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Abstract: This article develops duality principles, a related convex dual formulation and a primal

dual one suitable for the local optimization of non-convex primal formulations for a large class of

models in physics and engineering. The results are based on standard tools of functional analysis,

calculus of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau

type equation. We emphasize the novelty here is that the first dual variational formulation developed

is convex for a primal formulation which is originally non-convex. Finally, we also highlight the

second primal dual variational formulation presented has a large region of convexity around any

critical point.
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1. Introduction

In the first part of this article, we establish a duality principle and a related convex dual

formulation suitable for the local optimization of a primal formulation for a large class of models in

non-convex optimization. We highlight the first dual variational formulation presented is convex and

such a feature may be very useful for a large class of similar models, in particularly for large systems

in a three or higher dimensional context.

For such large systems the convexity obtained is relevant for an easier numerical computation,

since in such a case of strict convexity, the standard Newton, Newton-type and other similar methods

are always convergent.

We also emphasize the main duality principle is applied to the Ginzburg-Landau system in

superconductivity in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [1–4] and on a D.C. optimization

approach developed in Toland [5].

About the other references, details on the Sobolev spaces involved are found in [6]. Related and

more recent results on convex analysis and duality theory are addressed in [7–11]. In particular, the

results in the present work are extensions and improvements of those results found in the recent

book [12] and recent article [13], which by the way, are also based on the articles [1–4]. Finally, similar

models on the superconductivity physics may be found in [14,15].

Remark 1.1. It is worth highlighting, we may generically denote

∫

Ω

[(−γ∇2 + KId)
−1v∗]v∗ dx

simply by
∫

Ω

(v∗)2

−γ∇2 + K
dx,

where Id denotes a concerning identity operator.
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Other similar notations may be used along this text as their indicated meaning are sufficiently clear.

Finally, ∇2 denotes the Laplace operator and for real constants K2 > 0 and K1 > 0, the notation K2 ≫ K1

means that K2 > 0 is much larger than K1 > 0.

Now we present some basic definitions and statements.

Definition 1.2. Let V be a Banach space. We define the topological dual space of V, denoted by V′, as the set of

all continuous and linear functionals defined on V.

We assume V′ may be represented through another Banach space denoted by V∗ and a bilinear form

〈· , ·〉V : V × V∗ → R.

More specifically, for each f ∈ V′, we suppose there exists a unique u∗ ∈ V∗ such that

f (u) = 〈u, u∗〉V , ∀u ∈ V.

Moreover, we define the norm of f , denoted by

‖ f ‖V∗

by

‖ f ‖V∗ = sup{|〈u, u∗〉V : u ∈ V and ‖u‖V ≤ 1} ≡ ‖u∗‖V∗ .

For an open, bounded and connected set Ω ⊂ R
N and Y = Y∗ = L2(Ω) we recall that

〈u, u∗〉L2 =
∫

Ω

u u∗ dx.

More specifically, for each continuous and linear functional f : Y → R there exists a unique

u∗ ∈ Y∗ = L2(Ω) such that

f (u) =
∫

Ω

u u∗ dx, ∀u ∈ Y = L2(Ω).

Definition 1.3 (Polar functional). Let V be a Banach space and let F : V → R be a functional.

We define the polar functional of F, denoted by F∗ : V∗ → R, by

F∗(u∗) = sup
u∈V

{〈u, u∗〉V − F(u)}, ∀u∗ ∈ V∗.

Another important definition refers to the Legendre transform one and respective relevant

propriety, which are summarized in the next theorem.

Theorem 1.4 (Legendre transform theorem). Let V be a Banach space and let F : V → R be a twice

continuously Fréchet differentiable functional.

Let u∗ ∈ V∗. Assume there exists a unique û ∈ V such that

u∗ =
∂F(û)

∂u
.

Suppose also

det

{

∂2F(u)

∂u2

}

6= 0,

in a neighborhood of û.
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Under such hypotheses, defining the Legendre tranform of F at u∗ by F∗
L (u

∗) where

F∗
L (u

∗) = 〈û, u∗〉V − F(û)

we have that

û =
∂F∗

L (u
∗)

∂u∗
.

Remark 1.5. Concerning such a last definition, observe that if F is convex on V, then the extremal condition

u∗ =
∂F(û)

∂u
,

corresponds to globally maximize

H(u) = 〈u, u∗〉V − F(u)

on V, so that, in such a case,

F∗(u∗) = H(û) = 〈û, u∗〉V − F(û) = F∗
L (u

∗).

Summarizing, if F is convex, under the hypotheses of the last theorem, the polar functional F∗(u∗) coincides

with the Legendre transform of F on V∗ already denoted by F∗
L , that is,

F∗(u) = F∗
L (u

∗), ∀u∗ ∈ V∗.

2. The primal variational formulation and the dual functional definitions

At this point we start to describe the primal and dual variational formulations.

Let Ω ⊂ R
3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

Consider a functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx

+
α

2

∫

Ω

(u2 − β)2 dx − 〈u, f 〉L2 . (1)

Here γ > 0, α > 0, β > 0 and f ∈ L2(Ω) ∩ L∞(Ω).

Moreover, V = W1,2
0 (Ω) and we denote Y = Y∗ = L2(Ω).

Define the functionals F1 : V × Y → R, F2 : V → R by

F1(u, v∗0) = −
γ

2

∫

Ω

∇u · ∇u dx − 〈u2, v∗0〉L2

+
K1

2

∫

Ω

(−γ∇2u + 2v∗0u − f )2 dx +
K2

2

∫

Ω

u2 dx

+〈u, f 〉L2 +
1

2α

∫

Ω

(v∗0)
2 dx

+β
∫

Ω

v∗0 dx, (2)

and

F2(u) =
K2

2

∫

Ω

u2 dx.

At this point we assume a finite dimensional version for this concerning model. For example,

we may define a new domain for the primal functional considering the projection of V on the

space spanned by the first N (in general N=10, is enough) eigen-vectors of the Laplace operator,
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corresponding to the first N eigen-values. On this new not relabeled finite dimensional space V, since

v∗0 corresponds to a diagonal matrix, there exists c0 > 0 such that

(−γ∇2 + 2v∗0)
2 ≥ c0 Id,

∀v∗0 ∈ B∗, where

B∗ = {v∗0 ∈ Y∗ : ‖2v∗0‖∞ < K/2},

for an appropriate real constant K > 0.

We define also J1 : V × Y → R by

J1(u, v∗0) = F1(u, v∗0)− F2(u),

and F∗
1 : Y∗ × B∗ → R, F∗

2 : Y∗ → R by

F∗
1 (v

∗
2 , v∗0)

= sup
u∈V

{〈u, v∗2〉L2 − F1(u, v∗0)}

=
1

2

∫

Ω

(v∗2 + f + K1(−γ∇2 + 2v∗0) f )2

K2 + γ∇2 − 2v∗0 + K1(−γ∇2 + 2v∗0)
2

dx

−
1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx,+
K1

2

∫

Ω

f 2 dx (3)

and,

F∗
2 (v

∗
2) = sup

u∈V

{〈u, v∗2〉L2 − F2(u)}

=
1

2K2

∫

Ω

(v∗2)
2 dx, (4)

respectively.

Furthermore, we define

D∗ = {v∗2 ∈ Y∗ : ‖v∗2‖∞ ≤ 5K2/4}

and J∗1 : D∗ × B∗ → R, by

J∗1 (v
∗
2 , v∗0) = −F∗

1 (v
∗
2 , v∗0) + F∗

2 (v
∗
2).

Assuming 0 < α ≪ 1 (through a re-scaling, if necessary) and

K2 ≫ K1 ≫ K ≫ max{‖ f ‖∞, α, β, γ, 1}

by directly computing δ2 J∗1 (v
∗
2 , v∗0) we may easily obtain that for such specified real constants, J∗1 in

convex in (v∗2 , v∗0) on D∗ × B∗.

3. The main duality principle and a concerning convex dual formulation

Considering the statements and definitions presented in the previous section, we may prove the

following theorem.

Theorem 3.1. Let (v̂∗2 , v̂∗0) ∈ D∗ × B∗ be such that

δJ∗1 (v̂
∗
2 , v̂∗0) = 0
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and u0 ∈ V be such that

u0 =
∂F∗

2 (v̂
∗
2)

∂v∗2
.

Under such hypotheses, we have

δJ(u0) = 0,

and

−J(u0) = J1(u0, v̂∗0)

= inf
u∈V

J1(u, v̂∗0)

= inf
(v∗2 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗0)

= J∗1 (v̂
∗
2 , v̂∗0). (5)

Proof. Observe that δJ∗1 (v̂
∗
2 , v̂∗0) = 0 so that, since J∗1 is convex in (v∗2 , v∗0) on D∗ × B∗, we obtain

J∗1 (v̂
∗
2 , v̂∗0) = inf

(v∗2 ,v∗0)∈D∗×B∗
J∗1 (v

∗
2 , v∗0).

Now we are going to show that

δJ(u0) = 0.

From
∂J∗1 (v̂

∗
2 , v̂∗0)

∂v∗2
= 0,

and
∂F∗

2 (v̂
∗
2)

∂v∗2
= u0

we have

−
∂F∗

1 (v̂
∗
2 , v∗0)

∂v∗2
+ u0 = 0

and

v̂∗2 − K2u0 = 0.

Observe now that denoting

H(v∗2 , v∗0 , u) = 〈u, v∗2〉L2 − F1(u, v∗0),

there exists û ∈ V such that
∂H(v̂∗2 , v̂∗0 , û)

∂u
= 0,

and

F∗
1 (v̂

∗
2 , v̂∗0) = H(v̂∗2 , v̂∗0 , û),

so that

∂F∗
1 (v̂

∗
2 , v̂∗0)

∂v∗2
=

∂H(v̂∗2 , v̂∗0 , û)

∂v∗2

+
∂H(v̂∗2 , v̂∗0 , û)

∂u

∂û

∂v∗2
= û. (6)
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Summarizing, we have got

u0 =
∂F∗

1 (v̂
∗
2 , v̂∗0)

∂v∗2
= û.

Also, denoting

A(u0, v̂∗0) = −γ∇2u0 + 2v̂∗0u0 − f ,

from
∂H(v̂2

∗, v̂∗0 , u0)

∂u
= 0,

we have

−(γ∇2u0 − 2v̂∗0u0 + f + K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0)− v̂∗2 + K2u0) = 0,

so that

− A(u0, v̂∗0) + K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0) = 0. (7)

From such results, we may infer that

A(u0, v̂∗0) = −γ∇2u0 + 2v̂∗0 − f = 0, in Ω.

Moreover, from
∂J∗1 (v̂

∗
2 , v̂∗0)

∂v∗0
= 0,

we have

K1 A(u0, v̂∗0)2u0 +
v̂∗0
α

− u2
0 + β = 0,

so that

v∗0 = α(u2
0 − β).

From such last results we get

−γ∇2u0 + 2α(u2
0 − β)u0 − f = 0,

and thus

δJ(u0) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have

F∗
1 (v̂

∗
2 , v̂∗0) = 〈u0, v̂∗2〉L2 − F1(u0, v̂∗0),

F∗
2 (v̂

∗
2) = 〈u0, v̂∗2〉L2 − F2(u0),

so that

J∗1 (v̂
∗
2 , v̂∗0)

= −F∗
1 (v̂

∗
2 , v̂∗0) + F∗

2 (v̂
∗
2)

= F1(u0, v̂∗0)− F2(u0)

= J1(u0, v̂∗0)

= −J(u0). (8)

Finally, observe that from a concerning convexity,

−J(u0) = J1(u0, v̂∗0) = inf
u∈V

J1(u, v̂∗0).
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Joining the pieces, we have got

−J(u0) = J1(u0, v̂∗0)

= inf
u∈V

{J1(u, v̂∗0)}

= inf
(v∗2 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗0)

= J∗1 (v̂
∗
2 , v̂∗0). (9)

The proof is complete.

4. A primal dual formulation for a local optimization of the primal one

In this section we develop a primal dual formulation corresponding to a non-convex primal

formulation.

We start by describing the primal formulation.

Let Ω ⊂ R
3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

For the primal formulation, consider a functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx

+
α

2

∫

Ω

(u2 − β)2 dx − 〈u, f 〉L2 . (10)

Here γ > 0, α > 0, β > 0 and f ∈ L2(Ω) ∩ L∞(Ω).

Moreover, V = W1,2
0 (Ω) and we denote Y = Y∗ = L2(Ω).

Define the functional J∗1 : V × [Y∗]2 → R, by

J∗1 (u, v∗3 , v∗0) =
γ

2

∫

Ω

∇u · ∇u dx + 〈u2, v∗0〉L2

+
K1

2

∫

Ω

(−γ∇2u + 2v∗3u − f )2 dx +
K1

2

∫

Ω

(v∗3 − α(u2 − β))2 dx

−〈u, f 〉L2 −
1

2α

∫

Ω

(v∗0)
2 dx

−β
∫

Ω

v∗0 dx. (11)

We define also

B∗ = {v∗0 ∈ Y∗ : ‖2v∗0‖∞ < K/2},

for an appropriate real constant K > 0.

Furthermore, we define

D∗ = {v∗3 ∈ Y∗ : ‖v∗3‖∞ ≤ K2}

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ‖u‖∞ ≤ K3}

for an appropriate real constant K3 > 0 and

V1 = A+ ∩ V2.
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Now observe that denoting ϕ1 = v∗3 − α(u2 − β), we have

∂2 J∗1 (u, v∗3 , v∗0)

∂u2
= K1(−γ∇2 + 2v∗3)

2 + 4K1α2u2

−2K1αϕ1 − γ∇2 + 2v∗0 (12)

and

∂2 J∗1 (u, v∗3 , v∗0)

∂(v∗3)
2

= K1 + 4K1u2. (13)

Denoting ϕ = −γ∇2u + 2v∗0u − f we have also that

∂2 J∗1 (u, v∗3 , v∗0)

∂u∂v∗3
= K1(−2γ∇2u + 2v∗3u) + 2K1 ϕ − 2K1αu. (14)

In such a case, we obtain

det

{

∂2 J∗1 (u, v∗3 , v∗0)

∂u∂v∗3

}

=
∂2 J∗1 (u, v∗3 , v∗0)

∂(v∗3)
2

∂2 J∗1 (u, v∗3 , v∗0)

∂u2
−

(

∂2 J∗1 (u, v∗3 , v∗0)

∂v∗3∂u

)2

= K2
1(−γ∇2 + 2v∗3 + 4αu2)2

+(−γ∇2 + 2v∗0)O(K1)

−4K2
1 ϕ2 − 4K2

1 ϕ
[

(−γ∇2u + 2v∗0u)− 2αu
]

−2K2
1α ϕ1(1 + 4u2). (15)

Observe that at a critical point

ϕ = 0

and

ϕ1 = 0.

From such results we may infer that

det

{

∂2 J∗1 (u, v∗3 , v∗0)

∂u∂v∗3

}

> 0

around any critical point.

With such results in mind, at this point and on assuming a related not relabeled finite dimensional

model version, in a finite differences or finite elements context, we may prove the following theorem.

Theorem 4.1. Let (u0, v̂∗3 , v̂∗0) ∈ V1 × D∗ × B∗ be such that

δJ∗1 (u0, v̂∗3 , v̂∗0) = 0.

Under such hypotheses, we have

δJ(u0) = −γ∇2u0 + 2α(u2
0 − β)u0 − f = 0
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and there exists r > 0 such that

J(u0) = sup
v∗0∈B∗

{

inf
(u,v∗3)∈Br(u0,v̂∗3)

J∗1 (u, v∗3 , v∗0)

}

= J∗1 (u0, v̂∗3 , v̂∗0). (16)

Proof. The proof that

δJ(u0) = 0

and

J(u0) = J∗1 (u0, v̂∗3 , v̂∗0)

may be done similarly as in the previous sections.

Observe that, as previously obtained, there exists r > 0 such that

det

{

∂2 J∗1 (u, v∗3 , v̂∗0)

∂u∂v∗3

}

> 0, ∀(u, v∗3) ∈ Br(u0, v̂∗3)

and
∂2 J∗1 (u0, v̂∗3 , v∗0)

∂(v∗0)
2

< 0, ∀v∗0 ∈ B∗.

Since for a sufficiently large K1 > 0 we have

∂2 J∗1 (u, v∗3 , v̂∗0)

∂u2
> 0, in Br(u0, v̂∗3),

from these last results and the standard Saddle point theorem, we have

J(u0) = J∗1 (u0, v̂∗3 , v̂∗0) = sup
v∗0∈B∗

{

inf
(u,v∗3)∈Br(u0,v̂∗3)

J∗1 (u, v∗3 , v∗0)

}

.

The proof is complete.

5. A numerical example

In order to illustrate the applicability of such results we have developed the following

numerical example.

For Ω = [0, 1], γ = 0.1, α = β = 1 and f ≡ 1 on Ω we have solved the Ginzburg-Landau

type equation

−γ∇2u + α(u2 − β)2u − f = 0, in Ω

with u = 0, on ∂Ω.

To obtain such numerical results, refereing to those previous ones of section 3, we have used the

following primal dual functional J2(u, v∗0 , v∗2) where

J2(u, v∗0 , v∗2) = F1(u, v∗0)− 〈u, v∗2〉L2 + F∗
2 (v

∗
2),
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where

F1(u, v∗0) = −
γ

2

∫

Ω

∇u · ∇u dx − 〈u2, v∗0〉L2

+
K1

2

∫

Ω

(−γ∇2u + 2v∗0u − f )2 dx +
K2

2

∫

Ω

u2 dx

+〈u, f 〉L2 +
1

2α

∫

Ω

(v∗0)
2 dx

+β
∫

Ω

v∗0 dx, (17)

and,

F∗
2 (v

∗
2) = sup

u∈V

{〈u, v∗2〉L2 − F2(u)}

=
1

2K2

∫

Ω

(v∗2)
2 dx. (18)

Observe that a critical point of J2 corresponds to a critical of the dual functional J∗1 . From the

convexity of J∗1 , such a critical point corresponds a to a global optimal one for J∗1 .

We have obtained results through finite differences combined with a MAT-LAB optimization tool.

For an extensive approach on finite differences schemes, please see reference [16].

For the corresponding solution u0, please see Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. Solution u0(x) for the primal formulation.

6. A duality principle for a related relaxed formulation concerning the vectorial approach in the
calculus of variations

In this section we develop a duality principle for a related vectorial model in the calculus of

variations.

Let Ω ⊂ R
n be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω = Γ.

For 1 < p < +∞, consider a functional J : V → R where

J(u) = G(∇u) + F(u)− 〈u, f 〉L2 ,
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where

V =
{

u ∈ W1,p(Ω;RN) : u = u0 on ∂Ω

}

and f ∈ L2(Ω;RN).

We assume G : Y → R and F : V → R are Fréchet differentiable and F is also convex.

Also

G(∇u) =
∫

Ω

g(∇u) dx,

where g : R
N×n → R it is supposed to be Fréchet differentiable. Here we have denoted Y =

Lp(Ω;RN×n).

We define also J1 : V × Y1 → R by

J1(u, φ) = G1(∇u +∇yφ) + F(u)− 〈u, f 〉L2 ,

where

Y1 = W1,p(Ω × Ω;RN)

and

G1(∇u +∇yφ) =
1

|Ω|

∫

Ω

∫

Ω

g(∇u(x) +∇yφ(x, y)) dx dy.

Moreover, we define the relaxed functional J2 : V → R by

J2(u) = inf
φ∈V0

J1(u, φ),

where

V0 = {φ ∈ Y1 : φ(x, y) = 0, on Ω × ∂Ω}.

Now observe that

J1(u, φ) = G1(∇u +∇yφ) + F(u)− 〈u, f 〉L2

= −
1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · (∇u +∇yφ(x, y)) dy dx + G1(∇u +∇yφ)

+
1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · (∇u +∇yφ(x, y)) dy dx + F(u)− 〈u, f 〉L2

≥ inf
v∈Y2

{

−
1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · v(x, y) dy dx + G1(v)

}

+ inf
(v,φ)∈V×V0

{

1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · (∇u +∇yφ(x, y)) dy dx + F(u)− 〈u, f 〉L2

}

= −G∗
1 (v

∗)− F∗

(

divx

(

1

|Ω|

∫

Ω

v∗(x, y) dy

)

+ f

)

+
1

|Ω|

∫

∂Ω

(

∫

Ω

v∗(x, y) dy

)

⊗ nu0 dΓ, (19)

∀(u, φ) ∈ V × V0, v∗ ∈ A∗, where

A∗ = {v∗ ∈ Y∗
2 : divyv∗(x, y) = 0, in Ω}.

Here we have denoted

G∗
1 (v

∗) = sup
v∈Y2

{

1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · v(x, y) dy dx − G1(v)

}

,
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where Y2 = Lp(Ω × Ω;RN×n), Y∗
2 = Lq(Ω × Ω;RN×n), and where

1

p
+

1

q
= 1.

Furthermore,

F∗

(

divx

(

1

|Ω|

∫

Ω

v∗(x, y) dy

)

+ f

)

−
1

|Ω|

∫

∂Ω

(

∫

Ω

v∗(x, y) dy

)

⊗ nu0 dΓ

= sup
(v,φ)∈V×V0

{

−
1

|Ω|

∫

Ω

∫

Ω

v∗(x, y) · (∇u +∇yφ(x, y)) dy dx − F(u) + 〈u, f 〉L2

}

, (20)

Therefore, denoting J∗3 : Y∗
2 → R by

J∗3 (v
∗) = −G∗

1 (v
∗)− F∗

(

divx

(

∫

Ω

v∗(x, y) dy

)

+ f

)

+
1

|Ω|

∫

∂Ω

(

∫

Ω

v∗(x, y) dy

)

⊗ nu0 dΓ,

we have got

inf
u∈V

J2(u) ≥ sup
v∗∈A∗

J∗3 (v
∗).

Finally, we highlight such a dual functional J∗3 is convex (in fact concave).

7. A primal dual variational formulation for a Burger’s type equation

In this section we develop a primal dual variational formulation for a Burger’s type equation.

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω

Consider the Burger’s type equation in u ∈ V given by

−γ∇2u + uux − f = 0, in Ω,

where γ > 0, f ∈ L2(Ω) and

V = {u ∈ W1,2(Ω) : u = u0 on ∂Ω}.

At this point we define the functional J : V × Y → R where

J(u, v∗3) =
1

2

∫

Ω

(−γ∇2u + v∗3u − f )2 dx +
1

2

∫

Ω

(v∗3 − ux)
2 dx.

Here Y = Y∗ = L2(Ω). Let

ϕ, ϕ1 ∈ C∞
c (Ω).

Observe that

δ2
uu J((u, v∗3), ϕ, ϕ) =

∫

Ω

(−γ∇2 ϕ + v∗3 ϕ)2 dx +
∫

Ω

(ϕx)
2 dx,

δ2
v∗3 v∗3

J((u, v∗3), ϕ1, ϕ1) =
∫

Ω

u2 ϕ2
1 dx +

∫

Ω

ϕ2
1 dx,

and denoting W = −γ∇2u + v∗3u − f , we have
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δ2
u v∗3

J((u, v∗3), ϕ, ϕ1) =
∫

Ω

Wϕ ϕ1 dx

+
∫

Ω

(−γ∇2 ϕ + 2v∗3 ϕ)u ϕ1 dx −
∫

Ω

ϕ1 ϕx dx. (21)

Therefore

1

2
δ2

uu J((u, v∗3), ϕ, ϕ) +
1

2
δ2

uu J((u, v∗3), ϕ, ϕ) + δ2
u v∗3

J((u, v∗3), ϕ, ϕ1)

=
1

2

∫

Ω

(−γ∇2 ϕ + 2v3 ϕ + ϕ1 u)2 dx

+
1

2

∫

Ω

(ϕx − ϕ1)
2 dx +

∫

Ω

Wϕ ϕ1 dx. (22)

Observe that at a critical point we have W = −γ∇2u + v∗3u − f = 0, in Ω.

From this and (22) we may infer that δ2 J is positive definite in a neighborhood of any critical point

of J.

Thus, we may also conclude that the functional J has a large region of convexity around any of its

critical points.

8. Conclusions

In this article we have developed convex dual and primal dual variational formulations suitable

for the local optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and

engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau type

equation. In a future research, we intend to extend such results for some models of plates and shells

and other models in the elasticity theory.
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