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Abstract

This article develops a duality principle and a related convex dual formulation suitable for the
local optimization of a non-convex primal formulation for a large class of models in physics and
engineering. The results are based on standard tools of functional analysis, calculus of variations
and duality theory. In particular, we develop applications to a Ginzburg-Landau type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote

/[(—’yV2 + K1) v*v* dx
Q
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sitmply by
*\2
/ GO
oYV +K
where 1y denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V? denotes the Laplace operator and for real constants Ko > 0 and K; > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = g/QVu-Vudx

+5 [ =8 do = (u. e (1)

Here v > 0, >0, B> 0 and f € L?(2) N L>(Q).
Moreover, V = W01’2(Q) and we denote Y = Y* = L2(Q).
Define the functionals F; : V XY - R, Fo: V >Rand G:V xY — R by

K
Fi(u,vy) = ;/QVU-Vudx—Q/Quzdx
K

K
+1/(—7V2u—|—2v3u—f)2 dx+2/u2 dzx, (2)
2 Ja 2 Ja

K
Fy(u) = 22/Qu2 dx

and

G(u,v)zj/g(zﬂ—ﬁ%—v)Q dx+[2(/ﬂu2 dx — (u, f)re.

We define also F} : [Y*]? = R, Fy : Y* - R, and G* : [Y*]2 > R, by
F} (05,01, )

= sup{{u, 0] +v3)12 — Fi(u,v9)}

ueV
/ —Ki1f(—V2+ K + Ko) f + (v +v3)? — 2K, f(—yV?2 + 208) (v + v3) i (3)
Q

2Ky + K — V2 + K1 (—yV?2 + 20})?]

Fy(z) = supi{u,v3)p2 = Fy(u)}

T AR (4)
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and
G*(vi,vg) = sup  {—(u,v])p2 + (v,05) L2 — G(u,v)}
(u,0)EV XY
L[ (wi=f)
N / 205 + K + /
48 [ v da (5)

if v5 € B* where
B*={vy eY* : ||20f]lc < K/8 and —V?+ 20} < —ely},

for a small parameter 0 < ¢ < 1.
Furthermore, we define

D ={v] €Y" : |v]llec < (3/2)K}
and J{ : Y* x D* x B* = R, by
JT(U;UTW:}F) = _Ff(U;UTavg) + FQ*(U;) - G*(UTWS)

Assuming
K2 > Kl > K > maX{HfHOOuaaﬂa’Y? 1/62}

by directly computing 52Jf (v3,v],v3) we may obtain that for such specified real constants, J;
in convex in v3 and it is concave in (v}, vg) on Y* x D* x B*.

2  The main duality principle and a concerning con-
vex dual formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (03,07,05) € Y* x D* x B* be such that
6.J1 (03,01, 79) = 0

and ug € 'V be such that

_ OF5(03)
Under such hypotheses, we have
(5J(UO) = 0,
and
_ : Kl 2 A% 2
J(ug) = inf {J(u)+ — [ (=7Vu+205u — f)* dz
ueV 2 Q

- inf{ sup Jf(v;,vf,vm}

v3€Y" | (vf03)eD*x B*
= Ji (03,91, 7). (6)
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Proof. Observe that 0.J; (03, 0, 0g) = 0 so that, since J; is convex in vj and concave in (v}, vg)
on Y* x D* x B*, from the Min-Max theorem, we obtain

(vi,vg)eD* xB*

KAk ko Ak : Kk kK
Jl('027v17'00) :’U*lgiff*{ sup Jl (v27vl7'00)}'
2

Now we are going to show that

5J(UO) =0.
From
aJi (03,97, 05)
> b0 g,
ov;
and
OF; (03)
ovs
we have e n e
_8F1 (0271}171]0) +uy=0
ov;
and

05 — Koug = 0.
Observe now that denoting

H{(v, v7,v9,u) = (u, 01 +v3) 12 — Fi(u, vyp),

there exists @ € V such that
OH (03,97, 05, 1)

=0
ou ’
and
XAk Ak AX Ak oAk oAk A
Fl(v27v17/UO):H(v17v27007u)7
so that
OFf (03,07,05) _  OH(d3, 07,95, 4)
* - *
ovs v
O0H (v3, 0%, 03, 4) 0u
ou ov’
= q.

Summarizing, we have got
k(Ak o Nk Ak
8Fjl (U2v vy, UO)

ug =
ov;

= .
Also, denoting
A(uo, 05) = —7V?ug + 205uo — f,
from
8H(®1‘, QfQ*, @8, Uo)
=0,
ou

we have

d0i:10.20944/preprints202210.0207.v4
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—0F + Kug +vV2ug + K1 (—yV? 4 208) A(ug, 0) — 05 + Kaug = 0,

so that
—0F + Kug +vV2ug + K1 (—yV? 4 203) A(uo, 1) = 0. (8)

From such results, we may infer that

OFy (03,07, 05)

ovy
0H (03,07, 05, )
- ovy
O0H (03,07, 05,0) OU
ou 8_111"
= 4
= . (9)

Now observe that from the variation of J{ in v}, we have

_OFY(05,07,05) _ 9G™(0F, %)

ovy vy =0
so that oG (01 58)
—ug — # -0
that is P
S 2@%+K =0

From this and (8), we may infer that

0F = —yV2ug — Kug — K1(—yV? + 20%) A(uo, o) = — (208 + K)uo + f,

so that
— Vg + 205ug — f — K1(—yV? + 20%) A(ug, 95) = 0.
From this and the concerning boundary conditions, since
A(ug, v5) = =7V + 205uo — f,
we may obtain
—yV?ug + 205up — f = A(ug, 05) = 0.
Moreover, from
97 (03, 07, g)
R
v

we have "

~x ),
A(ug, 05)2up — EO + ug — =0,

so that
o = aud - B).

5
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From such last results we get
—yV?ug + 2a(ug — B)ug — f =0,
and thus
(5J(u0) =0.
Furthermore, also from such last results and the Legendre transform properties, we have
Fl*(@gv QA)T?@S) - <u07ﬁ; + ﬁDL? - Fl(u()?@S)?
Fy(03) = (uo, 03) 12 — Fa(uo),
G*(07,0g) = —(uo, 1) 2 + (0, 0g) 2 — G(uo, 0),
so that
Ti (05,57, )
= —F7 (03,07, 0p) + F5(3) — G* (07, )
= Fl(uo, ’DS) — FQ(U()) -+ G(UO, 0)
= J(UO) (10)

Finally, observe that

It (03,01, 05) < —(u,v3) 12 + Fi(u, v5) + F5 (v3) + G(u, 0),
Vu eV, vj €Y*, v} € D* v} € B*.

Thus, we may obtain

inf Jy(v3,07,0p)

vy EY*
Sl () + By 8) + F05) + Glw, )
V5 *
= Fi(u,9)) — F2(u) + G(u,0)
K
= J(u)+ 71 / (—’yV2u + 205u — f)2 dx, YVueV. (11)
Q

From this and (11), we obtain

T (65,01, 59)

= inf sup J1 (v3,v7,v5)
vy €Y (vi,vg)eD* xB*

K
< inf {J(u) + =L / (—yV2u 4 205u — f)? dm} . (12)
ueV 2 Q
Joining the pieces, from a concerning convexity in u, we have got
K
J(up) = inf {J(u) +21 / (—yV2u + 20%u — f)* daz}
ueV 2 Q

= inf { sup JT(U;,UT,US)}
(v

vy EY* Tv”S)ED* «x B*
= Ji(05,07,%) (13)
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The proof is complete.

Remark 2.2. We could have also defined
B*={vj e Y* : [|2vf]loc < K/8 and — V2 + 208 > ely},

for a small parameter 0 < e < 1. This corresponds to —yV? + 2u; be positive definite, whereas
the previous case corresponds to —yV?2 + 2vg be negative definite.

3 One more duality principle and a concerning con-
vex dual variational formulation

In this section we establish another duality principle and related convex dual formulation.
Let Q C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 09.

For the primal formulation, consider a functional J : V' — R where
_
J(u) = / Vu-Vu dz
2 Ja

+5 /Q<u2 — 8% da — (u, f) 2. (14)

Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).
Moreover, V = Wol’z(Q) and we denote Y = Y* = L?(Q).
Define the functionals F1 : V - R, Fo: V - Rand G:V xY — R by

Fi(u) = ;/QVU -Vudr —(u, f)2,

K
Fy(u) = 2/Qu2 dx

and

K K
G(u,v,vg)zg/ﬂ(u2—5+v)2 dx—l—;/QuQ dx+21/9(—'yv2u+2v§—h1)2 dx,

for appropriate 41 > 0 and hy € L?(€2) to be specified.
We define also F}f : Y* - R, Fy : Y* - R, and G* : [Y*]* = R, by

Fy(vf) = igg{<u7vi‘>Lz—F1(U)}
U*Q
- 5 [ (15)
Fy(z%) = 22€{<u72*>L2 — Fy(u)}

1 *\ 2
:M/ﬂ(z)dx (16)
7
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and

RURERTES
= sup  {{u,—vi)r2 + (v, v5) 2 — Gu,v)}
(u,0)EV XY

—1 [ —hIK (K + 2v}) + 2h1 K1 (=1 V2 + 203) (—vf + 2*) + (—vf + 2*)?
= — - 5 3 dx (17)
2 Jo K +2v5 + K1 (=71 V2 + 2v3)

if v € B* where
B*={v5€Y" : 205l < K/8}.

Furthermore, we define
D" ={ur €Y" : viflec < (3/2)K}
and J7{ : Y* x D* x B* = R, by
Ji(vg, 01,05, 2%) = —Fy (v7) + F5 (27) = G™(v3, v1, vp, 27).
where we also define
C*={v; Y™ : - V%4 20} > K31y}

Observe that we may choose 71 > 0 and hy € L?(Q) so that such a last constraint is satisfied
by a critical point.
Moreover, assuming
Ki>» K> max{Kg, HfHOO,Oé,,B,’)/,’yl}

by directly computing 62J; (v3,v], v, 2%) we may obtain that for such specified real constants,
J{ in convex in z* and it is concave in (v3, v}, v5) on C* x D* x B* x Y*.

3.1 The main duality principle and a related convex dual for-
mulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 3.1. Let (03, 07,05, 2*) € C* x D* x B* x Y* be such that
0J7 (05,07,05,2%) =0
and ug € V be such that
oF(z*
ug = 252 (2 )
oz*

Under such hypotheses, we have
5J(UO) = 0,

—’}/1V2UO + Qﬁé‘uo —hy1 =0,
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and

K
J(ug) = inf {J(u)+ — / (=1 V2u + 205u — hy)? da
ueV 2 Q
— i sp Jih vl )
ZTEY™ | (vg,07,05)EC X D* X B*
= Jy(03,07,05,2%). (18)
Proof. Observe that §J7(03,07,05,2%) = 0 so that, since J; is convex in z* and concave in
(v3,v],v5) on C* x D* x B* x Y*, from the Min-Max theorem, we obtain

k (oak Ak Ak Ak : * * * * *
Ji (03,07, 95, 2) = inf sup Ji (v, v7,v5,2%) ¢
Z7€Y™ | (v3,07,08)€C* x D* X B*
Now we are going to show that
(SJ(U(]) =0.
From X (% Sk A% ok
aJl(U37v17U07Z ) -0
0z* -
and .
OF;(2) _
0z*
we have e o n o
oG (,USaUh’UO?Z ) =0
B oz* o=
and
2= KU().

Observe now that
k(A% Ak A% A%
G (U37U17UO’Z )

= sup  {(u,v] + 2") 2 + (v,v5) 2 — G(u,v)}

(u,0)eV XY
* * * «a 2 2
= sup {(u,vl—i-z}Lz—i-(v,vo)Lz—/(u — B +v)*dx
(u,0)EV XY 2 Jo
K [? K
) dx — 71 / (=11 V?u + 2v5u — hy)? dx} . (19)
u Q

Denoting w = u? —  + v so that v = w — u? + 3, we obtain

G* (03,07, 0, 27)

_ su ok * 0,2 * o g 2 _ 5 2

= p (u, —v] 4+ 2%) 2 + (—u” + B+ w,vy) 12 w* dz u® dz
(u,w)EV XY 2 Jo 2 Ja

K
—71 /Q(—%V% + 2v3u — h1)2 daz}

K
= sup {(u, —vf 2%V o A (—u? + B8 e — / u? dx
ueV 2 Q

Ky

1
+— / (v5)? de — — | (= V?u+ 205u — hy)? dx} . (20)
2 QO 2 QO

9
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Denoting

H(v3,v], vy, 2%, u)

K
(u, v + 2% g2 + (—u? + B,v8) 2 — 5/ u? dx
Q

d0i:10.20944/preprints202210.0207.v4

1 K
to (v§)? dx — 71 / (=1 V?u + 2v5u — hy)? de, (21)
@ Jqo Q
there exists 4 € V' such that
OH (v3, 0%, 05, 2%, 4) —0
ou ’
and
G*(v3, 07, g, 2°) = H(03, 07,05, 2, 0),
so that
0G*(35,05,05,4%) _ OH(03,05,05,2",0)
0z* oz*
OH (03, 07,05, 2%, 4) OU
ou 0z*
= 4 (22)
Summarizing, we have got
aG* Ak ANk ANk Sk
Uy = (%5, 01, %, #7) = 1.
oz*
Furthermore,
OG* (i5,07,8,2") _ OH(55,57, 5,5, 0)
ovy ov}
OH (03,071,035, 2%, 4) Ou
ou ovy
= —q
= —Uo (23)
Also,
OG* (03,07, 05, 2%) _ 0H (v3, 07,05, 2%, 4)
ovg ovg
ou ovg
= 2
= (24)
Finally,
0G*(v3,01,05,2*) _ OH (93,97, 95,%" . 4)
ovs ovs
OH (v3, 0%, 05, 2%, 4) OU
ou ovs
= —Ki(—m V% + 2050 — hy)24. (25)

10


https://doi.org/10.20944/preprints202210.0207.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2022 doi:10.20944/preprints202210.0207.v4

Thus, from this last result and from the variation of J{ in v3, we have
0G*(v3, 07, 05, 2*)

" = Kl(—’ylVQUO + 2@;110 — h1)2up = 0.
ovs

Hence, since ug # 0, a.e. in €2, we have got
—71V2U() + 2®§u0 —h1 =0.

Moreover, from the variation of Ji in vg, we obtain

so that

so that
o = —yV2uy — f.
On the other hand from these last results and from

8H(1A)3, @T, ’08, 2*, UO)

ou =0,
we get
—07 4+ 2 — Kup — 2vjup = 0,
so that
oF = —yV2ug — f = —2viug = —2a(ud — B)uo,
that is,

—V?ug + 2a(ud — B)ug — f = 0.

From this, we may infer that
5J(UQ) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
FY(07) = (uo,97) 12 — Fi(uo),
Fy(27) = (uo, 2%) 12 — F2(uo),
G*(f};? ﬁrv @8, 2?*) = (uo, _{)T + 2*>L2 + <07 ®8>L2 — G(uy, 0, ﬁ§)7
so that
T (03,51, 15,2°)

= —Fy(07) + F5 (%) — G*(d3, 01, 09, 27)

= Fl(u()) - FQ(UO) + G(“O? 07 ﬁ;)

= J(uo)- (26)

11
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Finally, observe that

Ji(v3, 07,00, 2%) < —(u, 2%) 2 + Fi(u) + F5 (%) + G(u, 0,03),

YueV, z*eY* vy eC* vy € D*v; € B*.
Thus, we may obtain

. KOk Ak Ak |k
inf JI(UEI?’UDUOVZ)

Z*eY*
< mf {0+ Fi(w) + B () + Glu,0,09))
= Fl(u) — FQ(U) + G(u, 0, @;)
K
= J(u)+ 71 / (=1 V2u 4 205u — hy)? dzx, Yu € V. (27)
Q

From this, we obtain
k[ Ak o~k Ak Ak
Jl (’U3,U1,’U0,Z )

~ inf { sup Jf(vs,vr,vz;,z*)}

ZTEY™ | (v3,07,05)ECH X D* X B*
K
< inf {J(u) + =L / (=v1V?u + 205u — h)? d:v} : (28)
ueV 2 Q

Joining the pieces, from a concerning convexity in u, we have got

K
J(up) = inf {J(u) + 1/(—’}/1V2u—|—21§§u—h1)2 daz}
ucV 2 Ja

= inf sSup Jik(’U;,UI,’US,Z*)
ZTE€Y | (g 07 08)€C* x D* X B*

= J{ (03,071,705, 2%). (29)

The proof is complete.

4 Conclusion

In this article we have developed a convex dual variational formulation suitable for the local
optimization of a non-convex primal formulation.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principle here presented is applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.

12
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