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Abstract

This article develops duality principles and related convex dual formulations suitable for the
local and global optimization of non-convex primal formulations for a large class of models in
physics and engineering. The results are based on standard tools of functional analysis, calculus
of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau
type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote
/[(—’yvz + K1) ' v* da
Q
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where 1y denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V? denotes the Laplace operator and for real constants Ko > 0 and K; > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = g/QVu-Vudx

+5 | @ =87 do = (u. ) 1)

Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).
Moreover, V = W&’z(Q) and we denote Y = Y* = L?(Q).
At this point we define F; : V XY - R Fh:V >Rand G:V xY — R by

K
Fi(u,vg) = V/Vu-Vudz‘—2/u2dx
Q
K

K
+/(—7V2u+2v8u—f)2 dx+2/u2 dx, (2)
2 Ja 2 Ja

K
Fafu) =32 [ o do+ (u e
2 Ja
and K
G(u,v):a/(u2—5+v)2 daz—i—/uQ dx.
2 Ja 2 Ja
We define also
Ji(u,v5) = Fi(u,vy) — Fa(u) + G(u,0),
J(u) = 7/ Vu-Vud:c—i-a/(uQ—ﬂ)Q dx — (u, f)re,
2 Ja 2 Jo
and Fy : [V*PP 5 R, F} :V* > R, and G* : [Y*]2 > R, by

FT (v3, 07, vg)
= sup{(u,vi +v3)r2 — Fi(u,v5)}

ueV
1 (v} + 05 + K1 (—9V2 + 205)f)°
B /( YV2 — K + Ky + K1 (—7V2 + 2v})2)

m/ﬂ (3)
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Fy(vz) = Slelp{<u ,V3) 12 — Fa(u)}
- 5 Lw—pra ()
and
G*(vi,v5) = sup {(u,v7)r2 — (v,v5) 2 — G(u,v)}
(u,0)EV XY
_ 1 (v})? 1 .
— _/ QUO:LKdm—F%/Q(UO)de
+8 [ v da (5)

if v5 € B* where
B*={vg Y™ : |lv5lleo < K/2}.

Define also
Va={ueV : [Jull < K3},

At ={ueV : uf>0ae. in Q},
m:‘/?mA+7

By ={v,eY* : —4V? - K 4+ K{(—/V? +2v})? > 0},

D} = {(vi,v3) €eY* xY* : —1/a+ 4K [u(v], v}, v5)%] + 100/ Ky < 0,V € B*},

where o1
u(vy,v5) = —,
2> Vg ”
o1 = (v} +v5 + K1(—V? +205) f)
and

0= (—7V? = K + K1 (—V? + 20})% + K),

D" ={vy €Y"; [luloo < Ka}
E*={v1 €Y" : |l < K5},

for some K3, K4, K5 > 0 to be specified,
Finally, we also define J; : [Y*]? x B* — R,

Ji(v3,07,v5) = —F7 (v3, 01, v5) + F5 (v3) — G¥(v1, vp).
Assume now K; = 1/[4(a +¢)K?2],

Ko>» K> Hla.X{K3, K4>K5a 1777057/8}'
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Observe that, by direct computation, we may obtain

82J* U*,’U*,U* 1 *
0

for v§ € B3.
Considering such statements and definitions, we may prove the following theorem.

Theorem 1.2. Let (03, 07,05) € ((D* x E*) N D3) x (B3 N B*) be such that
6.J1 (03,01, 9) = 0
and ug € V1, where
_ 0 0+ Ka( VR +2uh) f
Ky — K —yV2 + K1 (—yV2 +205)%

Under such hypotheses, we have

Uug

dJ(ug) =0,
so that
. . Kl 2 Ak 2
J(ug) = inf S J(u)+— [ (—yVu+ 205u— f)° dx
ueVy 2 Q

v3€D" | (v1,03)€E* xB*
= Ji(d3, 01, 0p)- (6)

— inf { sup J{‘(vé‘,vi‘,vé)}
(v

Proof. Observe that 6J5 (03, 07, 03) = 0 so that, since (03, 0]) € D3, 0§ € B; and J} is quadratic
in v3, we may infer that

J(E00.0) = S5
2
= sup J7 (03,07, v5)- (7)
(vi,v5)EE*xB*

Therefore, from a standard saddle point theorem, we have that

k[ ak Ak Ak : k(0 ok k%
‘]1 (U27U1?U0) = *lnf* sup Jl (UQ’UlaUO) :
V3EY™ | (vt ,05)EE* X B*

Now we are going to show that

(SJ(U(]) =0.
From e
9.J1 (03, 07, g) -0
ovs ’
we have "
—ug+ -2 =0
0 K2 ’
and thus
Uy = Koug
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From ax ax on
9J7 (03,07, 0)
S 00—,
ovy
we obtain 5
0] —
—Uup — = =0,
0T 205+ K
and thus
0] = —205up — Kug + f.

Finally, denoting
D = —V?ug + 205ug — f,

from e s
9.Ji (03, 07, g) -0
ovg ’
we have .
0
—2Dug +ui — 2 - B =0,
o)
so that

oy = a(ul — B — 2Duyg). (8)

Observe now that
OF + 0% + K (—y V24200 f = (Ko — K — AV + K1 (—yV? + 208)%)uo
so that

KQUO — 2@011,0 — KU() + f
= Koug — Kug — yV?ug + K1 (—=7V? 4 208) (—yV?ug + 205uo — f). (9)

The solution for this last system of equations (8) and (9) is obtained through the relations

and
—’}’VQUO + 2@8’&0 —f=D=0,
so that
6. (uo) = —yV?ug + 2a(uf — Bug — f =0
and

) {J(uo) + % /Q(—’)’VZUO + 205ug — f)? d:c} =0.
Moreover, from the Legendre transform properties
Fy (03,07, 09) = (uo, 03 4 01) 2 — Fi(uo, 0p),
F3(03) = (uo, 03) 12 — Fa(uo),

G*(01,09) = —(uo, 07) 2 — (0,95) L2 — G(u0,0),
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so that
= Fi(uo, %) — Fa(uo) + G(ug,0)
= J(’LLO) (10)

Observe now that

Ak Ak AX

Jluo) = i (%5, 0, %)

K
< V/Vu-Vudx—/lﬂd:ﬂ
2 Ja 2 Jo
K, 2 A~ 2 A~k
5 (=yV7u + ogu — f)* dx + (u, 07 (2 —(u, f) 12
Q
1 (v
_2/2%+K _/ o) d:c—ﬁ/vodw
< W/Vu-Vuda:—(u,ﬁLz
K
+21/(—7V2u+17§u—f)2 dx
Q

1 *\2
+ sup {+<u,@I>L2 - / _(i)” dx

*
(v} wg)ED* x B* 2 Ja2v5 + K

_/ d—/vo dx—ﬁ/vodm}

= J()+2/Q( YV2u + 205u — f)? d, (11)

Yu € V7.
Hence, we have got

J(up) = inf {J(u) + £ /Q(—7V2u—|— 205u — f)? d;z;}.

ueVy 2

Joining the pieces, we have got

J(ug) = inf {J(u) + % / (—yV2u + 205u — f)? dl‘}
Q

ueV

= inf sup Ji (v, v1,vp)
viEY* (vi,vE)EE* X (B*NB,(9))
= ‘]1 (U;,’(A)ik,@o) (12)

The proof is complete.
O

2 Another duality principle suitable for a local opti-
mization of the primal formulation

In this section we develop a second duality principle which the dual formulation is concave.
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We start by describing the primal formulation.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = ;/QVu-Vudx

+5 | =8 da = (u. )1 (13)

Here v >0, >0, 3> 0and f € L2(Q) N L>®(Q).
Moreover, V' = W01’2(Q) and we denote Y = Y* = L?(Q).
Define the functionals 7 : V xY — R, Fy: V — R by

Fuu,0f) = g/QVu-Vud:r—i-(uQ,v’S}Lz

K K
=1 / (—V2u+ 2vfu — f)? do + =2 / (V2u)? dx
2 Ja 2 Ja

1
~tufe = 5o [ (@) da

—B/QQJS dz, (14)

and

Fy(u) = ?/gz(v? w)? dz.

We define also F} : [Y*]> = R and Fy : Y* — R, by
Fy (v3, vp)
= sup{(u,v3) 2 — F1(u,vp)}

ueV
_ 1 (3 + f — K (V2 +209)f)°
q KoVt — V2 4+ 20f — K (—y V2 + 20%)?
K1 S 7 (15)
and,
Fi(v2) = sup{(u,v3)r2 — Fo(u)}
_ 21K2 /Q (”éf da. (16)

Here we denote
B*={v5€Y" : 205l < K/2},

for an appropriate real constant K > 0.
Furthermore, we define

D' = {u3 €Y : [[us]loc < 5Ka/4}
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and J; : D* x B* =+ R, by
Ji(v3,v5) = —F7 (v3, vp) + F3 (v3).
Assuming 0 < aw < 1 (through a re-scaling, if necessary) and
KQ > K1 > K> max{||f|!oo,04757% 1}

by directly computing 62.J5 (v}, vy) we may easily obtain that for such specified real constants,
J{ in concave in (v3,v§) on D* x B*.

2.1 The main duality principle and a concerning convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (03,7;) € D* x B* be such that
d.J7(93,95) =0
and ug € V be such that
o = O3 (53)
ol
Under such hypotheses, we have
5J(u0) = 0,

and

. 1 03 2\’
J(ug) = 52‘5{‘7(“) + 2K2/Q (_v2 — Ko(—V u)) daz}
= sup  Jy(vg,vp)

(v3,05)ED* x B*
= Ji(, ). (17)

Proof. Observe that 6J7(v3,05) = 0 so that, since J; is concave in (v3,v5) on D* x B*, we
obtain
k[ Ak Ak *( k%
Ji(03,9) = sup Ji (vg, vp)-
(v3,v§)ED* xB*

Now we are going to show that

(5J(’LLO) =0.
From o
9.7 (03, 05) -0
ovs ’
and s
OF;(03) _
ov;
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we have OFH (53, v7)
1 Y2, Y
_ZT1\"2» M0/ -0

31); +UQ

and
o5 — KoV4ug = 0.

Observe now that denoting
H (v3,vp,u) = (u,v3) 12 — F1(u, vg),

there exists u € V such that
OH (03,9, 1)

ou =0,
and
FY (03, 00) = H (03, 09,4),
so that
OF} (03, 73) 0H (03,05, )
s - o}
O0H (03,05, w) O
* ou 8_125
= u (18)

Summarizing, we have got
_ OFy (03, 0)

=1u.
*
ov;

Up

Also, denoting
A(ug, 05) = —yV?ug + 205uo — f,

from L
aH(UQ*v US? UO)
—— = 00—,
ou
we have
— (= Vg + 20%ug — f — K1(=yV? + 208) A(uo, 0) — 05 + KaVug) = 0,
so that

A(UO, @3) — Kl(—nyQ + 2@3)14(11,0, @8) =0. (19)
From such results, we may infer that
Alug, 05) = —yV?ug + 205 — f =0, in Q.
Moreover, from
0J1(55. %) _
dvg ’

we have .

—KlA(uo,@g)Quo — U—O + ’U,(2) — ,8 =0,
[0

9
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so that

From such last results we get
—yV2ug + 2a(ug — B)ug — f =0,

and thus
5J(’U,Q) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
FY(03,99) = (uo,03) 2 — F1(uo, Bp),
F5(03) = (uo, 93) 12 — F2(uo),
so that
Ji (93, 75)
= —F{(d3,9) + F5(03)
F(uo, 9g) — F2(uo)
J(’LL(]) (20)

Finally, observe that

Ji(v3,v5) < —(u,v3) 2 + Fi(u,vg) + F3 (v3),
Yu eV, vy € D", v € B*.
Thus, we may obtain

J1 (03, %)

< —(u,03)r2 + /Vu Vu dz + (u?,08) 12
K, 2 A~k K [~k
5 (—yV?u + 205u — f)? dz + Fa(u) + F5(03) — (u, f) 12
Q
@ )2 dx—ﬁ/f) dx

< —(u,03)r2 + /Vu Vu dz + (u?,08) 12

+F(u) + Fy (03) — (u, f) 12

——/ dx—,@/ﬁg dx

Q

<

sup {—(u, V3) 2 + 1/ Vu - Vu dx + (u?,98) 12
,U*EY* 2

-I'FQ +F2(U2) U f 12

— [ @) de—B | v da
2o J o' da =5 [ i}

= J(u) + Fo(u) — (u,03) 2 + FE(8), Yue V. (21)

10
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Summarizing, we have got
J1(03,05) < J(u) + Fo(u) — (u, 03) 12 + F5(03), Vu € V. (22)

Joining the pieces, from a concerning convexity in u, we have got

J(up) = grel‘f/{J(u) + 2;(2/9 <_”é2 —1(2(—v2u)>2 dx}

= sup  Jy(vg,vp)
(v3,vg)eD* xB*

= Ji(0g, %) (23)

The proof is complete.

3 A convex primal dual for a local optimization of
the primal formulation

In this section we develop a convex primal dual formulation corresponding to a non-convex
primal formulation.

We start by describing the primal formulation.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f).

For the primal formulation, consider a functional J : V' — R where

J(u) = fy/ Vu-Vu dz
2 Ja
a
+5 [ =8 do = (u. 1o (24)
Here v > 0, >0, B> 0 and f € L?(2) N L>(Q).
Moreover, V = WOI’Q(Q) and we denote Y = Y* = L2(Q).
Define the functional J; : V x [Y*]2 — R, by

TH(u, 0l 00) = g/ﬂvu.vmﬂu%gm

K K
—i-?l /Q(—qu + 20%u — f)? da + ?1 /Q(vf; —a(u® - B))* dx
1
~tufe = o [ (@) da
—B/Qva‘ dx. (25)

We define also
B*={vg € Y™ : |2v5]lc0 < K/2},

11
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for an appropriate real constant K > 0.
Furthermore, we define
D" = {u; €V* : vl < Ko}
AT ={ueV : u f>0, ae. in Q},
Vo={ueV : Julo < Ky}

for an appropriate real constant K3 > 0 and

Vi=A"NV,.

2

Now observe that denoting ¢; = vi — a(u” — ), we have

PR g (992 + 202 + dKcr%
—2K ap; — V2 + 20} (26)
and

()2 Ky 4 4K u?. (27)
3

Denoting ¢ = —yV2u + 2viu — f we have also that

62J{‘(u, V3, 03)

Dudv? = Ki(=29V?u 4+ 2viu) + 2K1¢ — 2K 0. (28)

In such a case, we obtain

et {82Jf<u, >} 0P (u, vy, v8) 02T (u, vy, v8) <a2Jf<u, >>
Oudvs d(v3)? ou? Ovi0u
= K}(—V?+2u3 + 4au?)?
+H(=V? + 205) O (K1)
—4K3o% — 4K [(—qu + 2ugu) — 2au]
—2K7a (1 + 4u?). (29)

Observe that at a critical point
=0

so that we may set the non-active restriction
Cf = {(u,v3) € Vi x D* = (p)? = (7V2u + 2v5u — f)* < eu?, in Q}

for a small parameter 0 < ¢ < 1.
Now we are going to prove that C7 is a convex subset of Vi x D*.
For a K7 > 0 observe that

is equivalent to
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which is equivalent to

V? + K2 — /K7 +¢|u| <0, in Q.
Define

H(u,v}) = V@2 + Kru? — /K7 + ¢ |ul.

Observe that since for (u,v;) € Vi x D* we have u f > 0 in €, we have also that

- K7+e¢ ]u\

is convex on V; x D*.
Moreover, for K7 > 0 sufficiently large, the function

. /SOQ + K7U2

is also convex on V; x D*.

Summarizing, H(u,v3) is convex on Vi x D* so that from such results, we may infer that
C7 is a convex set.

On the other hand, at a critical point we have also ¢; = 0. Now define the non-active
constraint

Cs ={(u,v}) € Vi x D* : ¢? = (vi —a(u® - B))* <e, in Q}.

Similarly as it was made for C] we may prove that C3 is convex in Vj x D*.
For a function (or indeed an operator or matrix of functions in a more general context) M
to be specified define

C3 ={(u,v3) € Vi x D* : Vdalu| > \/|[My +~V?| and 203 + My > €1},

for some appropriate small constant €1 > 0.
Since for (u,v3) € Vi x D* we have v f > 0 in €, it is clear that C is convex on Vj x D*.
Observe that if (u,v3) € Cf, then

dau?® > My + 7V2
and
27);: + My > ey

so that
V2 + 2035 + dau?® > .

At this point, we define the convex set C* = CT N Co N C3
Finally, observe that for 0 < ¢ < €1 < 1, we have that

det{éﬁ v3 Jik (u7 ’U;, US)}

is positive definite on C* x B*
From such results we may infer that J; is convex in (u, v3) and concave in v§ on C* x B*.
With such results in mind, we may prove the following theorem.

13
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Theorem 3.1. Let (ug,03,7;) € C* x B* be such that

Under such hypotheses, we have

dJ(ug) = V2 + 2a(u% —Blup—f=0

and

J(up) = inf {J(u) ) /Q(—W% +2a(u? — B)u — f)? dac}

ueVy

2

sup { inf Jf(u,v}f,vg)}
vy EB* (u,v3

WE)EVI X D*

= J{(ug, 03, 05)-

Proof. The proof that

and

(SJ(U()) =0

J(UO) = Jf(u07 ﬁ?’:v @8)

may be done similarly as in the previous sections.
Observe that J} is convex in (u,v3) and concave in vj on C* x B*, where C* and B* are

convex sets.

From such results and Min-Max Theorem, we may infer that

J (up)

Finally, observe that

= Ji (up, 03,05) = sup { inf Jf(u,vf;ﬁ,vé)} .
(u,03

vieB* ((u,w])EVIxD*

Ji (o, 03,05) < Ji(u,v3,0;),Vu € Vi,v; € D*.

In particular for v = a(u? — 3) we obtain

Ji (uo, 03, 05) <

IN

7/Vu-Vud9:+<u2 0p) 1.2
2 Ja
@*)2daz—6/ﬁ(’§dm
Q
K1

—i-? / (—’yV2u + 204(u2 - Bu — f)2 dx — (u, )2
0

sup { /Vu Vu dz + (u?,v]) 2

vy EY™

—/ vy) dw—ﬂ/vod:ﬂ

A0 [ ATk 20ta - B 7 e~ 1

K
2

J(u) + — /Q(—’)/VQU + 2a(u® — B)u — f)? dx,Yu € V4.

14

(31)
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Joining the pieces, we have got

J(up) = inf {J(u) ) /Q(—W2u + 2a(u? — B)u — f)? da:}

ueVy 2

= sup inf J7 (u, v3,v5)
vEEB* (u,v3)eVLxD*

= Ji(uo, 3, 0p). (33)

The proof is complete. O

4 Conclusion

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.
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