26747"^^xsd:string , 
                                 "OMIM:125853"^^xsd:string , 
                                 "OMIM:601283"^^xsd:string , 
                                 "OMIM:601407"^^xsd:string , 
                                 "OMIM:603694"^^xsd:string , 
                                 "OMIM:608036"^^xsd:string , 
                                 "SNOMEDCT_US_2021_09_01:44054006"^^xsd:string , 
                                 "UMLS_CUI:C0011860"^^xsd:string ; 
              oboInOwl:hasExactSynonym "NIDDM"@en , 
                                       "insulin resistance"^^xsd:string , 
                                       "non-insulin-dependent diabetes mellitus"@en , 
                                       "type 2 diabetes"@en , 
                                       "type II diabetes mellitus"@en ; 
              oboInOwl:hasOBONamespace "disease_ontology"^^xsd:string ; 
              oboInOwl:id "DOID:9352"^^xsd:string ; 
              oboInOwl:inSubset doid:DO_FlyBase_slim , 
                                doid:NCIthesaurus ; 
              rdfs:comment """Xref MGI. 

  OMIM mapping confirmed by DO. [SN]."""^^xsd:string ; 
              rdfs:label "type 2 diabetes mellitus"^^xsd:string . 
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Table 3. SPARQL queries executed to retrieve the list of Disease objects from DOID. 

SPARQL Query Typed Collection Returned 
PREFIX oboIn: <http://www.geneontology.org/formats/oboInOwl#>  

PREFIX obo: <http://purl.obolibrary.org/obo/>  

 SELECT DISTINCT ?s  ?label  ?def  ?synonym  ?id  

 WHERE {  

     ?s rdf:type owl:Class .  

     ?s rdfs:label ?label .  

     ?s obo:IAO_0000115 ?def .  

     ?s oboIn:hasExactSynonym ?synonym .  

     ?s oboIn:id ?id . } 

 

List<Disease> listDis; 

PREFIX oboIn: <http://www.geneontology.org/formats/oboInOwl#>  

PREFIX obo: <http://purl.obolibrary.org/obo/>  

 SELECT ?syn  

 WHERE {  

     obo:" + id + " oboIn:hasExactSynonym ?syn . } 

 

List<Disease> listDis; 

PREFIX oboIn: <http://www.geneontology.org/formats/oboInOwl#>  

PREFIX obo: <http://purl.obolibrary.org/obo/>  

 SELECT ?parent  

 WHERE {  

     obo:" + id + " rdfs:subClassOf ?parent . } 

 

List<Disease> listDis; 

PREFIX oboIn: <http://www.geneontology.org/formats/oboInOwl#>  

PREFIX obo: <http://purl.obolibrary.org/obo/> 

 SELECT ?ref  

 WHERE {  

     obo:" + id + " oboIn:hasDbXref ?ref . } 

List<Disease> listDis; 

1 SPARQL queries that are embedded into java code to obtain the list of Disease objects. 
 

5.5. Define and construct the model of the knowledge graph 
For the construction of the Disease knowledge graph it is necessary to design the 

conceptual model, which is, the T-Box of the ontology. Considering the structure of the 
Disease type returned by SPARQL queries, the ontological model depicted in Figure 12 
was developed. This model represents mainly the Disease concepts with the most 
important references and definitions to other medical data bases, also is a simplified and 
lighter representation resource compared with the original DOID knowledge graph. The 
most important difference is the elimination of direct and indirect imported ontologies. 
The extraction and construction of an ontological representation model without the use of 
imported ontologies offers benefits in terms of managing memory resources to perform 
logical inference. Specifically, the representation model developed has the basic attributes 
that allow diseases to be identified without the need to include a burden of reference 
models. If required, the concepts can be expanded through queries using the IRIs and the 
referenced databases. 
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Figure 12. Ontology model for the representation of Disease information.  

 

5.6. Develop a program to automatically populate the knowledge graph 
Figure 13 shows the general Java program that was implemented for the construction 

of the Disease KGM, which starts by executing the program that obtains the list of disease 
definitions from DOID ontology, then updates the list of disease objects obtaining the 
synonyms, the parent class, and the data base cross references of each disease. Finally, the 
program writes the list of disease objects into the Disease ontology file. 

 

 
Figure 13. Main program in which the data extraction, transformation, and module generation tasks 
are executed in sequence. 

6. Knowledge Graph Modularization System 
We integrated all the programs developed in an modularization system. This system 

design is based on the object-oriented programming paradigm which makes it easy to 
carry out updates or adaptations in any of the tasks of the modularization process. Figure 
14 shows the class diagram of the modularization system. The objective of this system is 
to extract the concepts of interest from diverse medical knowledge graphs, represent these 
concepts using a object oriented paradigm, and generate specific KGMs that will be reused 
and usable in the target EHR knowledge graph. 

 

DOID_0040016:
Disease

hasIri=http ://purl.obolibrary.
org/obo/DOID_0040016^^
string
hasSynonym=
sulphamethoxazole a llergy^
^string
hasSynonym=SMX allergy^^
string
hasName=sulfamethoxazole  
a llergy^^string
hasSynonym=SMZ allergy^^
string
hasDefinition=A drug a llergy 
that has_allerg ic_trigger 
sulfamethoxazole .̂ ^string
hasParentClass=http://purl.
obolibrary.org/obo/DOID_
0060500^^string

DOID_0040010:
Disease

hasDbXref=ICD10CM:Z88.4^
^string
hasIri=http ://purl.obolibrary.
org/obo/DOID_0040010^^
string
hasSynonym=Polocaine 
a llergy^^string
hasSynonym=Carbocaine 
a llergy^^string
hasName=mepivacaine 
a llergy^^string
hasParentClass=http://purl.
obolibrary.org/obo/DOID_
0060500^^string
hasDefinition=A drug a llergy 
that has_allerg ic_trigger 
mepivacaine .̂ ^string

DOID_0040012:
Disease

hasDefinition=A drug a llergy 
that has_allerg ic_trigger 
phenyto in.̂ ^string
hasDbXref=SNOMEDCT_
US_2021_09_01:293869004̂
^string
hasIri=http ://purl.obolibrary.
org/obo/DOID_0040012^^
string
hasParentClass=http://purl.
obolibrary.org/obo/DOID_
0060500^^string
hasSynonym=Dilantin 
a llergy^^string
hasName=phenyto in a llergy
^^string
hasDbXref=UMLS_CUI:
C0570789^^string

DOID_0040006:
Disease

hasParentClass=http://purl.
obolibrary.org/obo/DOID_
0060500^^string
hasSynonym=
carbamazepen al lergy^^
string
hasDefinition=A drug a llergy 
that has_allerg ic_trigger 
carbamazepine .̂ ^string
hasName=carbamazepine 
a llergy^^string
hasIri=http ://purl.obolibrary.
org/obo/DOID_0040006^^
string
hasDbXref=UMLS_CUI:
C0570787^^string
hasSynonym=Tegretol 
a llergy^^string
hasDbXref=SNOMEDCT_
US_2021_09_01:293867002̂
^string

DOID_0040003:
Disease

hasParentClass=http://purl.
obolibrary.org/obo/DOID_
0060519^^string
hasIri=http ://purl.obolibrary.
org/obo/DOID_0040003^^
string
hasName=benzylpenicillin 
a llergy^^string
hasDbXref=SNOMEDCT_
US_2021_09_01:294499007̂
^string
hasDbXref=UMLS_CUI:
C0571411^^string
hasDefinition=A beta-lactam 
a llergy that has_allerg ic_
trigger benzylpenicillin.^^
string
hasSynonym=penicillin G 
a llergy^^string
hasSynonym=benzyl 
penicillin allergy^^string

Disease
hasDbXref:string
hasParentClass:string
hasName:string
hasIri:string
hasSynonym:string
hasDefinition:string

<<ins tanceOf>>

<<ins tanceOf>>

<<ins tanceOf>>

<<ins tanceOf>>

<<ins tanceOf>>

public class DiseaseOntologyCreation 
{ 
 //Generate ontology Disease module from DOID ontology 
 public static void main(String[] args) 
  { 
  //Step1. Extract the list of diseases from DOID ontology 
  OntologyUtils util = new OntologyUtils(); 
  List <Disease> listDis = util.getListOfDiseasesFromDOID2(); 
  //Step 2. Obtain the synonyms of each disease and update the list  
  util.getSynonymsOfDisease(listDis); 
  //Step 3. Get the parent classes IRIs of each disease and update the list  
  util.getParentClasses(listDis); 
  //Step 4. Get the data base cross references of each disease and update the list  
  util.getDbXRefs(listDis); 
  //Step 5. Write the disease individuals into the ontology 
  util.addDiseaseListToOntology("Ontologies/Disease.owl", listDis); 
  } 

} 
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Figure 14. Class diagram of the Knowledge Graph Modularization System. 

 
Applying the described method, the LaboratoryTest, Symptom, and Vaccine KGMs 

were also generated. As can be seen, the method for generating and reusing medical KGM 
is semi-automatic. This is because it is necessary to know in detail the knowledge graphs 
from which the modules will be extracted, in addition to the fact that important decisions 
must be made regarding what attributes and relationships are required in the target 
graph. 

Another relevant aspect that must be taken into consideration is that the medical 
knowledge graphs are constantly being updated, for which it is essential to review the 
changes in the original model and eventually make the pertinent updates in the system. 

As a result of the implementation of the method for the generation and reuse of 
KGMs, four modules were obtained, which are described below. 

7. Evaluation 
Aiming at evaluating the method reported in this paper, in this section we describe 

two different approaches to evaluate the resulting modules.  
 

7.1 Evaluation of the usefulness of the knowledge graph modules 
According with Duque-Ramos et al. [11] “the quality of an ontology module can be 

defined as the degree of conformance to functional and non-functional requirements”. In 
the case of the knowledge graph modules generated, they were intended to be used as 
part of an integral knowledge graph to support management of EHR. With this goal in 
mind, we review the general knowledge graph and its usefulness to represent patient data 
with relationships to these graphs. Figure 15 shows the EHR general graph diagram, 
which presents in light blue the predefined concepts and attributes: Patient, 
ClinicalDiagnosis, StateFederative, and Municipality; this diagram also shows in dark blue 
the concepts that come from the imported graph modules: LaboratoryTest, NDFRT_Disease, 
PharmacologicalTreatment, and COVID-19 Vaccine. 

It is important to mention that this general knowledge graph for the management of 
EHRs was populated with 500 clinical records of patients. To show the usefulness of the 
integrated knowledge graph, Figure 16 shows an instance of real data from a female 
patient who was diagnosed with Coronavirus, this diagnosis is related to the 
NDFRT_Disease graph. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2022                   doi:10.20944/preprints202210.0229.v1

https://doi.org/10.20944/preprints202210.0229.v1


 

 
Figure 15. Integrated general knowledge graph. 

 
Figure 16. Example of an instance of a patient registered in the general graph. 

Figure 17 shows the specific diagnosis related to the disease (NDFRT_Disease 
imported graph), with the laboratory test required for the diagnosis (LaboratoryTest 
imported graph) and with the pharmacological treatment. 

 
Figure 17. Example of an instance of a diagnosis related with NDFRT_Disease and LaboratoryTest. 
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Figure 18 shows an example of pharmacological treatment for COVID-19, which is 
related to the medications (Medicament imported graph) indicated by the doctor. 

 
Figure 18. Example of a Pharmacological treatment related with specific medications. 

Figure 19 shows the coronavirus disease related signs and symptoms from the 
Symptom knowledge graph. 

 
Figure 19. Integrated general knowledge graph. 

Based on the initial requirements of the EHR management system, it can be 
determined that the imported graph modules satisfactorily meet the objective of the 
model. Therefore, from the application and utility point of view, the graph modules 
generated by the method described in this article are correctly designed and meet the 
required information needs. 
7.2 Evaluation based on graph metrics 

To carry out a quantitative evaluation, a comparison of the metrics of the original 
knowledge graphs versus the generated knowledge graph modules is described in this 
subsection. The set of metrics used to make the comparison are those generated by the 
Protégé ontology editor. Among all the metrics presented, the most important is the 
number of axioms, which despite being very general, offers a good measure of the 
reduction achieved with modularization., the general idea is to have an estimation of the 
size of the module extracted and the reduction achieved. Figure 20 shows on the left side 
the original NDF-RT metrics, whereas on the right side the metrics of the Medicament 
KGM generated. As can be seen the extracted Medicament KGM represents the 20.33% of 
the complete NDF-RT. Other important difference is the number of classes used un the 
Medicament KGM which is 7, while the original has 46047 classes. This is mainly because 
the original graph does not define individuals, it handles everything with classes. 

 
NDF-RT original KG metrics Medicament KGM metrics 
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Figure 20. Comparison of NDF-RT metrics with the Medicament KGM obtained 

Figure 21 on the left shows the metrics of the original DOID knowledge graph, and 
on the right the metrics of the Disease KGM obtained form the modularization process. 
Disease KGM metrics show 56% reduction in the number of axioms of the original 
knowledge graph. 

 
DOID original KG metrics Disease KGM metrics 

  

Figure 21. Comparison of DOID metrics with the Disease KGM obtained 

 

8. Conclusions 
One of the difficult problems to solve during the reuse of medical knowledge graphs 

is that they directly or indirectly import other ontologies or graphs. This generates an 
overload of models in RAM memory, which prevents reasoning and inference from being 
carried out more efficiently. 

In this article we have described a modularization method applicable to large 
knowledge graphs; in particular, in graphs from the biomedical area that, in addition to 
being large in volume, are highly complex for the user. The described modularization 
method differs from methods that seek to divide a graph into parts, each of which is self-
contained. It is also different from fully automatic methods that extract a module 
considering logically complete modules. 

The modularization method described is semi-automatic and is more oriented 
towards having support tools to solve very specific needs of information or specialized 
knowledge that must be incorporated into larger and complex knowledge graphs. 

The examples of application of the method allow to observe and analyze the specific 
decision-making that must be done during the design of the knowledge modules, the 
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selection of the necessary attributes to meet the requirements, and that once the design is 
complete, a mechanism for automatic population is programmed. 

It should be noted that the reuse of knowledge graphs entails many challenges, one 
of the most complicated being that the way in which the structure of the original graph 
may not be the most appropriate for the destination graph. Therefore, in the examples 
shown in this article, we have made the decision to make changes in the way of 
representing the classes and class hierarchies. We have chosen to handle many concepts 
or classes as individuals in the destination graph. 
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