Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2022 d0i:10.20944/preprints202210.0207.v7

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

On Duality Principles and Related Convex Dual
Formulations Suitable for Local Non-convex
Variational Optimization

Fabio Silva Botelho
Department of Mathematics
Federal University of Santa Catarina
Florianopolis - SC, Brazil

Abstract

This article develops duality principles and related convex dual formulations suitable for the
local optimization of non-convex primal formulations for a large class of models in physics and
engineering. The results are based on standard tools of functional analysis, calculus of variations
and duality theory. In particular, we develop applications to a Ginzburg-Landau type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote

/ [(—yV? + K1) Yo v* da
Q
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sitmply by
*\2
/ GO
oYV +K
where 1y denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V? denotes the Laplace operator and for real constants Ko > 0 and K; > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = g/QVu-Vudx

+5 [ =8 do = (u. e (1)

Here v > 0, >0, B> 0 and f € L?(2) N L>(Q).
Moreover, V = W01’2(Q) and we denote Y = Y* = L2(Q).
Define the functionals F; : V XY - R, Fo: V >Rand G:V xY — R by

K
Fi(u,vy) = ;/QVU-Vudx—Q/Quzdx
K

K
+1/(—7V2u—|—2v3u—f)2 dx+2/u2 dzx, (2)
2 Ja 2 Ja

K
Fy(u) = 22/Qu2 dx

and

G(u,v)zj/g(zﬂ—ﬁ%—v)Q dx+[2(/ﬂu2 dx — (u, f)re.

We define also F} : [Y*]? = R, Fy : Y* - R, and G* : [Y*]2 > R, by
F} (05,01, )

= sup{{u, 0] +v3)12 — Fi(u,v9)}

ueV
/ —Ki1f(—V2+ K + Ko) f + (v +v3)? — 2K, f(—yV?2 + 208) (v + v3) i (3)
Q

2Ky + K — V2 + K1 (—yV?2 + 20})?]

Fy(z) = supi{u,v3)p2 = Fy(u)}

T AR (4)
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and

G*(v,v5) = sup {—(u,v])r2 + (v, v5) 2 — G(u,v)}
(u,0)EV XY

e g [
= —|- R
205 + K
48 [ v da (5)
if v5 € B* where
B*={vy eY* : ||20f]lc < K/8 and —V?+ 20} < —ely},

for a small parameter 0 < ¢ < 1.
Furthermore, we define

D ={v] €Y" : |v]llec < (3/2)K}
and J{ : Y* x D* x B* = R, by
JT(U;UTW:}F) = _Ff(U;UTavg) + FQ*(U;) - G*(UTWS)

Assuming
K2 > Kl > K > maX{HfHOOuaaﬂa’Y? 1/62}

by directly computing 52Jf (v3,v],v3) we may obtain that for such specified real constants, J;
in convex in v3 and it is concave in (v}, vg) on Y* x D* x B*.

2  The main duality principle and a concerning con-
vex dual formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (03,07,05) € Y* x D* x B* be such that
6.J1 (03,01, 79) = 0

and ug € 'V be such that

_ OF5(03)
Under such hypotheses, we have
(5J(UO) = 0,
and
_ : Kl 2 A% 2
J(ug) = inf {J(u)+ — [ (=7Vu+205u — f)* dz
ueV 2 Q

- inf{ sup Jf(v;,vf,vm}

v3€Y" | (vf03)eD*x B*
= Ji (03,91, 7). (6)
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Proof. Observe that 0.J; (03, 0, 0g) = 0 so that, since J; is convex in vj and concave in (v}, vg)
on Y* x D* x B*, from the Min-Max theorem, we obtain

(vi,vg)eD* xB*

KAk ko Ak : Kk kK
Jl('027v17'00) :’U*lgiff*{ sup Jl (v27vl7'00)}'
2

Now we are going to show that

5J(UO) =0.
From
aJi (03,97, 05)
> b0 g,
ov;
and
OF; (03)
ovs
we have e n e
_8F1 (0271}171]0) +uy=0
ov;
and

05 — Koug = 0.
Observe now that denoting

H{(v, v7,v9,u) = (u, 01 +v3) 12 — Fi(u, vyp),

there exists @ € V such that
OH (03,97, 05, 1)

=0
ou ’
and
XAk Ak AX Ak oAk oAk A
Fl(v27v17/UO):H(v17v27007u)7
so that
OFf (03,07,05) _  OH(d3, 07,95, 4)
* - *
ovs v
O0H (v3, 0%, 03, 4) 0u
ou ov’
= q.

Summarizing, we have got
k(Ak o Nk Ak
8Fjl (U2v vy, UO)

ug =
ov;

= .
Also, denoting
A(uo, 05) = —7V?ug + 205uo — f,
from
8H(®1‘, QfQ*, @8, Uo)
=0,
ou

we have

d0i:10.20944/preprints202210.0207.v7
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—0F + Kug +vV2ug + K1 (—yV? 4 208) A(ug, 0) — 05 + Kaug = 0,

so that
—0F + Kug +vV2ug + K1 (—yV? 4 203) A(uo, 1) = 0. (8)

From such results, we may infer that

OFy (03,07, 05)

ovy
0H (03,07, 05, )
- ovy
O0H (03,07, 05,0) OU
ou 8_111"
= 4
= . (9)

Now observe that from the variation of J{ in v}, we have

_OFY(05,07,05) _ 9G™(0F, %)

ovy vy =0
so that oG (01 58)
—ug — # -0
that is P
S 2@%+K =0

From this and (8), we may infer that

0F = —yV2ug — Kug — K1(—yV? + 20%) A(uo, o) = — (208 + K)uo + f,

so that
— Vg + 205ug — f — K1(—yV? + 20%) A(ug, 95) = 0.
From this and the concerning boundary conditions, since
A(ug, v5) = =7V + 205uo — f,
we may obtain
—yV?ug + 205up — f = A(ug, 05) = 0.
Moreover, from
97 (03, 07, g)
R
v

we have "

~x ),
A(ug, 05)2up — EO + ug — =0,

so that
o = aud - B).

5
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From such last results we get
—yV?ug + 2a(ug — B)ug — f =0,
and thus
(5J(u0) =0.
Furthermore, also from such last results and the Legendre transform properties, we have
Fl*(@gv QA)T?@S) - <u07ﬁ; + ﬁDL? - Fl(u()?@S)?
Fy(03) = (uo, 03) 12 — Fa(uo),
G*(07,0g) = —(uo, 1) 2 + (0, 0g) 2 — G(uo, 0),
so that
Ti (05,57, )
= —F7 (03,07, 0p) + F5(3) — G* (07, )
= Fl(uo, ’DS) — FQ(U()) -+ G(UO, 0)
= J(UO) (10)

Finally, observe that

It (03,01, 05) < —(u,v3) 12 + Fi(u, v5) + F5 (v3) + G(u, 0),
Vu eV, vj €Y*, v} € D* v} € B*.

Thus, we may obtain

inf Jy(v3,07,0p)

vy EY*
Sl () + By 8) + F05) + Glw, )
V5 *
= Fi(u,9)) — F2(u) + G(u,0)
K
= J(u)+ 71 / (—’yV2u + 205u — f)2 dx, YVueV. (11)
Q

From this and (11), we obtain

T (65,01, 59)

= inf sup J1 (v3,v7,v5)
vy €Y (vi,vg)eD* xB*

K
< inf {J(u) + =L / (—yV2u 4 205u — f)? dm} . (12)
ueV 2 Q
Joining the pieces, from a concerning convexity in u, we have got
K
J(up) = inf {J(u) +21 / (—yV2u + 20%u — f)* daz}
ueV 2 Q

= inf { sup JT(U;,UT,US)}
(v

vy EY* Tv”S)ED* «x B*
= Ji(05,07,%) (13)
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The proof is complete.

Remark 2.2. We could have also defined
B*={v; € Y* 1 ||20§]c < K/8 and —~V? +2vf > ely},

for a small parameter 0 < ¢ < 1. This corresponds to —yV? + 2vug be positive definite, whereas
the previous case corresponds to —yV? + 2v{ be negative definite.

3  One more duality principle and a concerning con-
vex dual variational formulation

In this section we establish a second duality principle and related convex dual formulation.

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 09.
For the primal formulation, consider a functional J : V' — R where

J(u) = ;/Vu-Vudm
Q
+5 [t =5 do— e (14)
Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).

Moreover, V' = Wol’z(Q) and we denote Y = Y* = L?(Q).
Define the functionals F1 : V xY - R, Fb: V - Rand G:V xY — R by

K
Fi(u,v3) = 7/Vu'Vuda:—/U261l55
2 Ja 2 Ja
K K
S [ vt pgu - ar+ 52 [ a2 s, (15)
2 Jo 2 Ja

K
Fy(u) = 22/Qu2 dx

and

G(u,v):(;/Q(u2—ﬁ+v)2d:v+I;/Qu2dx—(u,f>,;z,

for appropriate 41 > 0 and hy € L?(f2) to be specified.
We define also F} : [Y*]? = R, Fy : Y* - R, and G* : [Y*]2 = R, by

Fi (05,01, 05)

= sup{(u,v] +v3)r2 — Fi(u,v3)}
ueV

_ 1 [ —hi(=9V? = K+ Ko)hy + (vf +03)* + 2K1h1 (=71 V2 + 205) (0] + 03)
2/Q AV — K + K1 (—11 V2 + 205)2 + Ko

dzx,
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Fy(vz) = sup{(u,03)12 = Fa(u)}
u

- 5 L@ de (16)

and
G*(v1,v5)

= sup  {{u,—v])r2 + (v,05) 2 — G(u,v)}
(u,0)EV XY

L[ (v = f)? 1 / 2 /
= — | ——dx+— [ (vj)° dx + vy dx 17
|l g [ [ o 17)
if vj € B* where
B*={vg € Y™ : |2v5]lc0 < K/8}.
Furthermore, we define
D ={vf €Y" : |vff < (3/2)K}
and J{ : Y* x D* x B* x C* = R, by
Ji (v3, 01,05, v3) = —F7 (v3, 07, v3) + Fy (v3) — G (v, v5)-
where
C*={vieY* : —yV?+ 205 > K31}

Observe that we may choose 71 > 0 and hy € L?(€) so that such a last constraint is satisfied
by a critical point.
Moreover, assuming
Ki>1

and
KQ > KIK:% > K > max{l, ”f”007a7677771}

by directly computing 62.J5 (v, v?, v$,v3) we may obtain that for such specified real constants,
J{ in convex in v3 and it is concave in (v}, v§, vi) on Y* x D* x B* x C*.

3.1 The main duality principle and a related convex dual for-
mulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 3.1. Let (03, 07,05,05) € Y* x D* x B* x C* be such that
575 (63,54, 86,03) = O
and ug € V' be such that
- or()
0 prm
ovs

8
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where we assume
ug # 0, a.e. in Q.

Under such hypotheses, we have

5J(UQ) = 0,
—71V2UO + Qﬁé‘uo —hy1 =0,
and
. Kl 2 Ak 2
J(ug) = inf S J(u)+ — | (—mV*u+ 205u — hy)° dzx
ueV 2 QO

: KRk ko k
= inf { sSup Jl (U27 U1, Vg '03)}

V3EY™ | (v1,05,03)€D* X B* xC*
X (A% Ak Ak Ak
= Ji(03,07,05,03)- (18)

T00f. serve tha 05, 0%, 05, 0%) = 0 so that, since is convex in vs and concave in
P Ob that 6J5 (05,07, 03, 03 0 that, JT 5 and
(vi,v5,v3) on Y* x D* x B* x C*, from the Min-Max theorem, we obtain

Ji(05,07,05,03) = inf sup Ji (03,07, 05,03) ¢ -
V3EY™ | (vf05,05)ED* X B* X C*
Now we are going to show that
(SJ(U(]) =0.
From e e e
8J1 (U2a V1, Y, US) -0
v ’
and .
OF3(03)
oy
Ug
we have OFF (5t 5. 5
05,05, 0
_ 7 (03,07, 3)+u0:0
ovs
and
@; == KQ’U,O.
Observe now that
Fl (f);v@Lf)B) sup {<u7v>1k+v;>L2 _Fl(u7v§)}‘
(u,0)EV XY

Denoting
H(v%,v{,vg,u) = <uv UT + U§>L2 - F1(U,’U§),

there exists @ € V such that
aH({))Zk’ ﬁra 657 A) o
ou

and
FI*(U;76T7@3) H(@;,f)i’l};,’&),
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so that
OFy(o5,07,05) _ OH(d3,07,63,)
ov; - ov;
O0H (v3, 0%, 03,4) 0u
ou o
= . (19)

Summarizing, we have got
k(K Nk Ak
— 8Fjl (0271]1”03)

U 8’0; = Uu.
Furthermore,
OFf(03,07,05) _  OH(03,07,03,1)
ovy B ovy
+8H(@§,f}f,@§,ﬁ) @
ou ovy
=
= UuQ. (20)

From this and the variation of J{ in v}, we obtain

_OFy(03,01,03)  9G* (o1, %)

=0,

so that

Hence
0] = —(213{)k + K)up + f.

Thus, from these last results and from the variation of J in v3, we have

OF* %, 0%, 0% o
_% = Ky (—n Vg + 205ug — hy)2ug = 0.
3

Hence, since ug # 0, a.e. in 2, we have got
—71V?uq + 20%ug — hy = 0.

Moreover, from the variation of Ji in vg, we obtain

*

(¥
(6

so that

Also from
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so that
—TA}T - ’}/V2ZL0 - KUO - @; + KZU() = 0,
that is
0] = V2o + Kug
Thus,
0 = —yV2uy — Kug = —(2vy + K)uo,
so that

—yV2ug 4 205up — f = 0.
—V2ug + 2a(ud — B)ug — f = 0.

From this, we may infer that
oJ (UO) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
Fy (03,07, 93) = (uo, 07 + 3) 12 — F1(uo, 3),
F3(03) = (uo,03) 12 — Fa(uo),
G* (01, 0) = (uo, —01) 12 + (0,05) 2 — G(uo, 0),
so that
Ji (03,97, 05, 03)
= —F7(03,07,03) + Fy(d3) — G (07, )
Fl(’U/(), ﬁ;) - FQ(UO) + G(u()? O)
= J(UO) (21)

Finally, observe that

J1 (03,07, v0,03) < =(u,v3) 2 + Fi(u, v3) + F5 (v3) + G(u, 0),

YueV, vy eY* vl € D, v; € B, v; € C*,.
Thus, we may obtain

: Kk ok Ak Ak
inf Jl(v27U1aUOav3)

vy EY*
< *Hel)f, {_<U7U;>L2 +F1(u7®§) +F2*(v;) +G(u7 0)}
Vg *
= Fi(u,03) — Fa(u) + G(u,0)
K
= J(u)+ 71 / (=1 V2u 4 205u — hy)? dx, Yu € V. (22)
Q

From this, we obtain

k(A% Ak Ak A%
Jl(v272)17v0)v3)

= inf sup Jik (’U;, Ufa ’UE]k? U;‘;)
V€Y | (vF g 03)ED* X BF X C*
K
< inf {J(u) + =L / (=1 V?u + 205u — h)? daz} . (23)
ueV 2 Q

11
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Joining the pieces, from a concerning convexity in u, we have got

K
J(ug) = inf {J(u) +21 / (—y1V?u 4 205u — hy)? dx}

ueV 2 Q
= inf Sup Jf (Uga UTa ’U(>)k7 U;)

V€Y (vi,v5,v3)ED* X B* X C*
= Ji (03,91, 0, 03). (24)

The proof is complete.
O

4  One more duality principle and a concerning con-
vex dual variational formulation suitable for global op-
timization of the primal formulation

In this section we establish a third duality principle and related convex dual formulation.
Let ©Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 09.

For the primal formulation, consider a functional J : V' — R where

J(u) = ;/QVU-Vudx

+3 /Q(u2 — B) dx — (u, f) 2. (25)

Here v > 0, >0, 8> 0 and f € L?(2) N L>(Q).
Moreover, V = W01’2(Q) and we denote Y = Y* = L2(Q).
Define the functionals F1 : V XY - R, Fp: V >Rand G:V xY — R by

K
Fi(u,v3) = g/gZVu‘Vudx—Q/QUQda:

K K
+=t / (v5(=V?u + K3) — K4)? dx + 2/ u? de, (26)
2 Q 2 Q

K
Fy(u) = 2/ u? dx
2 Jo
and

G(u,v)zj/ﬂ(tﬁ—ﬁ—i—v)z d$+l2(/9u2 dx — (u, f)re,

for appropriate 41 > 0 and hy € L?(€2) to be specified.
We define also F} : [Y*]? = R, Fy : Y* - R, and G* : [Y*]2 = R, by
FY (05,01, 03)

= Su‘g{w,vi‘ +v3)r2 — Fi(u, v3)} (27)
ue

12
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Fy(v3) = ggp«u ;U5 2 — Fo(u)}

1 2
= —_— x 2
2K, /Q(Uz) dx (28)
and
G*(v1,vp)

= sup {<u7 _UT>L2 + <U7 ’U(>)k>L2 - G(“? U)}
(u,v)EV XY

_ 1 (U1 f)2
_ 2/ e +/v0 dm+6/vodaz (29)

B*={vg€Y" : 205l < K/8}.

if vj € B* where

Furthermore, we define
D* ={vy € Y™ : [villeo < (3/2)K}
and J; : Y* x D* x B* x C* — R, by
Ji (v3, 01,05, 03) = —F7 (v3, 01, v3) + Fy (v3) — G™ (07, vp)-

where
Ci={vz €Y : [Ju3]|c < (3/2)K}.

and
C* ={v3 €O : —4(=V*? +16K3K4(—V?)?v; — 12K2[(=V?)(v3)]* > 0, in Q}.

Here we emphasize that C* is a convex set.
Moreover, assuming
Ki>1

and
KQ > KlK?? > K3 > K4 > K > maX{L |’f”007aaﬁ7ry}

by directly computing §2.J5 (v3, v¥, v, v5) we may obtain that for such specified real constants,
J{ in convex in (v3,v3) and it is concave in (v],v§) on Y* x C* x D* x B*.

4.1 The main duality principle and a related convex dual for-
mulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 4.1. Let (03, 07,05,05) € Y* x D* x B* x C* be such that

K ak Ak Ak Ak
dJq (02,1;1,110,1)3) =0

13
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and ug € V be such that R
_ OF5(i3)

*
ovs

where we assume
(=V?up 4+ K3) > 0, a.e. in Q.

Under such hypotheses, we have
5J(u0) = 0,

05 (=V2ug + K3) — K4 = 0,
and

J(ug) = inf {J(u)}

ueV
=, jof sup JT (v3, 07, v5,03)
(V3 XVF)EY*XC* | (v} ,0%)eD* x B*
k[ Ak Ak Ak Ak
= J1(027’U17U07U3)' (30)

Proof. Observe that §J; (03,07, 05,05) = 0 so that, since J{ is convex in (v3,v3;) and concave
in (vf,v5) on Y* x C* x D* x B*, from the Min-Max theorem, we obtain

Ji(03,07,09,03) = inf sup J7 (vy,07,v0,03) ¢ .
(v3,v3)€Y*xC (vi,v8)eD* x B*
Now we are going to show that
5J(UO) =0.
From k(ak ANk Ak Ak
OJ5 (03, 07, 05, 03) _ 0
ov o
2
and s
OF;(03) = ug
*
ovs;
we have e n e
8F1(U27U17U3)+ -0
T ax  Tu=
ov;
and
fl; = KQUO.
Observe now that
Fy(03,01,03) =  sup  {{u,v] +v3)p2 — Fi(u, v3)}-
(u,0)EV XY

Denoting
H(U%,’UI,Ug,u) = <uv Uik + U;>L2 - F1(U,’U§),
there exists @ € V such that
OH (03,97, 03,1)
ou

=0,
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and
Ff(f);?@ikv@;) = H(@;vﬁikvlf);’a)’
so that
OFY(v3,01,03) OH(03,07,03, 1)
ov; N ov;
O0H (v3, 0%, 03,4) 0u
ou ov;
= . (31)
Summarizing, we have got
o= R GE) _
ov;
Furthermore,
OFy(03,07,03)  OH(d3,97,03,4)
vy N ovy
0H (v3,07,05,4) Ou
ou 8_211‘
=
= up. (32)

From this and the variation of J} in v}, we obtain

OF; (35,57,5) _ 0G*(01,05) _

vy ov}
so that 5
0] —
—upg— —L—L_=.
TN+ K
Hence
0] = — (205 + K)uo + f.

Thus, from these last results and from the variation of J{ in v3, we have

8F* ’\*, A>i<7 Ak .
—% = K1 (63(—V2ug + K3) — K1) (—V2ug + K3) = 0.
3

Hence, since (—V?ug + K3) > 0 a.e. in €2, we have got

05 (=V2uy + K3) — K4 = 0.

Moreover, from the variation of Ji in v, we obtain

so that
5 = alug — B).
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Also from
OH (03, 07,03, 0)
=0,
ou
so that
—0F — 4V2ug — Kug — 05 + Koug = 0,
that is
0] = —AV2ug + Kug
Thus,
ot = —yV2uy — Kug = — (205 + K)uo,
so that

—’}’VQUO + 2’08’&0 —f=0.
—V2ug + 2a(ud — B)ug — f = 0.

From this, we may infer that
oJ (UO) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
Fy (03,07, 93) = (uo, 07 + 3) 12 — Fi1(uo, 3),
F3(03) = (uo, 93) 12 — F2(uo),
G* (07, 95) = (uo, —07) 2 + (0,99) L2 — G(uo,0),
so that

T (63,57, 5, 93)

= —Fy(03,07,03) + F5 (03) — G* (01, )

F1 (UO, ’LA);):) - FQ(’LL()) + G(UO, 0)

= J(uo). (33)

Finally, observe that

Ji(vg, 01509, v3) < —(u,v3) 2 + Fi(u, v3) + Fy (v3) + G(u, 0),
YueV, vy eY* vl € D" v; € B, v € C*,.
Thus, we may obtain

i f J* *7A*’A*, "
(vg,vé‘)lgy*xc* 1(”2 71, Vg U3)
inf  {—(u,v3)r2 + Fi(u,v3) + Fy(v3) + G(u,0)}
(v3.v5)€Y™

= Z/Vu-Vudx—E/UQ dx + Fy(u) — Fy(u) + G(u, 0)
2 Jo 2 Jo
= J(u), Yue V. (34)

IN
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From this, we obtain
k fAak Ak Ak Ak
Jl (7}2,’01,’00,1}3)
. * * * * *
= . nf sup Ji (v3,v7, v, v3)
(U2,’U3)EY xC' (UT’US)ED* % B*

< inf {J(u)}. (35)

Joining the pieces, we have got

J(uo) = inf{J(u)}

= inf sup Ji (v3, 07, v5,03)
(v3,03)€Y*XC* | (vF v3)eD*x B*

— (03,05, 55, 03)- (36)

The proof is complete.

5 Conclusion

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.
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