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Abstract: Fuel consumption, subsequent emissions and safe operation of class 8 vehicles are of prime 
importance in recent days. It is imperative that the vehicle operates in its true optimal operating 
region given a variety of constraints such as road grade, load, gear shifts, Battery State of charge 
(for hybrid vehicles), etc. In this paper a research study is conducted to evaluate the fuel economy 
and subsequent emission benefits w h en a p plying p r edictive c o ntrol t o a  m i ld h y brid l i ne haul 
truck. The problem is solved using a combination of dynamic programming with back tracking 
and model predictive control. The specific f  uel s  aving f  eatures t  hat a  re s  tudied i  n t  his w  ork 
are dynamic cruise control, gear shifts, vehicle coasting and torque management. These features 
are evaluated predictively as compared to a reactive behavior. The predictive behavior of these 
features are a function of road grade. The result and analysis shows significant improvement in fuel 
savings along with NOx benefits. Out of the control features dynamic cruise (predictive) control and 
dynamic coasting showed the most benefits while predictive gear shifts and torque management (by 
power splitting between battery and engine) for this architecture did not show fuel benefits but 
provided other benefits in terms of powertrain efficiency.

Keywords: dynamic program; fuel economy; global optimization; predictive control 15

1. Introduction 16

In recent days fuel consumption and emissions are two major challenges to the ever 17

growing trucking segment. Either due to more stringent legislative norms across the globe 18

or due to the global need for more energy efficient operations, the prime focus driving the 19

trucking industry in recent years is alternate energy, cooperative platooning and better 20

emissions management. There is a huge potential to reduce energy consumption, and 21

thereby emissions as the byproduct of energy producing devices. There are a number of 22

ways these kind of problem can be set up but the real challenge is how to robustly frame 23

the problem in terms of the right objectives and addressing all the required constraints 24

which will take into consideration the real world operating scenarios. A number of robust 25

multi-objective non-linear optimal control strategy is analyzed and based on the current 26

requirement and considering all trade offs, dynamic programming is selected to carry out 27

the theoretical behavior of the controller. The following literature highlights the current 28

state of technology. A simple optimization method for BEV is designed by Scalaretta, 29

et. al [1]. Some other control levers are also discussed as direct, indirect methods using 30

spectral collocation, shooting methods etc, [2], [3], [4]. The paper [5] assesses the impact 31

of an eco-driving training program on fuel savings and reduction of CO2 emissions in a 32

well-designed field trial. This methodology includes different types of road sections under 33

various traffic conditions and a systematic method to evaluate the overall and specific 34

impacts of eco-driving. The paper [6] presents a simulation study of various Battery Electric 35

Vehicle (BEV) types to compare their performance when driving on real-road drive cycles 36

to highly optimized eco-driving cycles. The results of the simulation confirmed that eco- 37

driving has a high potential to reduce energy consumption for all types of BEVs. This 38
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study also compares the impact of eco-driving on conventional vehicles to comparable 39

BEVs. The authors in [7] implemented strategies to minimize fuel consumption by limiting 40

instantaneous vehicle specific power while maintaining average speed and conserving total 41

distance. The paper [8] explains how a truck driver controls his vehicle with the motive of 42

maintaining a desired velocity while keeping the fuel consumption as low as possible. This 43

is achieved by estimating oncoming operation points of the powertrain and optimal choice 44

of inputs. This information is used as an input in an algorithm for the implementation of 45

a predictive gearshift program and predictive cruise controller. In the paper [9], a novel 46

predictive technology is used to incorporate the cruise set speed along with a gear shift 47

point. The numerical based algorithm used a combination of nonlinear dynamics constraint 48

and objective cost. The mixed integer problem due to the gear choice is solved partially by 49

the outer convexification process. Benefits are shown on real world and artificial routes. 50

The paper [10] explores how information about future road slopes can be used in a heavy 51

truck with an aim of reducing fuel consumption without increasing total travel time. The 52

longitudinal behavior of the vehicle is controlled by determining accelerator and brake 53

levels and also which gear to engage. In the paper [11], a novel predictive control scheme is 54

used for energy management in hybrid trucks driving autonomously on the highway. This 55

scheme uses information from GPS together with speed limits along the planned route to 56

schedule charging and discharging of the battery, the vehicle speed, the gear and decision 57

of when to turn off the engine and drive electrically. The paper [12] presents an optimal 58

strategy for heavy-duty trucks that minimizes fuel consumption in urban ares. This strategy 59

uses an online convex model predictive control strategy that balances a trade-off between 60

reducing braking effort and tracking optimal velocity. The paper [13] introduces a model 61

predictive control algorithm which attempts to reduce the cost of operation of heavy trucks 62

with cruise control application based on road topology information obtained through GPS 63

positioning and 3D maps. The paper [13] proposes implementation of predictive optimal 64

algorithms operating the truck at economically favourable operation points by considering 65

the costs of operation and dynamics of the vehicle. This approach considers GPS positioning 66

and 3D maps for slope, curve and speed limit information of future road segments. The 67

paper [14] proposes a model predictive control method to control the clutch engagement 68

process effectively shorten the torque interruption, thus enhancing the gear downshift 69

quality. The paper [15] explains a way of exploiting vehicular on-board prediction for 70

a limited time horizon and minimizing the auxiliary energy consumption of the electric 71

cooling system through real-time optimization. The paper [16] provides a comparison of 72

three strategies using model predictive control in with the objective of minimizing fuel 73

consumption for a heavy-duty truck. The three strategies are, a time-based formulation 74

that penalizes braking effort in place of fuel consumption, a simplified approach to the 75

first strategy, and a distance-based convex formulation that maintains a tradeoff between 76

energy expenditure and tracking of the coarsely optimized velocity. In the operation of 77

long-haul trucks, fuel costs have a large impact on total cost of ownership. The paper 78

[17] attempts to solve the problem of obtaining a trade-off between minimizing the fuel 79

consumption and simultaneously maximizing the vehicle speed thus eventually decreasing 80

time-related fixed costs. The paper [18] explores learning-based predictive cruise control 81

and the impact of this technology on increasing fuel efficiency for commercial trucks by 82

implementing predictive cruise control model which uses future road conditions and solves 83

for cost-effective course of action. The paper [19] provides a comparison of three strategies 84

using model predictive control in with the objective of minimizing fuel consumption for a 85

heavy-duty truck. Two of these three strategies can then be adapted to accommodate the 86

presence of traffic and optimally navigate signalized intersections using infrastructure-to- 87

vehicular communication. The paper [20] illustrates how optimizing the power split among 88

different energy sources in electric trucks and following distance should be performed to 89

ensure safety, drag reduction and energy consumption. The paper [21] investigates the fuel 90

saving potential of predictive optimal control methods for the engine cooling system in 91
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conventional trucks. The advantages of this approach are the recovery of brake energy and 92

the balance of energy sources in order to minimize total energy. The paper [22] attempts to 93

reduce ECMS’s calculation load by proposing an adaptive simplified ECMS based strategy 94

for a parallel plug-in hybrid electric vehicle. The paper [23] proposes a novel real-time 95

energy management strategy for parallel hybrid electric vehicles. This approach uses 96

adaptive ECMS which sets the time-varying equivalent factor. Hybrid electric vehicles 97

have been known to be a feasible option to reduce fuel consumption and emissions. The 98

paper [24] proposes an adaptive energy management system consisting of off-line and 99

online parts to improve the energy efficiency of a parallel hybrid electric bus. The offline 100

part focuses on the recognizing the precision of driver’s driving style based on the hybrid 101

algorithm. The online part incorporates driver’s driving style into equivalent consumption 102

minimization strategy. 103

While a lot of focus is made individually in solving a fuel efficient problem with different 104

constraints but none presented a holistic global optimal problem for a class 8 mild hybrid 105

vehicle. In this work the attempt was to find the global predictive fuel efficient and 106

emissions efficient behavior in terms of predictive control of cruise speed, gear shift, engine 107

ON/OFF coasting and intelligent SOC management for a mild hybrid driven class 8 truck. 108

2. 1D Longitudinal Vehicle Dynamics 109

A simple 1 dimensional longitudinal forward torque model is used in this work. A 110

class 8 heavy duty truck with a 48V mild hybrid system configured to run in a parallel 111

power assist mode is used in this paper. The electric machine is connected to the driveshaft 112

via a single gear/clutch assembly at the transmission output shaft. One key objective 113

of using this unique configuration is that line haul applications are the major consumer 114

of diesel fuel and produce the most emissions. It is also very important to explore the 115

emissions reduction while studying key control features since the emissions standards 116

are growing more stringent. Subsections below will discuss briefly about the sizing for 117

different components in such a configuration. 118

2.1. Internal Combustion Engine 119

The engine is of a 15L diesel family which has a power rating of 298-373 kW and a 120

torque rating of 1966-2508 N.m. The fuel map is made up manually to mimic an engine 121

efficiency 47%, as shown in Figure 1. It is a 6 cylinder inline configured system [25]. 122

2.2. Electrification System 123

The electrification system in this configuration consists of a motor generator and an
energy storage device. Since the chosen configuration is a mild 48V hybrid system the
Motor of choice is a Borgwarner P2 Off Axis motor which supports a torque range up to 80
N.m. Figure 1 shows the torque and power characteristics of the chosen motor as a function
if its speed in RPM. It is worth noting that beyond 4000 RPM the torque starts decreasing
and power is flattened. The continuous power of the machine used is 15kW with peak
torque raging between 50-80Nm.
There are several choices for a 48V energy storage system. In this work a simple configura-
tion from A123 Systems is selected [27]. The battery is moderately sized with 8Ah capacity
and a nominal operating temperature of 25C. At this settings it can provide continuous
power of 15kW. A simple thermal model for the battery is designed to model the heat loss
by the battery. An active cooling system is also in place to increase the rate of heat loss by
the battery. Since the battery is small and limited by power, proper heat management of the
battery is necessary to utilize its full range of power capability. It is also worth mentioning
that the battery is considered to always provide continuous power.
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Figure 1. Powertrain Design[25][26]

The SOC is estimated using coulomb counting method [28][29][30] which is very efficient
and simple way to calculate SOC.

SOC(s) = SOC(s − 1) +
1

v(s)
Ic(s)
Qn

∆s (1)

It is worth to note here that the SOC state is divided by the vehicle speed. This is done to 124

reformulate all vehicle dynamics in distance domain. This change from time domain is 125

necessary to solve the problem for an independent time solution. This fact will be discussed 126

further in the problem formulation section. 127

2.3. Transmission System 128

The transmission system is a 12 speed overdrive system. There are 12 forward ratios 129

and 2 reverse ratios. Only the top 4 gear ratios are used in this work since the velocity 130

profile used is taken from highway drive. The top 4 gear ratios used are [0.776, 1, 1.3, 131

1.7]EATON©[31]. It can support a maximum Gross Vehicle Weight (GVW) of 49895 Kg and 132

supports a maximum torque of 2508 N.m. The shift points for the transmission is made 133

up using vehicle speed reference. The way it is derived as a function of vehicle speed and 134

operator throttle so that at cruising speed the transmission stays at top gear. It is also done 135

in a way to keep the engine speed within the best operable BTE region. 136

2.4. Drive line & Chassis 137

The chassis is from a typical line-haul application. A Gross Vehicle Weight (GVW) of 138

65000 lbs is used in this study which fits nicely into the component requirements as well as 139

a standard load carrying measure. The number of wheels are 18. 140

A rear axle ratio of 2.64 is used which gives a lot of low end torque propagation at startup 141

and also does not let the engine operating point go, too high at top gear. The optimization 142

result is strongly coupled to these chosen components. Specifically the chassis components 143

are key players in deciding the vehicle dynamics and optimal fuel numbers since they 144
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impact the vehicle speed directly. Table 1 shows the base vehicle parameters which are 145

used in the simulation. 146

Parameter Symbol Value

Vehicle Mass m 32.5 tonne
Effective mass in cruise gear me 32.52 tonne

Wheel Radius Rw 0.5m
Aerodynamic drag coefficient cd A f 5
Rolling resistance coefficient cr 0.005

Air Density ρa 1.184kg/m3

Gravitional acceleration g 9.81m/s2

Engine Maximum Power PEmax 325kW

Table 1. Vehicle Parameters

2.5. Force Balance 147

The different forces at the wheel is summed up and then divided by the equivalent 148

vehicle mass to get the acceleration. Finally the acceleration is integrated to get the velocity 149

of the vehicle which is used to feed back to the upstream controllers for a full closed loop 150

dynamics. 151

Figure 2. 1-D Longitudinal Forces on a Vehicle

The gravitational force as a function of the road grade is given by equation 2. 152

Fdrag = m ∗ g ∗ sin(θ) (2)

where, θ is the road grade in radians 153

The aerodynamic drag is a direct function of vehicle speed and is given by equation 3 154

Faero =
1
2

ρ ∗ A f ∗ Cd ∗ ν2 (3)

where, A f is the vehicle frontal area, Cd is the Drag Coefficient & ρ is the air density. 155

The road normal force is a function of road grade and is given by equation 4 156

Fnorm = m ∗ g ∗ cos(θ) (4)

where, θ is the road grade in radians 157
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Hence, using the force balance principle and rearranging, the vehicle speed is given 158

by equation 5 159

ν =
∫ 1

m
[Ftractive − Fdrag − Faero − Fnorm]dt (5)

The optimal problem is solved in distance domain since the time in this solution is 160

not fixed. Depending on the speed modulation the time for the entire route will change 161

and hence the problem is changed from a fixed time problem to a fixed distance problem. 162

Hence we convert equation 5 as 163

ν =
√
(2 ∗

∫ 1
m ∗ ν(s)

[Ftractive − Fdrag − Faero − Fnorm]ds) (6)

where, the initial condition of the integration is Equation 6 164

v0 =
1
2

v2
0 (7)

It is worth noting here that equation 6 makes vehicle speed a state of the system dynamics. 165

The assumptions made throughout this section while designing the system dynamics are 166

• Rotational Compliance & Coupling Dynamics between components are not considered 167

for the purpose of this research. 168

• Losses are considered constant instead of a function of any dependent variables. 169

• Map based logic is used in every calculation possible to eliminate the need of complex 170

analytical design. 171

Since the research is based on energy level analysis the above considerations are justified. 172

Hence the 5 continuous states are Vehicle Speed, Vehicle Position, Engine Fuel Quantity, 173

Battery SOC & Battery Temperature. There is also another state which is the gear number 174

but this is a discrete integer type state hence making the problem suitable for a mixed 175

integer type non-linear problem. The control inputs are Engine Throttle, Clutch Command, 176

Brake Command, & Gear Shift Request. 177

Power split between the Internal Combustion Engine and Electrical Energy Storage is 178

decided by a simple splitting logic where the battery does what ever it can and the rest is 179

provided by the engine. Similarly for regeneration the battery absorbs energy to its SOC 180

based limits and the rest is consumed by the engine as motoring torque. 181

3. Problem Approach 182

A multi-objective minimization problem is solved in this work for a mixed integer 183

type non-linear dynamical system. The objective is to achieve a fuel efficient solution based 184

on "a-priori" knowledge of the road elevation for the entire route. Since better fuel efficient 185

operation also indicates a better engine operating point in the Brake Thermal Efficiency 186

(BTE) contours, we also anticipate to improve the emission. The reduced order vehicle 187

dynamical model as described in the above section is used to solve the problem using 4 188

individual control levers. The controls are cruise set speed, clutch disengagement with 189

engine either ON or OFF, dynamic gear shift and dynamically torque split (splitting power 190

between engine and battery). A weighted sum of total fuel consumed and total trip time is 191

used as the cost function. Rate of change of battery temperature is also added as a objective 192

in the cost function to make sure the battery is operated in its most optimal operating zone. 193

Equation 8, shows the cost function. 194

min
∀u∗∈U ∑[

α

ω f c
(

ṁ f (u)
Vs(u)

) +
1 − α

ωtt
(

1
Vs(u)

) +
β

ωbt
(

Ṫbatt(u)
Vs(u)

)]∆x (8)

where, ṁ f is the fuel rate, Vs is the vehicle speed, α is the tuning coefficients for fuel 195

consumed and trip time, ω f c & ωtt are normalizing weights to transform the units in the 196
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same domain and ∆x is the integration step in distance domain. Ṫbatt is the rate of change 197

of battery internal temperature and β is the independent tuning weight. 198

The dynamics in time domain is converted to distance domain by dividing the differential 199

equations by Vehicle Speed (v(s)). Inclusion of time in the cost function is a measure of 200

drivability. It is not acceptable to achieve a fuel efficient solution if the time constraints are 201

not met. In other words the vehicle cannot take more time to cover the route, to save fuel 202

and emissions. 203

Figure 3. Overview of the problem architecture.

Figure 3, shows the high level architecture of the problem. The platooning problem 204

is solved by the authors in another paper in a two step problem approach. In this work 205

only the offline optimizer part of the problem is solved as detailed in the below sections. 206

The look ahead road grade is fetched from the corridor information module, where it is 207

assumed that the full route information is available. Now that we know the details of the 208

problem and how we are going to approach those, we will lay down the individual problem 209

in some more details. There are 4 control factors in this work which are implemented in a 210

cascaded approach by introducing one control parameter at a time and then finally solving 211

the problem with all the control parameters. The problem has 4 states x(.) =[Vehicle Speed, 212

Transmission Gear Number, Clutch State and Battery SOC], 4 controls u(s) = [Throttle, 213

Clutch Command, Gear Shift Command, Power Split Ratio]. Engine Speed is another 214

derived state which is not explicitly needed by dynamic programming. Position in the 215

route is another exogenous state which is used in the optimal model. Constraints that are 216

modelled in this work are both soft and hard. Vehicle speed is limited between an absolute 217

maximum and minimum threshold as a hard constraint. A soft root mean square type, 218

second order norm constraint is also used which is based on the difference between baseline 219

speed profile and the optimal speed profile. Additional constraints for coast problem is 220

the duration and frequency of coast events. Since the predictive behavior can increase or 221

decrease the vehicle speed from the cruise set speed, it is required to appropriately set the 222

constraints on vehicle speed. Similarly the engine off coast can also increase speed beyond 223

reasonable limits if not monitored correctly. Hence, there are vehicle and engine speed 224

limits set up accordingly while solving the problem. 225

3.1. Dynamic Program Formulation 226

The problem is solved using dynamic programming and back tracking the cost, which 227

is a potential solver for accurately solving global optimal problems with non-linear system 228

dynamics. Dynamic programming based control problem is well established by Guzella, 229

et.al [32],[33],[34]. Since dynamic programming has knowledge of the complete route and 230

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2022                   doi:10.20944/preprints202210.0222.v1

https://doi.org/10.20944/preprints202210.0222.v1


8 of 21

solves the problem in a backward fashion it is guaranteed to provide a global optimal 231

solution. 232

Figure 4, shows the Cost-To-Go calculation and the selection of control variables. The 233

iteration is done starting from the end as per dynamic programming principle [35][36][37]. 234

Starting from the end of the route the cost is calculated at each position step which in our 235

work is set up to be 20m which is selected based on a resolution study for the optimization. 236

It is also worth noting that 20m corresponds to 0.7s at 65mph isochronous speed. This 237

gives a good resolution for capturing any vehicle dynamics in terms of finding the optimal 238

solution. The corresponding control levers are chosen at each position step for which the 239

calculated cost is minimum. 240

The output of this solver is the optimal value for throttle, clutch, power split and gear shift. 241

This throttle control is used as input to the closed loop system to generate the optimal speed 242

profile using a model predictive controller. At each step the minimum cost is obtained and 243

added to the cost-to-go value for the forward closed loop control. 244

Figure 4. Illustration of Dynamic Programming Solver.

4. Detailed Problem and Subsequent Simulation Results 245

In this section the individual control levers are formulated one at a time and then with 246

each subsequent problem one additional control is added. This setup help understand the 247

problem better and the contribution and interaction of each added control factor. The route 248

profile chosen for this work is a 86mile long section of I64 which has a good combination of 249

road grade distribution. 250

4.1. Dynamic Speed Management 251

The first control lever used is Cruise Set Speed. The idea here is to dynamically 252

modulate the cruise set speed around 65mph isochronous speed as a function of future 253

road grade knowledge. This is similar to adaptive cruise control but is based on road grade 254

information. Equation 9, shows the cost function as defined earlier, 255

min
∀u∗∈U ∑[

α

ω f c
(

ṁ f (u)
Vs(u)

) +
1 − α

ωtt
(

1
Vs(u)

) +
β

ωbt
(

Ṫbatt(u)
Vs(u)

)]∆x (9)

subject to,

ẋ(s) = f (x(s), u(s), w(s)),

y(s) = g(x(s), u(s), w(s)),
(10)
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and, non-linear constraints,

vmin ≤v(s) ≤ vmax,

gmin ≤g(s) ≤ gmax,

socmin ≤SOC(s) ≤ socmax,

ωeng,min ≤ωeng(s) ≤ ωeng,max,

τeng,min(ωeng) ≤τeng(s) ≤ τeng,max(ωeng),

(11)

There are three states here x(.) =[Vehicle Speed, Transmission Gear Number, Battery
SOC], 1 control u(s) = Throttle and the primary output y(s) =[Optimal Vehicle Speed
Target Trajectory. The search space is discretized between a minimum and maximum set
of points for all these states. Engine Speed is also a state but it is a dependant state of the
vehicle speed and hence it is not needed by the solver for the control problem. The engine
speed is given by Equation 12,

ωeng(t) =
v(t) ∗ wrad
ν ∗ RAR

(12)

where, ωeng is engine speed in rad/s, ν is "gear ratio", RAR is Rear Axle Ratio and wrad is 256

wheel radius. Total time is also included in the objective cost to make sure that total time 257

remains within baseline limits. So, if the truck without predictive control takes "X" seconds 258

to cover the route, the optimal control should also be close to that "X" seconds. 259

The output of this solver is the optimal throttle value. This throttle control is used as input 260

to the closed loop system to generate the optimal speed profile based on traditional model 261

predictive control. The vehicle will no longer target a constant 65mph cruise set speed in 262

this case as the optimal throttle will let the vehicle dynamically increase speed and slow 263

down in the route based on look ahead grade information. Since dynamic programming 264

with back tracking is computationally heavy, parallel computation using multi core system 265

is used where ever possible. One such situation is when the stage cost is calculated for 266

discretized points. During this step the full set of points is divided into smaller sets and the 267

problem is solved for those smaller sets in different cores of the system CPU. 268

Table 2 shows the key metrics for the Cruise Speed modulation problem. It shows an 269

absolute fuel economy of 3.02% with a change of 0.07% in trip time. There is a reduction 270

of 1% of aerodynamic work and 2.56% reduction in total cycle work. The brake thermal 271

efficiency improved by 0.18%. Negative work reduction is mostly due to engine braking 272

reduction. The % improvement numbers are against the baseline simulation where the 273

vehicle cruise set speed is 65mph. 274

Metrics Units VS ∆

Fuel Consumed Kg 26.4984 -0.8
Fuel Economy mpg 9.86 3.02

Trip Time s 4602.8 0.07
Aerodynamic Work kWh 89.26 -1.01%

Cycle Work kW 142.34 -2.56%
BTE % 44.95 0.18%

Negative Work kWh -24.1 -18.66
EONOx Kg 0.4104 -6.41

Table 2. Optimal Metrics for the Dynamic Speed Management Problem

Key observations from this problem is that the predictive cruise control modulates 275

speed around uphills and downhills. Specifically it increases speed before entering a hill 276

and decreases the speed before entering a down hill. In energy domain it is similar to 277

gaining energy when it is easy to do in the flat section and then utilize the kinetic energy 278
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gained, to cover the uphill section to overcome the grade drag. Similarly during the 279

downhill it is efficient to slow down a bit before entering the downhill to save energy (fuel) 280

since it is expected to increase speed during the downhill and will have to brake thereby 281

wasting energy which is gained at the expense of fuel. The main objective here is to reduce 282

the negative work in the form of reduced engine braking. Speed modulation during the 283

flat sections are not very common. During the flat section the truck follows the usual route 284

speed limit which is 65mph or 29m/s in this work. The emissions are also improved as a 285

passive component due to the engine operating point change. Now that the engine operates 286

at a more better BTE zone consuming less fuel, we observed a better NOx numbers. The 287

Normalized NOx reduction from baseline simulation is around 5% in this optimal problem 288

formulation. 289

4.2. Dynamic Speed & Coast (Engine Idle + Engine Off) Management 290

The vehicle dynamics and the cost function for this problem is similar to what is used 291

for speed management. An additional state and control parameter is added to the speed 292

problem. To manage coast we need to know the current clutch state and then command the 293

clutch to engage or disengage. One additional constraint here is the duration and frequency 294

of coast events. Even though speed constraints will take care of how long coast events can 295

be but there is a need for a constraint on how frequent the coast events could be. Hence 296

a penalty on the frequency of clutch state change is added. This will prevent frequent 297

coast events and thereby reduce oscillations in operation. Table 3 shows the metrics for the 298

problem where only coasting is used as a control lever. 1.3% compensated fuel savings is 299

achieved by using the coast problem in the engine off mode and around 0.9% by keeping 300

the engine on while coasting. Most of the benefit is achieved by the reduction of cycle work, 301

aerodynamic work and a reduction in negative work. There is a also reduction of Engine 302

Out NOx in the order of 1.8% for both the engine on and engine off coasting scenarios. 303

The difference in NOx reduction is not significant since the engine is tuned for ultra clean 304

performance. 305

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 27.03 -0.26 26.92 -0.37
Fuel Economy mpg 9.66 0.98% 9.7 1.39%

Trip Time s 4604.1 0.09% 4602.6 0.06%
Aerodynamic Work kWh 89.7 -0.52% 89.1 -1.19%

Cycle Work kW 144.97 -0.76% 144.76 -0.91%
BTE % 44.87 0.09 44.99 0.21

Negative Work kWh -27.21 -8.17% -26.1 -11.91%
EONOx Kg 0.4304 -1.82% 0.4297 -1.98%

Table 3. Comparison of key metrics for the Coast Management problem only with Engine Idle and
Engine Off Condition. The ∆% is the comparison with the baseline simulation

Table 4 shows the key energy domain metrics for the speed and coast problem together 306

for the entire I64 portion of the route. This in an important metrics to look at since the 307

negative work done is the loss in energy which is gained at the expense of either fuel 308

or electric energy. Since dynamic programming did not show the reason why the fuel 309

benefits are occurring it is important to compare the reduction in negative work which 310

clearly indicates where the fuel economy is coming from along with the improvement in 311

engine BTE. Analyzing the distributed speed and coast problems alone, it is evident that 312

when speed and coast problems are solved together the fuel saving benefits are additive. 313

The speed and coast problem solved together achieved 3.6% for the Engine idle coast case 314

and 4.4% for the Engine off coast scenario. It is also worth noting that the engine off case 315

benefits are also additive. 316
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Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.3345 -0.96 26.14 -1.15
Fuel Economy mpg 9.92 3.64% 9.99 4.41%

Trip Time s 4604.2 0.1% 4603.7 0.08%
Aerodynamic Work kWh 87.52 -2.94% 87.53 -2.93%

Cycle Work kW 141.92 -2.85% 140.25 -3.99%
BTE % 45.09 0.31 44.89 0.11

Negative Work kWh -21.76 -26.56% -22.12 -25.35%
EONOx Kg 0.4021 -8.28% 0.4002 -8.71

Table 4. Comparison of key metrics for the Vehicle Speed and Coast Management problem with
Engine Idle and Engine Off Condition. The ∆% is the comparison with the baseline simulation

Figure 5, shows the time domain evolution of various signal for the optimal problem. 317

The plot shows a section of the I64 route. Subplot 2 shows the gear number for the two 318

scenarios and it shows near similar behavior which indicates similar engine operating 319

conditions in the torque curve. Subplot 3 shows the difference in the vehicle speed for 320

the two different problem along with the reference speed target generated by the optimal 321

solver. Subplot 6 shows the grade power for the two optimal problems (Engine Off and 322

Engine Idle). The plots are identical as expected since the grade is same for the two problem. 323

Subplot 7 in Figure 5, shows that the coast zones for engine off problem are not exactly 324

similar to the coast zones for the engine idle problem. This indicates that predictive coast 325

with engine off and engine idle are two separate problem in terms of optimality. The black 326

vertical boxes highlight are difference in behavior of between the two problem. 327

Figure 5. Performance Results for Optimal Solution compared to Baseline rule based control. The
plot is zoomed version of stitched version of different sections in the route.

4.3. Dynamic Speed, Coast (Engine Idle + Engine Off) & Gear Management 328

In this third problem we have included predictive gear control as a third lever along 329

with speed and coast controls. The objective function remains same with the addition of 330

an extra control input which is the gear shift command. Gear shift command can take 3 331

possible states (up shift, hold gear & down shift). The objective here is to find if shifting 332

the gear with the knowledge of road grade in the route will help achieve any fuel benefits 333
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and/or drivability improvements. Analytically it is not expected to gain fuel benefits unless 334

the fuel maps are tuned to include high Brake Thermal Efficiency (BTE) zones for lower 335

gears. It is also worth pointing out here that the engine efficiency maps used for this work 336

has its peak BTE zone around a range of engine speed which corresponds to top gear ratio 337

of the transmission system. This means that if we get down to a lower gear the system 338

will compromise on fuel savings. Hence to achieve the minimum cost of fuel savings the 339

system will not down shift. This is also seen with the optimal solution. This problem did 340

not provide any fuel benefits but neither did penalize fuel savings. It was a hard problem 341

to tune for achieving at least the same fuel economy as with the previous problem and with 342

this tuning it is observed that the system down shifts a little early while in positive grade, 343

and stays at a lower gear a little more after coming out of positive grade. The interaction 344

between gear shift for this problem and clutch disengagement for the coasting problem 345

is handled through the addition of appropriate penalties. On the performance side it is 346

observed that with dynamic gear shifts the truck was able to maintain a higher speed in 347

the uphill sections. This is illustrated in Figure 6. The red plot is the vehicle speed for the 348

optimal solution and it shows clear reduction in lug-back in the up hill section. 349

Figure 6. Predictive Optimality in Gear Management. The problem shows the predictive gear shift
behavior in one of the up-hill section.

On an average a 2mph less speed reduction is achieved in all the uphills. 350

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.34 -0.95 26.1 -1.19
Fuel Economy mpg 9.92 3.62% 10.01 4.57%

Trip Time s 4597.3 -0.05% 4605.3 0.12%
Aerodynamic Work kWh 90.29 0.13% 87.54 -2.92%

Cycle Work kW 142.021 -2.78% 140.218 -4.02%
BTE % 45.11 0.33 44.94 0.17

Negative Work kWh -22.3 -24.74% -23.93 -19.24%
EONOx Kg 0.41. -6.48% 0.4082 -6.89

Table 5. Comparison of key metrics for the Vehicle Speed, Coast & Gear Management problem with
Engine Idle and Engine Off Condition. The ∆% is the comparison with the baseline simulation
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Table 5 shows the metrics for this problem with engine idle coasting as well as engine 351

off coasting. As discussed earlier we notice insignificant improvement in compensated fuel 352

economy. There is less engine out NOx reduction as compared to the Coast only problem. 353

This is due to the increase in lower gear operation. The impact of NOx improvement is not 354

at all substantial to justify that addition of predictive knowledge for gear management can 355

improve NOx production in the system. In fact for some tuning cases it increased the NOx 356

production a bit due to the gear operation at a lower gear. This is analytically justified as 357

well since a lower gear operation means better performance rather than a better BTE zone 358

operation. The good observation is that even with the fuel efficient tuning for the optimal 359

parameters it did not penalized NOx production drastically. 360

4.4. Dynamic Speed, Coast (Engine Idle + Engine Off), Gear & Torque (Power Split) Management 361

Lastly the problem is solved for dynamically varying torque demand between the 362

engine and battery system. This is done base don the predictive knowledge of the road 363

grade and the battery system temperature. Analytically it is not expected to provide 364

significant fuel savings since the electrification system is quite limited in power. 365

In this problem there are no additional states involved but there is an extra control input for 366

the dynamic solver. This new control input is power split ratio. The way this ratio is defined 367

in the problem is by discretizing the entire hybrid power range including the charge and 368

discharge limits. Hence the electric power range of -20kW to +20kW, is discretized with 369

equal grid size. The resolution of the grid size matters since it impact the results based on 370

how dynamic and responsive the particular control input is. 371

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.34 -0.95 25.995 -1.30
Fuel Economy mpg 9.92 3.63% 10.05 5.00%

Trip Time s 4597.2 -0.06% 4601.5 0.04%
Aerodynamic Work kWh 90.298 0.14% 89.21 -1.07%

Cycle Work kW 141.89 -2.87% 141.67 -3.02%
BTE % 45.07 0.29 45.59 0.82

Negative Work kWh -22.78 -23.12% -23.97 -19.1%
EONOx Kg 0.4 -8.76% 0.4023 -8.23

Table 6. Comparison of key metrics for the Vehicle Speed and Coast Management problem with
Engine Idle and Engine Off Condition. The ∆% is the comparison with the baseline simulation

Table 6 shows the key metrics for this problem. As discussed earlier there is no 372

substantial increase in fuel benefits. Figure 7 shows the total time spent in each gear for the 373

individual problems. The plot enumerations are Bsln: No Optimal Behavior, VS: Dynamic 374

Speed, VSC: Dynamic Speed & Coast, VSG: Dynamic Speed & Gear, VSCG: Dynamic Speed, 375

Coast & Gear, VSCGP: Dynamic Speed, Coast, Gear & Power Split. This metrics provides 376

an understanding of which gear is predominantly being exercised by each problem. Since 377

downshifting to a lower gear will take the operation outside of the maximum BTE zone 378

it is not expected that the gear problem will try to shift down for a better fuel efficient 379

solution. Hence for this kind of BTE map a more fuel efficient solution is practically not 380

possible. Gear problem can expected to provide a better drivability by helping to reduce 381

lug backs in heavy hill. It is seen in Figure 7 that all the problem types are trying to increase 382

top gear operation since fuel saving will be more due to the BTE contour positioning. It is 383

also interesting to observe that the problems with gear management is reducing the time in 384

(top-1) gear. The coast management problem alone is the only problem which is not able to 385

increase top gear operation much as compared to the other problems. This is due to the 386

fact that with coast management problem since the vehicle is not predictively modulating 387

speed and gear the speed drops are more which causes the gear to shift down more. 388
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Figure 7. % Time in top 4 Gear for each DOE. The comparison has to be between the top 2 gears.
Predictive gear tries to operate more at a lower gear while Fuel Economy tends to operate at a higher
gear.

Figure. 8 shows the key metrics for the complete problem with Engine idle coasting 389

condition. The plot shows the absolute fuel economy for each problem when compared to 390

baseline case. The orange plot is the % change in trip time. The green plot is a measure of 391

relative fuel economy which is the difference between the absolute fuel economy and the 392

% change in trip time. This is done to make sure that negative trip time is compensated 393

accordingly. The plots also shows the reduction in cycle work and the improvement in 394

Brake Thermal Efficiency in each case. Figure. 9 shows the reduction in aerodynamic drag 395

and the reduction in Engine Out NOx numbers. The complete problem achieved a 3.7% 396

fuel economy and a NOx reduction of 8.3%. The corresponding BTE improvement in this 397

case is much lower and is close to 0.3%. 398

Figure 8. Key metrics showing the comparison of benefits along with Cycle work and BTE for the
complete set of problem including Speed, Coast, Gear and Power Split Management. This scenario is
with with Engine Idle Coast.
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Figure 9. Reduction in Aerodynamic Work along with associated EONOx Reduction. The last bar
plot shows the reduction in Negative Work which includes Engine braking, Motoring Losses and
Service Braking.

Figure 10 and Figure 11 captures the detailed metrics for all the problems stacked up 399

for the engine off coasting case. Overall an impressive 5% fuel economy is achieved with 400

the predictive features working together with engine off coasting condition. This benefit 401

is mostly contributed by 0.8% improvement in BTE, 3% reduction in cycle work and 19% 402

reduction in negative work. There is also an associated NOx reduction with each control 403

levers. NOx reduction was 8.75%. This is due to the fact that engine BTE has improved. 404

Figure 10. Key metrics showing the comparison of benefits along with Cycle work and BTE for the
complete set of problem including Speed, Coast, Gear and Power Split Management. This scenario is
with with Engine Off Coast.
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Figure 11. Reduction in Aerodynamic Work along with associated EONOx Reduction. The last bar
plot shows the reduction in Negative Work which includes Engine braking, Motoring Losses and
Service Braking.

Figure 12 shows the coast metrics for various problems. The bars show the percentage 405

of time in coast by each problem and the line plot shows the number of coast events in 406

each problem. Engine off and engine idle coast metrics show similar behavior in terms of 407

time in coast and number of coast events. Interestingly the coast alone problems has some 408

good amount of coasting events but could not provide a lot of benefit simply because of 409

the fact that the net fuel economy is not related to coast events alone but is a combined 410

factor of multiple scenarios including cycle work reduction, negative work reduction, BTE 411

improvements and aerodynamic drag reduction. Further a couple of very large coast 412

events were also observed which may not be feasible in real environment due to physical 413

engine operation restrictions. Nevertheless, the metric gives an overview of the coast event 414

distribution across various problem set. 415

Figure 12. Coast Metrics for all combination of problems with Coast formulation. The bars show the
% time in Coast for each problem and the plot shows the number of coast events.

Figure 13 shows the % change in aerodynamic work as a function of % improvement in 416

fuel economy. There is no concise co-relation between the the two in terms of the different 417

problems. This is because the trip time is balanced with baseline trip time. Hence the 418

overall increase/decrease in speed tends to balance each other. The dynamic speed+coast 419

problem show typically more aerodynamic work reduction. This is due to the fact that they 420
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are only slowing down the vehicles whenever possible by going to coasting along with 421

speed modulation. 422

Figure 13. % Change in aerodynamic work as a function of % fuel economy improvement for various
optimal problem setups.

Figure 14 shows similar trends as compared to the cycle work reduction. It shows 423

the metric is correlated to speed modulation. Since negative work is due to the speed 424

band operating at regions beyond the engine braking limits, with the coast alone problem 425

vehicle speed is not intentionally modulated to a higher or lower value at the expense of 426

the fuel hence the reduction is less as compared to the baseline results. In this case the 427

speed modulation typically follows the baseline numbers. The other problems have a lesser 428

spread with the engine idle problem as compared to the engine off problem. It is noted that 429

there is a linear trend in fuel economy and negative work reduction for all problems except 430

the problems with the addition of the gear modulation. 431

Figure 14. % Reduction in negative work as a of function of % fuel economy improvement for various
optimal problem setups.

Figure 16 shows the reduction in total cycle work of the engine as a result of the 432

predictive knowledge of the road grade. The bubbles shows the reduction in Engine Out 433

NOx as a function of the reduction in % Cycle Work by the engine. Though it can also 434

be seen that the reduction is more in case of Engine off case which is due to the fact that 435
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the engine idle work is taken away in this case. In case of the Engine idle scenario the 436

reduction for all the problems are around −2.75% while the problem with engine idle coast 437

only is around −0.76% while with the Engine off scenario the problems with vehicle speed 438

along with coast, gear and power split provides added reduction as compared to vehicle 439

speed alone problem only. This clearly demonstrate the fact that the problem with engine 440

idle and engine off case are completely different in behavior and cannot be determined 441

by interpreting zero fuel consumption by engine idle problem during the idle sections. 442

This is an important observation. Similar trends are also observed with the negative work 443

reduction for both the engine off and engine idle coast cases. Negative work in this case is 444

comprised of engine braking work and motoring work. 445

Figure 15. % Change in Brake Thermal Efficiency as a function of % change in Cycle work for different
combination of optimal problems.

Similarly, Figure 15 shows the variation of Cycle work reduction to Brake Thermal 446

Efficiency (BTE) improvement. There is no strong co-relation between the problems and 447

the general behavior. 448

Figure 16. % Reduction in cycle work as a function of % improvement in fuel economy for various
optimal problem setups.

Another quick analysis done in this work is to run the same problem on a shorter 449

section of the route. This was done to understand the look ahead distance required for 450
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optimal behavior. The complete route is divided into two sections of 40 mile each, one for 451

the first half and the next for the second half. Table 7 shows the % Fuel Economy numbers 452

for the two sections of the route. 453

Table 7. Predictive fuel economy numbers for different section of the route

Route Section FE Trip Time Full Route FE Full Route TT Coast Events
1st 40 miles 2.41 -0.05

5.00 0.04

Decreased
2nd 40 miles 2.39 0.02 Increased
Hilly 10 mile 0.053 -0.86 None
Flat 10 mile 1.03 0.27 Regular

The results from Table 7 shows that the over all behavior and fuel economy numbers 454

stays near similar if we shorten the route to half. Since the route is not exactly symmetrical 455

the numbers are not equally divided. The coast events also reduced a little for the first 456

half of the route and increased marginally for the second section. This is solely due to the 457

fact that the grade profile is not similar. It is also noted that the optimal control shows 458

similar physical behavior during the very short hilly section where there was no coast 459

events observed and the vehicle speed modulation was also not effective. The predictive 460

gear played a role by reducing the lug back. It is noted that the Fuel Economy is not at all 461

achieved in this section. While in the flat section there is usual behavior of coast events 462

and the problem was able to achieve around 1% benefit. There is also more slow down 463

of the vehicle due to the fact that there was coast events which slowed the speed down. 464

Overall if these results are compared with the full route solution it is not observed that the 465

benefits are hugely sacrificed. Specifically for the 40 miles route it is noted that the benefits 466

are almost equally divided between the two segments and adds up to get close to the full 467

route benefits. 468

5. Conclusion & Further Work 469

This research indicates that predictively applying control action with a-priori knowl- 470

edge of road grade can provide increased fuel economy without negatively impacting 471

vehicle performance. Dynamic cruise and coast control provides most benefits while pre- 472

dictively controlling gear and torque (power split) does not provide any significant fuel 473

benefit but improved drivability and powertrain efficiency. The major outcome of the work 474

are: 475

• Predictive road grade knowledge can help design control algorithms that will enable 476

fuel savings depending on road grade profile, 477

• Vehicle cruise speed can be increased within acceptable bounds (calibrated for driv- 478

ability) before entering an uphill, 479

• Vehicle cruise speed can be reduced within calibratible bounds before entering a 480

downhill, 481

• Down shift gear to a lower value predictively before hitting speed lug back in up-hill, 482

• Up Shift gear predictively while still on uphill and before completely coming out of 483

the hill, 484

• Engine can be disengaged and turned off in mild down grade, 485

• Engine can be disengaged for short duration during flat section of route with predictive 486

speed modulation (increase speed then disengage), 487

This analysis is also precursor to predictive platooning systems. The usage of this formula- 488

tion in platooning system is discussed in another paper by the same authors. 489
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