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On Duality Principles and Related Convex Dual
Formulations Suitable for Local Non-Convex
Variational Optimization

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, Florian6polis, SC, Brazil

Abstract: This article develops duality principles, a related convex dual formulation and a primal
dual one suitable for the local optimization of non-convex primal formulations for a large class of
models in physics and engineering. The results are based on standard tools of functional analysis,
calculus of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau
type equation. We emphasize the novelty here is that the first dual variational formulation developed
is convex for a primal formulation which is originally non-convex. Finally, we also highlight the
second primal dual variational formulation presented has a large region of convexity around any
critical point.

Keywords: convex dual variational formulation; duality principle for non-convex primal local
optimization; Ginzburg-Landau type equation

MSC: 49N15

1. Introduction

In the first part of this article, we establish a duality principle and a related convex dual
formulation suitable for the local optimization of a primal formulation for a large class of models in
non-convex optimization. We highlight the first dual variational formulation presented is convex and
such a feature may be very useful for a large class of similar models, in particularly for large systems
in a three or higher dimensional context.

For such large systems the convexity obtained is relevant for an easier numerical computation,
since in such a case of strict convexity, the standard Newton, Newton-type and other similar methods
are always convergent.

We also emphasize the main duality principle is applied to the Ginzburg-Landau system in
superconductivity in the absence of a magnetic field.

Such results are based on the works of ].J. Telega and W.R. Bielski [1-4] and on a D.C. optimization
approach developed in Toland [5].

About the other references, details on the Sobolev spaces involved are found in [6]. Related and
more recent results on convex analysis and duality theory are addressed in [7-11]. In particular, the
results in the present work are extensions and improvements of those results found in the recent
book [12] and recent article [13], which by the way, are also based on the articles [1-4]. Finally, similar
models on the superconductivity physics may be found in [14,15].

Remark 1. It is worth highlighting, we may generically denote
/ [(—yV? +KIy) 'o*v* dx
Q
simply by
*\2
/ G
o —-YVZ+K

where 1; denotes a concerning identity operator.
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Other similar notations may be used along this text as their indicated meaning are sufficiently clear.
Finally, V2 denotes the Laplace operator and for real constants K, > 0 and Ky > 0, the notation K > Ki
means that Ky > 0 is much larger than K; > 0.

Now we present some basic definitions and statements.

Definition 1. Let V be a Banach space. We define the topological dual space of V, denoted by V', as the set of
all continuous and linear functionals defined on V.
We assume V' may be represented through another Banach space denoted by V* and a bilinear form

(-, v VxV" =R
More specifically, for each f € V', we suppose there exists a unique u* € V* such that
f(u) = (u,u*)y, YueV.
Moreover, we define the norm of f, denoted by

£ llv

by
I fllv+ = sup{[{u,u")y : u € Vand [lully <1} = |[u*|v-.

For an open, bounded and connected set O C RN and Y = Y* = L?(Q) we recall that

/* — * do.
(u,u™) 2 /Quu x

More specifically, for each continuous and linear functional f : Y — R there exists a unique
u* € Y* = L2(Q) such that
flu) = / uu*dx, Yu €Y = L*(Q).
Q

Definition 2 (Polar functional). Let V be a Banach space and let F : V — R be a functional.
We define the polar functional of F, denoted by F* : V* — R, by

F*(u*) = sup{(u,u*)y — F(u)}, Vu* € V*.
ueV

Another important definition refers to the Legendre transform one and respective relevant
propriety, which are summarized in the next theorem.

Theorem 1 (Legendre transform theorem). Let V be a Banach space and let F : V. — R be a twice
continuously Fréchet differentiable functional.
Let u* € V*. Assume there exists a unique i € V such that

Suppose also

det{azai(zu)} #0,

in a neighborhood of il.
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Under such hypotheses, defining the Legendre tranform of F at u* by F} (u*) where
Fi(u®) = (@,u”)y — F(a)
we have that

oF; (u*)
ou*

MA =
Remark 2. Concerning such a last definition, observe that if F is convex on V, then the extremal condition

. _ OF(1)
Ju

corresponds to globally maximize

on 'V, so that, in such a case,

Summarizing, if F is convex, under the hypotheses of the last theorem, the polar functional F*(u*) coincides
with the Legendre transform of F on V* already denoted by Fy, that is,

F*(u) = F; (u*), Yu* € V*.
2. The Primal Variational Formulation and the Dual Functional Definitions

At this point we start to describe the primal and dual variational formulations.

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

Consider a functional | : V — R where

J(u) = %/QVu-Vudx
5 02 = B ax =, fra. )
Here y >0, > 0,8 > 0and f € L2(Q) N L®(Q).

Moreover, V = W&’z(ﬂ) and we denote Y = Y* = L2(Q).
Define the functionals F; : V xY = R, 5 : V — Rby

Fi(u,v5) = —%/()Vu-Vudx—(uz,vE;}Lz
+% /()(77V2u+20§u7f)2 dx+%/0u2 dx
Hu f)pe o [ 05
+6 | v dx, @)

and %
_ 2
FZ(”) - 2 aQ

At this point we assume a finite dimensional version for this concerning model. For example,

u? dx.

we may define a new domain for the primal functional considering the projection of V on the
space spanned by the first N (in general N=10, is enough) eigen-vectors of the Laplace operator,
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corresponding to the first N eigen-values. On this new not relabeled finite dimensional space V, since
v; corresponds to a diagonal matrix, there exists ¢g > 0 such that

(—’)/VZ + 2'06)2 > C()Id,

Vo, € B, where
B* ={vj € Y" : ||20§]l < K/2},

for an appropriate real constant K > 0.
We define also J; : V x Y — R by

Ji(u,v5) = Fi(u,v5) — F2(u),
and Ff : Y* xB* = R, F; : Y* — Rby
F(v3,vp)
= sup{(u,v3);2 — Fi(u,v5)}
uev

1 (03 + f + Ki(—=7V? +205)f)?
2 Ja Ky +yV? = 20§ + Ky (=7 V2 4 20)2

f% /Q(vg)z dx—ﬁ/ovg dx,+% /sz dx 3)

and,

F(v) = sgg{wfvihz—Fz(u)}

1
- 5 /Q (v3)? dx, @)

respectively.
Furthermore, we define

D*={v; € Y" : ||v3]|e0 <5Ky/4}
and J{ : D* x B* — R, by
Ji (v2,05) = —F (v3, ) + F3 (03)-
Assuming 0 < & < 1 (through a re-scaling, if necessary) and

Ko > Ky > K> max{| fleo, &, 8,7, 1}

by directly computing 625 (v5,v};) we may easily obtain that for such specified real constants, J; in
convex in (v3,v§) on D* x B*.

3. The Main Duality Principle and a Concerning Convex Dual Formulation

Considering the statements and definitions presented in the previous section, we may prove the
following theorem.

Theorem 2. Let (03,05) € D* x B* be such that
6] (02,05) =0
and ug € V be such that

_ 9K (93
vy

Up
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Under such hypotheses, we have
6] (uo) =0,
and
—J(uo) = Ji(uo, %)
= inf J;(u, 0}
i nte %)
= inf “(v5, 04
(v3,05)€D* xB* ]1( 2 0)
= Ji(02,0) ®)
Proof. Observe that ] (95,9;) = 0 so that, since Jj is convex in (v}, v) on D* x B*, we obtain
1(03,05) = inf [ (v3,05).
J1 (92,95 . S Ji(v3,v5)
Now we are going to show that
6] (uo) = 0.
From
9J1 (93,%)
v} I
and
9F; (93)
oy T
we have
IOFy (93, 95)
— =0
aU; + Uy
and
UAE — K2u0 =0.
Observe now that denoting
H(vy,v5,u) = (u,v3) 12 — Fi (4, vp),
there exists i € V such that
oH (03,05, 1)
20T,
ou
and
Fy(03,0p) = H(03,0p,1),
so that
OF;(03,0;) _ OH(83,55,1)
v N v}
oH(03,0;,1) 0i
ou Jv;
= 0 (6)

Summarizing, we have got
9k} (93, %)

pr— 1/’2.
*
Jv;

Uug =
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Also, denoting
Alug, 0y) = —yV?ug + 20%ug — f,
from
aH(’Zj\Z*I ’UAS/ Ll())
— =70,
ou
we have
—(vYV2ug — 20510 + f + K (—yV? +205) A(uo, 05) — 03 + Kaug) = 0,
so that
— A(ug, 83) + Ky (—yV? +20%) A(uo, 95) = 0. @)
From such results, we may infer that
A(ug, 85) = —yV?up +205 — f =0, in Q.
Moreover, from
9J1 (93, %)
v -
we have
bx
Ky A(ug, 04)2ug + ;0 —uf+p=0,
so that
vp = a(ug — B).
From such last results we get
—yVug +2a(uj — B)ug — f =0,
and thus
6] (up) = 0.
Furthermore, also from such last results and the Legendre transform properties, we have
F(03,95) = (u0,03)12 — Fi(u0, %),
F3(03) = (uo,93)12 — Fa(u0),
so that
Ji (92, ;)
= —H(%,0)+F (%)
Fy (ug, 05) — F2(uo)
J1(uo,05)
= —J(uo) ®)

Finally, observe that from a concerning convexity,
—J(uo) = J1(uo, %) = inf J1(u, 0p).
ueV

Joining the pieces, we have got
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—J(uo) = Ti(uo,p)
= inf {Ji(, )}
— : f * *’ *
(Ui,vg)ngD*xB* h (Uz UO)
= Ji(93,9). )

The proof is complete.
O

4. A Primal Dual Formulation for a Local Optimization of the Primal One

In this section we develop a primal dual formulation corresponding to a non-convex primal
formulation.

We start by describing the primal formulation.

Let Q C R be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.

For the primal formulation, consider a functional | : V' — R where

J(u) = %/QVu-Vudx
+5 |2 =B dx = (). (10)
Here y > 0,4 > 0,8 > 0and f € L?(Q) N L®(Q).

Moreover, V = Wg’z(ﬂ) and we denote Y = Y* = [2(Q).
Define the functional J; : V x [Y*]? — R, by

Ji(u,v3,05) = %/QVu-Vudij(uz,vé)Lz
& . 2 ¥ \2 & * 2 2
+5 O( yVou+2viu — f)* dx + 5 0(03 a(u®— B))" dx
1 *
)iz = 5 [ (@) ax
— S dx. 11
B [ o dx 1)

We define also
B* ={vy € Y" : ||2v5]l« < K/2},

for an appropriate real constant K > 0.
Furthermore, we define
D' = {3 €Y ¢ [0}l < K2}

AT ={ueV :uf>0 ae inQ},
V2:{MEV : ||u\|oo SK::,}

for an appropriate real constant K3 > 0 and

V= At NV
Now observe that denoting ¢; = v5 — a(u? — B), we have
aZI* (1/[, U*, U*)
Ly 00 au23 00 = Ky(—9V?+203)% + 4K a*u?

—2Kja@y — YV + 20} (12)

doi:10.20944/preprints202210.0207.v23
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and
] (u, v3,v) 2
—_— Ky +4Kqu”. 13
3(03)2 1 +4Kqu (13)
Denoting ¢ = —yV?u + 2vju — f we have also that
aZ * , *’ *
OJi(u,05,%)  _ Ki(—29V2u + 20%u) + 2K1 ¢ — 2K au. (14)
0udv}
In such a case, we obtain
2
o[ PRS00 | RIn 03, 0) (05,05 (@5 (,03,09)
ouov} 0(v5)? ou? oviou
= K}(—yV?+ 20} + dau?)?
+(=7V? +205) O (Ky)
—4K2¢? — 4K3¢ [(—qu +2vqu) — szu}
—2K3a 1 (1 + 4u?). (15)
Observe that at a critical point
=0
and
P11 = 0.

From such results we may infer that

o [P

Juadv;

around any critical point.
With such results in mind, at this point and on assuming a related not relabeled finite dimensional
model version, in a finite differences or finite elements context, we may prove the following theorem.

Theorem 3. Let (ug, 03,05) € Vi x D* x B* be such that
5] (uo, 93,35) = 0.
Under such hypotheses, we have
8] (ug) = —yV?uo +2a(ud — B)ug — f = 0

and there exists v > 0 such that

J(up) = sup inf Ji (u,v3,05)
(u,3)

viEeB* €By(u,03)
Proof. The proof that
6] (ug) =0

and
J(uo) = Ji (uo,93,9p)
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may be done similarly as in the previous sections.
Observe that, as previously obtained, there exists r > 0 such that

2] (u, vs, %) ¥ A%
det{lauavzko > 0, V(u,vg,) € Br(uO/DS)

and
2] (up, 0%, 08)
9(vg)?

Since for a sufficiently large K; > 0 we have

< 0,Vv; € B*.

azji‘(u, v3,05)

auz > 0/ ln Br(”Or ﬁ§>/

from these last results and the standard Saddle point theorem, we have

J(uo) = Ji (uo,03,05) = sup {( *)inf H‘(“/vérvé)}-
u,v3

’USGB* GBy(uo,T};)

The proof is complete. [

5. A Numerical Example

In order to illustrate the applicability of such results we have developed the following
numerical example.

ForQ =[0,1],y =01, a = B = 1and f = 1 on Q we have solved the Ginzburg-Landau
type equation

VU +au? —B)2u—f=0,inQ

with u = 0, on 9Q).
To obtain such numerical results, refereing to those previous ones of Section 3, we have used the
following primal dual functional ], (u, vj, v5 ) where

Ja(u,v5,03) = Fi(u,05) = (u,03)12 + By (03),

where
Fi(u,v5) = —%/QVqu dx — (u?,08) 2

+% Q(—7V2u+2718u —f)2 dx + %/ﬂuz dx

Hu f)ie+ o [ @6

—i—ﬁ/ﬂvé dx, (17)
and,

F(03) = sup{(u,03);2 — Fa(u)}

uev
_ 2172 /Q (0%)2 dx. (18)

Observe that a critical point of ], corresponds to a critical of the dual functional Ji. From the
convexity of J{, such a critical point corresponds a to a global optimal one for J7.


https://doi.org/10.20944/preprints202210.0207.v23

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2023 doi:10.20944/preprints202210.0207.v23

10 0of 13

We have obtained results through finite differences combined with a MAT-LAB optimization tool.
For an extensive approach on finite differences schemes, please see reference [16].
For the corresponding solution u, please see Figure 1.

1.2

0.8 ]

04r b

02r b

O Il Il Il Il Il Il Il Il Il
0 0.1 02 03 04 05 06 07 08 09 1

Figure 1. Solution ug(x) for the primal formulation.

6. A Duality Principle for a Related Relaxed Formulation Concerning the Vectorial Approach in
the Calculus of Variations

In this section we develop a duality principle for a related vectorial model in the calculus
of variations.

Let 3 C R” be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 02 =T.

For 1 < p < 400, consider a functional | : V — R where

J(u) = G(Vu) + F(u) = (u, )12,

where
V= {u € WP (O;RN) : u = ugon aQ}

and f € L2(Q;RN).
We assume G : Y — R and F : V — R are Fréchet differentiable and F is also convex.
Also

G(Vu) = /Qg(Vu) dx,

where ¢ : RN*" — R it is supposed to be Fréchet differentiable. Here we have denoted
Y = LP(Q; RN*M),
We define also J; : V x Y7 — Rby

N, ¢) = Gi(Vu+ Vyp) + F(u) = (u, f)12,

where
Y; = WP(Q x O;RN)

and

Gi(Vu+ V) = iy [ [ 8(Tux) + Vug(x,v) dx dy.

Moreover, we define the relaxed functional J; : V — R by
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J2(u) = ;géo Ji(w, ¢),

where
={peY; : ¢(x,y) =0, onQ x O}.

Now observe that

Ji(w, @) = Gi(Vu+Vyp)+F(u)— (u,f)
= —|10|/Q/Qz;*(X,y)‘(Vu-i-Vy(])(x,y)) dy dx + Gy (Vi + V)

g o o) (Ve V() dy dx+ Flw) = (1)
vigg {—|(1)| /Q /QU*(x,y) -o(x,y) dy dx + Gl(v)}

o o 7 ) (T gt dy e F) = (w02

= i)~ (e (7 o av) 1)

1
1 . r 1
o m(%ﬁ(mﬁ@&@nwd, (19)

Y(u,¢) € VxVyv* € A*, where

Y

A*={v"eY; : div,o*(x,y) =0, inO}.
Here we have denoted

i) =sup Lo [ [ 0" o) dy dx - i) |

veY)

where Y, = LP(Q x O; RN*"), Y5 = L1(Q x (; RN*"), and where

1.1
p 9
Furthermore,
1
F* (divx (|Q|/ v (x,y) dy) +f> Al ho (/Q v (x,y) dy) ® nug dT'
= ( ?u\I/) V{ |Q|// “(Vu+Vyp(x,y)) dy dx — F(u) + <u,f>Lz}, (20)
0,0)EV XV

Therefore, denoting J3 : Y5 — R by

J3(v*) = —=G{(v") — F* (divx (/Q v*(x,y) dy) > al / (/ (x,v) dy) ®nug dT,

we have got

inf Jo(u) > sup J5(v%).

ueV v*CA*

Finally, we highlight such a dual functional J; is convex (in fact concave).
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7. A Primal Dual Variational Formulation for a Burger’s Type Equation

In this section we develop a primal dual variational formulation for a Burger’s type equation.

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q)
Consider the Burger’s type equation in u € V given by

—’szu +uuy +uuy — f =0, inQ,

where 7 > 0, f € L2(Q) and
V={uecW?Q) : u=uyonoQ}.

At this point we define the functional | : V x Y x Y — R where
J(u,v3,03) 2/ 7V2u+vzux+v3uy dx+2/ —u) dx+2/ zdx.

Here Y = Y* = L?(Q). Let
@, 92,93 € C(Q).
Observe that

62, T ((u,05,95), ¢, ) = /Q(—quv+v§¢x+v§¢y)2 dx+/0(qo)2 dx+/0(€0)2 dx,

2, 03 (0,93,93), 02,02) = [ 12 g3 dx+ [ g3 dx,

03, vy) (1, 03,93), 93, 93) = /Q uy g5 dx + /Q 93 dx,
and denoting W = —yV2u + v}u, + vju, — f, we have
85 (w,3,05),9.00) = [ Wos g

+ /Q(—'yvz(p + 2059y + v§¢y)ux @2 dx — /Q @2 ¢ dx. (21)

05 oy ) ((1,03,03), 9, 91) = /qu’y(Pde

+ /Q(—’yvzq) + 203 ¢x + U3y )y @3 dx — /Q @3 ¢ dx. (22)

03 v (1,03, 05), 92, 93) = /Q Uxlly @2 @3 dx.

Therefore
1 * * * * * *
S0 (4,93,93), 9, ) + 250*0 :J((1,03,03), 92, 92) + 250* o ((1,03,03), 93, 93)
+0n0 (11,03, 93), 9, 92) + 03 e ] (1,03, 0%), 9, 93) + 6 o (1,03, 03), 92, 93)
1
= 3 /Q(—'yvch +03Qx +U3Qy + Uy @2+ 1y ¢3)? dx

! — 9)? 1 _ )2
+§/Q(<pz ?) dx+2/o(<p3 ¢)” dx

-I-/Q W (¢x @2+ @y ¢3) dx. (23)


https://doi.org/10.20944/preprints202210.0207.v23

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2023 doi:10.20944/preprints202210.0207.v23

13 0f 13

Observe that at a critical point we have W = —yV2u + v3ux + vjuy — f =0, in Q.

From this and (23) we may infer that §2] is positive definite in a neighborhood of any critical
point of J.

Thus, we may also conclude that the functional | has a large region of convexity around any of its
critical points.

8. Conclusions

In this article we have developed convex dual and primal dual variational formulations suitable
for the local optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics
and engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau type
equation. In a future research, we intend to extend such results for some models of plates and shells
and other models in the elasticity theory.
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