

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

On Duality Principles and Related Convex Dual Formulations Suitable for Local Non-convex Variational Optimization

Fabio Silva Botelho

Department of Mathematics

Federal University of Santa Catarina

Florianópolis - SC, Brazil

Abstract

This article develops duality principles and related convex dual formulations suitable for the local optimization of non-convex primal formulations for a large class of models in physics and engineering. The results are based on standard tools of functional analysis, calculus of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau type equation.

Key words: convex dual variational formulation; duality principle for non-convex local primal optimization; Ginzburg-Landau type equation

MSC 49N15

1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable for the local optimization of the primal formulation for a large class of models in non-convex optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar models on the superconductivity physics may be found in [4, 11].

Remark 1.1. *It is worth highlighting, we may generically denote*

$$\int_{\Omega} [(-\gamma \nabla^2 + K I_d)^{-1} v^*] v^* \, dx$$

simply by

$$\int_{\Omega} \frac{(v^*)^2}{-\gamma \nabla^2 + K} dx,$$

where I_d denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently clear.

Finally, ∇^2 denotes the Laplace operator and for real constants $K_2 > 0$ and $K_1 > 0$, the notation $K_2 \gg K_1$ means that $K_2 > 0$ is much larger than $K_1 > 0$.

At this point we start to describe the primal and dual variational formulations.

Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J : V \rightarrow \mathbb{R}$ where

$$\begin{aligned} J(u) = & \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u dx \\ & + \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta)^2 dx - \langle u, f \rangle_{L^2}. \end{aligned} \quad (1)$$

Here $\gamma > 0$, $\alpha > 0$, $\beta > 0$ and $f \in L^2(\Omega) \cap L^\infty(\Omega)$.

Moreover, $V = W_0^{1,2}(\Omega)$ and we denote $Y = Y^* = L^2(\Omega)$.

Define the functionals $F_1 : V \times Y \rightarrow \mathbb{R}$, $F_2 : V \rightarrow \mathbb{R}$ and $G : V \times Y \rightarrow \mathbb{R}$ by

$$\begin{aligned} F_1(u, v_0^*) = & \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u dx - \frac{K}{2} \int_{\Omega} u^2 dx \\ & + \frac{K_1}{2} \int_{\Omega} (-\gamma \nabla^2 u + 2v_0^* u - f)^2 dx + \frac{K_2}{2} \int_{\Omega} u^2 dx, \end{aligned} \quad (2)$$

$$F_2(u) = \frac{K_2}{2} \int_{\Omega} u^2 dx$$

and

$$G(u, v) = \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta + v)^2 dx + \frac{K}{2} \int_{\Omega} u^2 dx - \langle u, f \rangle_{L^2}.$$

We define also $F_1^* : [Y^*]^3 \rightarrow \mathbb{R}$, $F_2^* : Y^* \rightarrow \mathbb{R}$, and $G^* : [Y^*]^2 \rightarrow \mathbb{R}$, by

$$\begin{aligned} & F_1^*(v_2^*, v_1^*, v_0^*) \\ = & \sup_{u \in V} \{ \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_0^*) \} \\ = & \int_{\Omega} \frac{-K_1 f (-\gamma \nabla^2 + K + K_2) f + (v_1^* + v_2^*)^2 - 2K_1 f (-\gamma \nabla^2 + 2v_0^*) (v_1^* + v_2^*)}{2[K_2 + K - \gamma \nabla^2 + K_1 (-\gamma \nabla^2 + 2v_0^*)^2]} dx \end{aligned} \quad (3)$$

$$\begin{aligned} F_2^*(v_2^*) = & \sup_{u \in V} \{ \langle u, v_2^* \rangle_{L^2} - F_2(u) \} \\ = & \frac{1}{2K_2} \int_{\Omega} (v_2^*)^2 dx \end{aligned} \quad (4)$$

and

$$\begin{aligned}
 G^*(v_1^*, v_0^*) &= \sup_{(u,v) \in V \times Y} \{-\langle u, v_1^* \rangle_{L^2} + \langle v, v_0^* \rangle_{L^2} - G(u, v)\} \\
 &= \frac{1}{2} \int_{\Omega} \frac{(v_1^* - f)^2}{2v_0^* + K} dx + \frac{1}{2\alpha} \int_{\Omega} (v_0^*)^2 dx \\
 &\quad + \beta \int_{\Omega} v_0^* dx
 \end{aligned} \tag{5}$$

if $v_0^* \in B^*$ where

$$B^* = \{v_0^* \in Y^* : \|2v_0^*\|_{\infty} < K/8 \text{ and } -\gamma \nabla^2 + 2v_0^* < -\varepsilon I_d\},$$

for a small parameter $0 < \varepsilon \ll 1$.

Furthermore, we define

$$D^* = \{v_1^* \in Y^* : \|v_1^*\|_{\infty} \leq (3/2)K\}$$

and $J_1^* : Y^* \times D^* \times B^* \rightarrow \mathbb{R}$, by

$$J_1^*(v_2^*, v_1^*, v_0^*) = -F_1^*(v_2^*, v_1^*, v_0^*) + F_2^*(v_2^*) - G^*(v_1^*, v_0^*).$$

Assuming

$$K_2 \gg K_1 \gg K \gg \max\{\|f\|_{\infty}, \alpha, \beta, \gamma, 1/\varepsilon^2\}$$

by directly computing $\delta^2 J_1^*(v_2^*, v_1^*, v_0^*)$ we may obtain that for such specified real constants, J_1^* is convex in v_2^* and it is concave in (v_1^*, v_0^*) on $Y^* \times D^* \times B^*$.

2 The main duality principle and a concerning convex dual formulation

Considering the statements and definitions presented in the previous section, we may prove the following theorem.

Theorem 2.1. *Let $(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) \in Y^* \times D^* \times B^*$ be such that*

$$\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) = \mathbf{0}$$

and $u_0 \in V$ be such that

$$u_0 = \frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*}.$$

Under such hypotheses, we have

$$\delta J(u_0) = \mathbf{0},$$

and

$$\begin{aligned}
 J(u_0) &= \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma \nabla^2 u + 2\hat{v}_0^* u - f)^2 dx \right\} \\
 &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*) \right\} \\
 &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*).
 \end{aligned} \tag{6}$$

Proof. Observe that $\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) = \mathbf{0}$ so that, since J_1^* is convex in v_2^* and concave in (v_1^*, v_0^*) on $Y^* \times D^* \times B^*$, from the Min-Max theorem, we obtain

$$J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) = \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*) \right\}.$$

Now we are going to show that

$$\delta J(u_0) = \mathbf{0}.$$

From

$$\frac{\partial J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_2^*} = \mathbf{0},$$

and

$$\frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*} = u_0$$

we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_2^*} + u_0 = \mathbf{0}$$

and

$$\hat{v}_2^* - K_2 u_0 = \mathbf{0}.$$

Observe now that denoting

$$H(v_2^*, v_1^*, v_0^*, u) = \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_0^*),$$

there exists $\hat{u} \in V$ such that

$$\frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{u})}{\partial u} = \mathbf{0},$$

and

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) = H(\hat{v}_1^*, \hat{v}_2^*, \hat{v}_0^*, \hat{u}),$$

so that

$$\begin{aligned} \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_2^*} &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{u})}{\partial v_2^*} \\ &+ \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_2^*} \\ &= \hat{u}. \end{aligned} \tag{7}$$

Summarizing, we have got

$$u_0 = \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_2^*} = \hat{u}.$$

Also, denoting

$$A(u_0, \hat{v}_0^*) = -\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f,$$

from

$$\frac{\partial H(\hat{v}_1^*, \hat{v}_2^*, \hat{v}_0^*, u_0)}{\partial u} = \mathbf{0},$$

we have

$$-\hat{v}_1^* + Ku_0 + \gamma \nabla^2 u_0 + K_1(-\gamma \nabla^2 + 2\hat{v}_0^*)A(u_0, \hat{v}_0^*) - \hat{v}_2^* + K_2 u_0 = \mathbf{0},$$

so that

$$-\hat{v}_1^* + Ku_0 + \gamma \nabla^2 u_0 + K_1(-\gamma \nabla^2 + 2\hat{v}_0^*)A(u_0, \hat{v}_0^*) = \mathbf{0}. \quad (8)$$

From such results, we may infer that

$$\begin{aligned} & \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} \\ &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{u})}{\partial v_1^*} \\ & \quad + \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_1^*} \\ &= \hat{u} \\ &= u_0. \end{aligned} \quad (9)$$

Now observe that from the variation of J_1^* in v_1^* , we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} - \frac{\partial G^*(\hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} = \mathbf{0}$$

so that

$$-u_0 - \frac{\partial G^*(\hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} = \mathbf{0}$$

that is

$$-u_0 - \frac{\hat{v}_1^* - f}{2\hat{v}_0^* + K} = \mathbf{0}.$$

From this and (8), we may infer that

$$\hat{v}_1^* = -\gamma \nabla^2 u_0 - Ku_0 - K_1(-\gamma \nabla^2 + 2\hat{v}_0^*)A(u_0, \hat{v}_0^*) = -(2\hat{v}_0^* + K)u_0 + f,$$

so that

$$-\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f - K_1(-\gamma \nabla^2 + 2\hat{v}_0^*)A(u_0, \hat{v}_0^*) = 0.$$

From this and the concerning boundary conditions, since

$$A(u_0, \hat{v}_0^*) = -\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f,$$

we may obtain

$$-\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f = A(u_0, \hat{v}_0^*) = 0.$$

Moreover, from

$$\frac{\partial J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*)}{\partial v_0^*} = \mathbf{0},$$

we have

$$A(u_0, \hat{v}_0^*)2u_0 - \frac{\hat{v}_0^*}{\alpha} + u_0^2 - \beta = \mathbf{0},$$

so that

$$v_0^* = \alpha(u_0^2 - \beta).$$

From such last results we get

$$-\gamma \nabla^2 u_0 + 2\alpha(u_0^2 - \beta)u_0 - f = \mathbf{0},$$

and thus

$$\delta J(u_0) = \mathbf{0}.$$

Furthermore, also from such last results and the Legendre transform properties, we have

$$\begin{aligned} F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) &= \langle u_0, \hat{v}_2^* + \hat{v}_1^* \rangle_{L^2} - F_1(u_0, \hat{v}_0^*), \\ F_2^*(\hat{v}_2^*) &= \langle u_0, \hat{v}_2^* \rangle_{L^2} - F_2(u_0), \\ G^*(\hat{v}_1^*, \hat{v}_0^*) &= -\langle u_0, \hat{v}_1^* \rangle_{L^2} + \langle 0, \hat{v}_0^* \rangle_{L^2} - G(u_0, \mathbf{0}), \end{aligned}$$

so that

$$\begin{aligned} & J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) \\ &= -F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) + F_2^*(\hat{v}_2^*) - G^*(\hat{v}_1^*, \hat{v}_0^*) \\ &= F_1(u_0, \hat{v}_0^*) - F_2(u_0) + G(u_0, \mathbf{0}) \\ &= J(u_0). \end{aligned} \tag{10}$$

Finally, observe that

$$\begin{aligned} J_1^*(v_2^*, v_1^*, v_0^*) &\leq -\langle u, v_2^* \rangle_{L^2} + F_1(u, v_0^*) + F_2^*(v_2^*) + G(u, \mathbf{0}), \\ \forall u \in V, v_2^* \in Y^*, v_1^* \in D^*, v_0^* \in B^*. \end{aligned}$$

Thus, we may obtain

$$\begin{aligned} & \inf_{v_2^* \in Y^*} J_1^*(v_2^*, \hat{v}_1^*, \hat{v}_0^*) \\ &\leq \inf_{v_2^* \in Y^*} \{ -\langle u, v_2^* \rangle_{L^2} + F_1(u, \hat{v}_0^*) + F_2^*(v_2^*) + G(u, \mathbf{0}) \} \\ &= F_1(u, \hat{v}_0^*) - F_2(u) + G(u, \mathbf{0}) \\ &= J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma \nabla^2 u + 2\hat{v}_0^* u - f)^2 dx, \quad \forall u \in V. \end{aligned} \tag{11}$$

From this and (11), we obtain

$$\begin{aligned} & J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*) \\ &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*) \right\} \\ &\leq \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma \nabla^2 u + 2\hat{v}_0^* u - f)^2 dx \right\}. \end{aligned} \tag{12}$$

Joining the pieces, from a concerning convexity in u , we have got

$$\begin{aligned} J(u_0) &= \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma \nabla^2 u + 2\hat{v}_0^* u - f)^2 dx \right\} \\ &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*) \right\} \\ &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*). \end{aligned} \tag{13}$$

The proof is complete. \square

Remark 2.2. *We could have also defined*

$$B^* = \{v_0^* \in Y^* : \|2v_0^*\|_\infty < K/8 \text{ and } -\gamma\nabla^2 + 2v_0^* > \varepsilon I_d\},$$

for a small parameter $0 < \varepsilon \ll 1$. This corresponds to $-\gamma\nabla^2 + 2v_0^*$ be positive definite, whereas the previous case corresponds to $-\gamma\nabla^2 + 2v_0^*$ be negative definite.

3 One more duality principle and a concerning convex dual variational formulation

In this section we establish a second duality principle and related convex dual formulation. Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J : V \rightarrow \mathbb{R}$ where

$$\begin{aligned} J(u) = & \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u \, dx \\ & + \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta)^2 \, dx - \langle u, f \rangle_{L^2}. \end{aligned} \quad (14)$$

Here $\gamma > 0$, $\alpha > 0$, $\beta > 0$ and $f \in L^2(\Omega) \cap L^\infty(\Omega)$.

Moreover, $V = W_0^{1,2}(\Omega)$ and we denote $Y = Y^* = L^2(\Omega)$.

Define the functionals $F_1 : V \times Y \rightarrow \mathbb{R}$, $F_2 : V \rightarrow \mathbb{R}$ and $G : V \times Y \rightarrow \mathbb{R}$ by

$$\begin{aligned} F_1(u, v_3^*) = & \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u \, dx - \frac{K}{2} \int_{\Omega} u^2 \, dx \\ & + \frac{K_1}{2} \int_{\Omega} (-\gamma\nabla^2 u + 2v_3^* u - h_1)^2 \, dx + \frac{K_2}{2} \int_{\Omega} u^2 \, dx, \end{aligned} \quad (15)$$

$$F_2(u) = \frac{K_2}{2} \int_{\Omega} u^2 \, dx$$

and

$$G(u, v) = \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta + v)^2 \, dx + \frac{K}{2} \int_{\Omega} u^2 \, dx - \langle u, f \rangle_{L^2},$$

for appropriate $\gamma_1 > 0$ and $h_1 \in L^2(\Omega)$ to be specified.

We define also $F_1^* : [Y^*]^3 \rightarrow \mathbb{R}$, $F_2^* : Y^* \rightarrow \mathbb{R}$, and $G^* : [Y^*]^2 \rightarrow \mathbb{R}$, by

$$\begin{aligned} & F_1^*(v_2^*, v_1^*, v_3^*) \\ = & \sup_{u \in V} \{ \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*) \} \\ = & \frac{1}{2} \int_{\Omega} \frac{-h_1(-\gamma\nabla^2 - K + K_2)h_1 + (v_1^* + v_2^*)^2 + 2K_1h_1(-\gamma_1\nabla^2 + 2v_3^*)(v_1^* + v_2^*)}{-\gamma\nabla - K + K_1(-\gamma_1\nabla^2 + 2v_3^*)^2 + K_2} \, dx, \end{aligned}$$

$$\begin{aligned}
F_2^*(v_2^*) &= \sup_{u \in V} \{ \langle u, v_2^* \rangle_{L^2} - F_2(u) \} \\
&= \frac{1}{2K_2} \int_{\Omega} (v_2^*)^2 dx
\end{aligned} \tag{16}$$

and

$$\begin{aligned}
G^*(v_1^*, v_0^*) &= \sup_{(u,v) \in V \times Y} \{ \langle u, -v_1^* \rangle_{L^2} + \langle v, v_0^* \rangle_{L^2} - G(u, v) \} \\
&= \frac{1}{2} \int_{\Omega} \frac{(v_1^* - f)^2}{2v_0^* + K} dx + \frac{1}{2\alpha} \int_{\Omega} (v_0^*)^2 dx + \beta \int_{\Omega} v_0^* dx
\end{aligned} \tag{17}$$

if $v_0^* \in B^*$ where

$$B^* = \{v_0^* \in Y^* : \|2v_0^*\|_{\infty} < K/8\}.$$

Furthermore, we define

$$D^* = \{v_1^* \in Y^* : \|v_1^*\|_{\infty} \leq (3/2)K\}$$

and $J_1^* : Y^* \times D^* \times B^* \times C^* \rightarrow \mathbb{R}$, by

$$J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) = -F_1^*(v_2^*, v_1^*, v_3^*) + F_2^*(v_2^*) - G^*(v_1^*, v_0^*).$$

where

$$C^* = \{v_3^* \in Y^* : -\gamma_1 \nabla^2 + 2v_3^* \geq K_3 I_d\}.$$

Observe that we may choose $\gamma_1 > 0$ and $h_1 \in L^2(\Omega)$ so that such a last constraint is satisfied by a critical point.

Moreover, assuming

$$K_1 \gg 1$$

and

$$K_2 \gg K_1 K_3^2 \gg K \gg \max\{1, \|f\|_{\infty}, \alpha, \beta, \gamma, \gamma_1\}$$

by directly computing $\delta^2 J_1^*(v_2^*, v_1^*, v_0^*, v_3^*)$ we may obtain that for such specified real constants, J_1^* is convex in v_2^* and it is concave in (v_1^*, v_0^*, v_3^*) on $Y^* \times D^* \times B^* \times C^*$.

3.1 The main duality principle and a related convex dual formulation

Considering the statements and definitions presented in the previous section, we may prove the following theorem.

Theorem 3.1. *Let $(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \in Y^* \times D^* \times B^* \times C^*$ be such that*

$$\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \mathbf{0}$$

and $u_0 \in V$ be such that

$$u_0 = \frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*}$$

where we assume

$$u_0 \neq 0, \text{ a.e. in } \Omega.$$

Under such hypotheses, we have

$$\begin{aligned} \delta J(u_0) &= \mathbf{0}, \\ -\gamma_1 \nabla^2 u_0 + 2\hat{v}_3^* u_0 - h_1 &= \mathbf{0}, \end{aligned}$$

and

$$\begin{aligned} J(u_0) &= \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma_1 \nabla^2 u + 2\hat{v}_3^* u - h_1)^2 dx \right\} \\ &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*, v_3^*) \in D^* \times B^* \times C^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\ &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*). \end{aligned} \quad (18)$$

Proof. Observe that $\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \mathbf{0}$ so that, since J_1^* is convex in v_2^* and concave in (v_1^*, v_0^*, v_3^*) on $Y^* \times D^* \times B^* \times C^*$, from the Min-Max theorem, we obtain

$$J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*, v_3^*) \in D^* \times B^* \times C^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\}.$$

Now we are going to show that

$$\delta J(u_0) = \mathbf{0}.$$

From

$$\frac{\partial J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*)}{\partial v_2^*} = \mathbf{0},$$

and

$$\frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*} = u_0$$

we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} + u_0 = \mathbf{0}$$

and

$$\hat{v}_2^* = K_2 u_0.$$

Observe now that

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) = \sup_{(u, v) \in V \times Y} \{ \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*) \}.$$

Denoting

$$H(v_2^*, v_1^*, v_3^*, u) = \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*),$$

there exists $\hat{u} \in V$ such that

$$\frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} = \mathbf{0},$$

and

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) = H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u}),$$

so that

$$\begin{aligned} \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial v_2^*} \\ &\quad + \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_2^*} \\ &= \hat{u}. \end{aligned} \quad (19)$$

Summarizing, we have got

$$u_0 = \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} = \hat{u}.$$

Furthermore,

$$\begin{aligned} \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_1^*} &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial v_1^*} \\ &\quad + \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_1^*} \\ &= \hat{u} \\ &= u_0. \end{aligned} \quad (20)$$

From this and the variation of J_1^* in v_1^* , we obtain

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_1^*} - \frac{\partial G^*(\hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} = \mathbf{0},$$

so that

$$-u_0 - \frac{\hat{v}_1^* - f}{2\hat{v}_0^* + K} = \mathbf{0}.$$

Hence

$$\hat{v}_1^* = -(2\hat{v}_0^* + K)u_0 + f.$$

Thus, from these last results and from the variation of J_1^* in v_3^* , we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_3^*} = K_1(-\gamma_1 \nabla^2 u_0 + 2\hat{v}_3^* u_0 - h_1)2u_0 = \mathbf{0}.$$

Hence, since $u_0 \neq 0$, a.e. in Ω , we have got

$$-\gamma_1 \nabla^2 u_0 + 2\hat{v}_3^* u_0 - h_1 = \mathbf{0}.$$

Moreover, from the variation of J_1^* in v_0^* , we obtain

$$-\frac{v_0^*}{\alpha} + u_0^2 - \beta = \mathbf{0},$$

so that

$$v_0^* = \alpha(u_0^2 - \beta).$$

Also from

$$\frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} = \mathbf{0},$$

so that

$$-\hat{v}_1^* - \gamma \nabla^2 u_0 - Ku_0 - \hat{v}_2^* + K_2 u_0 = \mathbf{0},$$

that is

$$\hat{v}_1^* = -\gamma \nabla^2 u_0 + Ku_0.$$

Thus,

$$\hat{v}_1^* = -\gamma \nabla^2 u_0 - Ku_0 = -(2v_0^* + K)u_0,$$

so that

$$\begin{aligned} -\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f &= \mathbf{0}. \\ -\gamma \nabla^2 u_0 + 2\alpha(u_0^2 - \beta)u_0 - f &= \mathbf{0}. \end{aligned}$$

From this, we may infer that

$$\delta J(u_0) = \mathbf{0}.$$

Furthermore, also from such last results and the Legendre transform properties, we have

$$\begin{aligned} F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) &= \langle u_0, \hat{v}_1^* + \hat{v}_2^* \rangle_{L^2} - F_1(u_0, \hat{v}_3^*), \\ F_2^*(\hat{v}_2^*) &= \langle u_0, \hat{v}_2^* \rangle_{L^2} - F_2(u_0), \\ G^*(\hat{v}_1^*, \hat{v}_0^*) &= \langle u_0, -\hat{v}_1^* \rangle_{L^2} + \langle 0, \hat{v}_0^* \rangle_{L^2} - G(u_0, \mathbf{0}), \end{aligned}$$

so that

$$\begin{aligned} &J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \\ &= -F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) + F_2^*(\hat{v}_2^*) - G^*(\hat{v}_1^*, \hat{v}_0^*) \\ &= F_1(u_0, \hat{v}_3^*) - F_2(u_0) + G(u_0, \mathbf{0}) \\ &= J(u_0). \end{aligned} \tag{21}$$

Finally, observe that

$$J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \leq -\langle u, v_2^* \rangle_{L^2} + F_1(u, v_3^*) + F_2^*(v_2^*) + G(u, \mathbf{0}),$$

$\forall u \in V, v_2^* \in Y^*, v_1^* \in D^*, v_0^* \in B^*, v_3^* \in C^*,$.

Thus, we may obtain

$$\begin{aligned} &\inf_{v_2^* \in Y^*} J_1^*(v_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \\ &\leq \inf_{v_2^* \in Y^*} \{-\langle u, v_2^* \rangle_{L^2} + F_1(u, \hat{v}_3^*) + F_2^*(v_2^*) + G(u, \mathbf{0})\} \\ &= F_1(u, \hat{v}_3^*) - F_2(u) + G(u, \mathbf{0}) \\ &= J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma_1 \nabla^2 u + 2\hat{v}_3^* u - h_1)^2 dx, \quad \forall u \in V. \end{aligned} \tag{22}$$

From this, we obtain

$$\begin{aligned} &J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \\ &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*, v_3^*) \in D^* \times B^* \times C^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\ &\leq \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma_1 \nabla^2 u + 2\hat{v}_3^* u - h)^2 dx \right\}. \end{aligned} \tag{23}$$

Joining the pieces, from a concerning convexity in u , we have got

$$\begin{aligned}
 J(u_0) &= \inf_{u \in V} \left\{ J(u) + \frac{K_1}{2} \int_{\Omega} (-\gamma_1 \nabla^2 u + 2\hat{v}_3^* u - h_1)^2 dx \right\} \\
 &= \inf_{v_2^* \in Y^*} \left\{ \sup_{(v_1^*, v_0^*, v_3^*) \in D^* \times B^* \times C^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\
 &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*).
 \end{aligned} \tag{24}$$

The proof is complete. \square

4 One more duality principle and a concerning convex dual variational formulation suitable for global optimization of the primal formulation

In this section we establish a third duality principle and related convex dual formulation. Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J : V \rightarrow \mathbb{R}$ where

$$\begin{aligned}
 J(u) &= \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u dx \\
 &\quad + \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta)^2 dx - \langle u, f \rangle_{L^2}.
 \end{aligned} \tag{25}$$

Here $\gamma > 0$, $\alpha > 0$, $\beta > 0$ and $f \in L^2(\Omega) \cap L^\infty(\Omega)$.

Moreover, $V = W_0^{1,2}(\Omega)$ and we denote $Y = Y^* = L^2(\Omega)$.

Define the functionals $F_1 : V \times Y \rightarrow \mathbb{R}$, $F_2 : V \rightarrow \mathbb{R}$ and $G : V \times Y \rightarrow \mathbb{R}$ by

$$\begin{aligned}
 F_1(u, v_3^*) &= \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u dx - \frac{K}{2} \int_{\Omega} u^2 dx \\
 &\quad + \frac{K_1}{2} \int_{\Omega} (v_3^* (-\nabla^2 u + K_3) - K_4)^2 dx + \frac{K_2}{2} \int_{\Omega} u^2 dx,
 \end{aligned} \tag{26}$$

$$F_2(u) = \frac{K_2}{2} \int_{\Omega} u^2 dx$$

and

$$G(u, v) = \frac{\alpha}{2} \int_{\Omega} (u^2 - \beta + v)^2 dx + \frac{K}{2} \int_{\Omega} u^2 dx - \langle u, f \rangle_{L^2},$$

for appropriate $\gamma_1 > 0$ and $h_1 \in L^2(\Omega)$ to be specified.

We define also $F_1^* : [Y^*]^3 \rightarrow \mathbb{R}$, $F_2^* : Y^* \rightarrow \mathbb{R}$, and $G^* : [Y^*]^2 \rightarrow \mathbb{R}$, by

$$\begin{aligned}
 &F_1^*(v_2^*, v_1^*, v_3^*) \\
 &= \sup_{u \in V} \{ \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*) \}
 \end{aligned} \tag{27}$$

$$\begin{aligned}
F_2^*(v_2^*) &= \sup_{u \in V} \{ \langle u, v_2^* \rangle_{L^2} - F_2(u) \} \\
&= \frac{1}{2K_2} \int_{\Omega} (v_2^*)^2 dx
\end{aligned} \tag{28}$$

and

$$\begin{aligned}
&G^*(v_1^*, v_0^*) \\
&= \sup_{(u,v) \in V \times Y} \{ \langle u, -v_1^* \rangle_{L^2} + \langle v, v_0^* \rangle_{L^2} - G(u, v) \} \\
&= \frac{1}{2} \int_{\Omega} \frac{(v_1^* - f)^2}{2v_0^* + K} dx + \frac{1}{2\alpha} \int_{\Omega} (v_0^*)^2 dx + \beta \int_{\Omega} v_0^* dx
\end{aligned} \tag{29}$$

if $v_0^* \in B^*$ where

$$B^* = \{v_0^* \in Y^* : \|2v_0^*\|_{\infty} < K/8\}.$$

Furthermore, we define

$$D^* = \{v_1^* \in Y^* : \|v_1^*\|_{\infty} \leq (3/2)K\}$$

and $J_1^* : Y^* \times D^* \times B^* \times C^* \rightarrow \mathbb{R}$, by

$$J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) = -F_1^*(v_2^*, v_1^*, v_3^*) + F_2^*(v_2^*) - G^*(v_1^*, v_0^*).$$

where

$$C_1^* = \{v_3^* \in Y^* : \|v_3^*\|_{\infty} \leq (3/2)K\}.$$

and

$$C^* = \{v_3^* \in C_1^* : -4(-\nabla^2)^2 + 16K_3K_4(-\nabla^2)^2v_3^* - 12K_3^2[(-\nabla^2)(v_3^*)]^2 \geq 0, \text{ in } \Omega\}.$$

Here we emphasize that C^* is a convex set.

Moreover, assuming

$$K_1 \gg 1$$

and

$$K_2 \gg K_1K_3^2 \gg K_3 \gg K_4 \gg K \gg \max\{1, \|f\|_{\infty}, \alpha, \beta, \gamma\}$$

by directly computing $\delta^2 J_1^*(v_2^*, v_1^*, v_0^*, v_3^*)$ we may obtain that for such specified real constants, J_1^* is convex in (v_2^*, v_3^*) and it is concave in (v_1^*, v_0^*) on $Y^* \times C^* \times D^* \times B^*$.

4.1 The main duality principle and a related convex dual formulation

Considering the statements and definitions presented in the previous section, we may prove the following theorem.

Theorem 4.1. *Let $(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \in Y^* \times D^* \times B^* \times C^*$ be such that*

$$\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \mathbf{0}$$

and $u_0 \in V$ be such that

$$u_0 = \frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*}$$

where we assume

$$(-\nabla^2 u_0 + K_3) > 0, \text{ a.e. in } \Omega.$$

Under such hypotheses, we have

$$\delta J(u_0) = \mathbf{0},$$

$$\hat{v}_3^*(-\nabla^2 u_0 + K_3) - K_4 = \mathbf{0},$$

and

$$\begin{aligned} J(u_0) &= \inf_{u \in V} \{J(u)\} \\ &= \inf_{(v_2^* \times v_3^*) \in Y^* \times C^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\ &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*). \end{aligned} \quad (30)$$

Proof. Observe that $\delta J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \mathbf{0}$ so that, since J_1^* is convex in (v_2^*, v_3^*) and concave in (v_1^*, v_0^*) on $Y^* \times C^* \times D^* \times B^*$, from the Min-Max theorem, we obtain

$$J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) = \inf_{(v_2^*, v_3^*) \in Y^* \times C^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\}.$$

Now we are going to show that

$$\delta J(u_0) = \mathbf{0}.$$

From

$$\frac{\partial J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*)}{\partial v_2^*} = \mathbf{0},$$

and

$$\frac{\partial F_2^*(\hat{v}_2^*)}{\partial v_2^*} = u_0$$

we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} + u_0 = \mathbf{0}$$

and

$$\hat{v}_2^* = K_2 u_0.$$

Observe now that

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) = \sup_{(u, v) \in V \times Y} \{ \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*) \}.$$

Denoting

$$H(v_2^*, v_1^*, v_3^*, u) = \langle u, v_1^* + v_2^* \rangle_{L^2} - F_1(u, v_3^*),$$

there exists $\hat{u} \in V$ such that

$$\frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} = \mathbf{0},$$

and

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) = H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u}),$$

so that

$$\begin{aligned} \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial v_2^*} \\ &\quad + \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_2^*} \\ &= \hat{u}. \end{aligned} \quad (31)$$

Summarizing, we have got

$$u_0 = \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_2^*} = \hat{u}.$$

Furthermore,

$$\begin{aligned} \frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_1^*} &= \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial v_1^*} \\ &\quad + \frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} \frac{\partial \hat{u}}{\partial v_1^*} \\ &= \hat{u} \\ &= u_0. \end{aligned} \quad (32)$$

From this and the variation of J_1^* in v_1^* , we obtain

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_1^*} - \frac{\partial G^*(\hat{v}_1^*, \hat{v}_0^*)}{\partial v_1^*} = \mathbf{0},$$

so that

$$-u_0 - \frac{\hat{v}_1^* - f}{2\hat{v}_0^* + K} = \mathbf{0}.$$

Hence

$$\hat{v}_1^* = -(2\hat{v}_0^* + K)u_0 + f.$$

Thus, from these last results and from the variation of J_1^* in v_3^* , we have

$$-\frac{\partial F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*)}{\partial v_3^*} = K_1(\hat{v}_3^*(-\nabla^2 u_0 + K_3) - K_4)(-\nabla^2 u_0 + K_3) = \mathbf{0}.$$

Hence, since $(-\nabla^2 u_0 + K_3) > 0$ a.e. in Ω , we have got

$$\hat{v}_3^*(-\nabla^2 u_0 + K_3) - K_4 = \mathbf{0}.$$

Moreover, from the variation of J_1^* in v_0^* , we obtain

$$-\frac{v_0^*}{\alpha} + u_0^2 - \beta = \mathbf{0},$$

so that

$$v_0^* = \alpha(u_0^2 - \beta).$$

Also from

$$\frac{\partial H(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*, \hat{u})}{\partial u} = \mathbf{0},$$

so that

$$-\hat{v}_1^* - \gamma \nabla^2 u_0 - K u_0 - \hat{v}_2^* + K_2 u_0 = \mathbf{0},$$

that is

$$\hat{v}_1^* = -\gamma \nabla^2 u_0 + K u_0.$$

Thus,

$$\hat{v}_1^* = -\gamma \nabla^2 u_0 - K u_0 = -(2v_0^* + K)u_0,$$

so that

$$-\gamma \nabla^2 u_0 + 2\hat{v}_0^* u_0 - f = \mathbf{0}.$$

$$-\gamma \nabla^2 u_0 + 2\alpha(u_0^2 - \beta)u_0 - f = \mathbf{0}.$$

From this, we may infer that

$$\delta J(u_0) = \mathbf{0}.$$

Furthermore, also from such last results and the Legendre transform properties, we have

$$F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) = \langle u_0, \hat{v}_1^* + \hat{v}_2^* \rangle_{L^2} - F_1(u_0, \hat{v}_3^*),$$

$$F_2^*(\hat{v}_2^*) = \langle u_0, \hat{v}_2^* \rangle_{L^2} - F_2(u_0),$$

$$G^*(\hat{v}_1^*, \hat{v}_0^*) = \langle u_0, -\hat{v}_1^* \rangle_{L^2} + \langle 0, \hat{v}_0^* \rangle_{L^2} - G(u_0, \mathbf{0}),$$

so that

$$\begin{aligned} & J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \\ &= -F_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_3^*) + F_2^*(\hat{v}_2^*) - G^*(\hat{v}_1^*, \hat{v}_0^*) \\ &= F_1(u_0, \hat{v}_3^*) - F_2(u_0) + G(u_0, \mathbf{0}) \\ &= J(u_0). \end{aligned} \tag{33}$$

Finally, observe that

$$J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \leq -\langle u, v_2^* \rangle_{L^2} + F_1(u, v_3^*) + F_2^*(v_2^*) + G(u, \mathbf{0}),$$

$$\forall u \in V, v_2^* \in Y^*, v_1^* \in D^*, v_0^* \in B^*, v_3^* \in C^*, .$$

Thus, we may obtain

$$\begin{aligned} & \inf_{(v_2^*, v_3^*) \in Y^* \times C^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \\ & \leq \inf_{(v_2^*, v_3^*) \in Y^*} \{-\langle u, v_2^* \rangle_{L^2} + F_1(u, v_3^*) + F_2^*(v_2^*) + G(u, \mathbf{0})\} \\ &= \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u \, dx - \frac{K}{2} \int_{\Omega} u^2 \, dx + F_2(u) - F_2(u) + G(u, \mathbf{0}) \\ &= J(u), \quad \forall u \in V. \end{aligned} \tag{34}$$

From this, we obtain

$$\begin{aligned}
 & J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*) \\
 &= \inf_{(v_2^*, v_3^*) \in Y^* \times C^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\
 &\leq \inf_{u \in V} \{J(u)\}.
 \end{aligned} \tag{35}$$

Joining the pieces, we have got

$$\begin{aligned}
 J(u_0) &= \inf_{u \in V} \{J(u)\} \\
 &= \inf_{(v_2^*, v_3^*) \in Y^* \times C^*} \left\{ \sup_{(v_1^*, v_0^*) \in D^* \times B^*} J_1^*(v_2^*, v_1^*, v_0^*, v_3^*) \right\} \\
 &= J_1^*(\hat{v}_2^*, \hat{v}_1^*, \hat{v}_0^*, \hat{v}_3^*).
 \end{aligned} \tag{36}$$

The proof is complete. \square

5 Conclusion

In this article we have developed convex dual variational formulations suitable for the local optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau type equation. In a future research, we intend to extend such results for some models of plates and shells and other models in the elasticity theory.

References

- [1] R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier, New York, 2003).
- [2] W.R. Bielski, A. Galka, J.J. Telega, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells. I. Simple case of moderate rotations around a tangent to the middle surface. Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 38, No. 7-9, 1988.
- [3] W.R. Bielski and J.J. Telega, A Contribution to Contact Problems for a Class of Solids and Structures, Arch. Mech., 37, 4-5, pp. 303-320, Warszawa 1985.
- [4] J.F. Annet, Superconductivity, Superfluids and Condensates, 2nd edn. (Oxford Master Series in Condensed Matter Physics, Oxford University Press, Reprint, 2010)
- [5] F.S. Botelho, Functional Analysis, Calculus of Variations and Numerical Methods in Physics and Engineering, CRC Taylor and Francis, Florida, 2020.

- [6] F.S. Botelho, *Variational Convex Analysis*, Ph.D. thesis, Virginia Tech, Blacksburg, VA -USA, (2009).
- [7] F. Botelho, *Topics on Functional Analysis, Calculus of Variations and Duality*, Academic Publications, Sofia, (2011).
- [8] F. Botelho, *Existence of solution for the Ginzburg-Landau system, a related optimal control problem and its computation by the generalized method of lines*, Applied Mathematics and Computation, 218, 11976-11989, (2012).
- [9] F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzerland, 2014.
- [10] J.C. Strikwerda, *Finite Difference Schemes and Partial Differential Equations*, SIAM, second edition (Philadelphia, 2004).
- [11] L.D. Landau and E.M. Lifschits, Course of Theoretical Physics, Vol. 5- Statistical Physics, part 1. (Butterworth-Heinemann, Elsevier, reprint 2008).
- [12] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, (1970).
- [13] J.J. Telega, *On the complementary energy principle in non-linear elasticity. Part I: Von Karman plates and three dimensional solids*, C.R. Acad. Sci. Paris, Serie II, 308, 1193-1198; Part II: Linear elastic solid and non-convex boundary condition. Minimax approach, ibid, pp. 1313-1317 (1989)
- [14] A.Galka and J.J.Telega *Duality and the complementary energy principle for a class of geometrically non-linear structures. Part I. Five parameter shell model; Part II. Anomalous dual variational principles for compressed elastic beams*, Arch. Mech. 47 (1995) 677-698, 699-724.
- [15] J.F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rat. Mech. Anal., **71**, No. 1 (1979), 41-61.