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Abstract

This article develops duality principles and related convex dual formulations suitable for the
local and global optimization of non-convex primal formulations for a large class of models in
physics and engineering. The results are based on standard tools of functional analysis, calculus
of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau
type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote
/[(—’yvz + K1) ' v* da
Q
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sitmply by
*\2
/ GO
oYV +K
where 1y denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V? denotes the Laplace operator and for real constants Ko > 0 and K; > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = g/QVu-Vudx

+5 | @ =87 do = (u. ) 1)

Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).
Moreover, V = W&’z(Q) and we denote Y = Y* = L?(Q).
At this point we define F; : V XY - R Fh:V >Rand G:V xY — R by

K
Fi(u,vg) = V/Vu-Vudz‘—2/u2dx
Q
K

K
+/(—7V2u+2v8u—f)2 dx+2/u2 dx, (2)
2 Ja 2 Ja

K
Fafu) =32 [ o do+ (u e
2 Ja
and K
G(u,v):a/(u2—5+v)2 daz—i—/uQ dx.
2 Ja 2 Ja
We define also
Ji(u,v5) = Fi(u,vy) — Fa(u) + G(u,0),
J(u) = 7/ Vu-Vud:c—i-a/(uQ—ﬂ)Q dx — (u, f)re,
2 Ja 2 Jo
and Fy : [V*PP 5 R, F} :V* > R, and G* : [Y*]2 > R, by

FT (v3, 07, vg)
= sup{(u,vi +v3)r2 — Fi(u,v5)}

ueV
1 (v} + 05 + K1 (—9V2 + 205)f)°
B /( YV2 — K + Ky + K1 (—7V2 + 2v})2)

m/ﬂ (3)
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Fy(vy) = SIEJP{W ,Ua) 2 — Fa(u)}
- 5 Lw—pra ()
and
G*(vi,v9) = sup {{u,vi)p2 — (v, vp)r2 — G(u,v)}
(u,0)EV XY
1) 1 ,
— _/ QUO:LKdm—F%/Q(UO)de
—i—B/ vy dx (5)

if v5 € B* where
B*={vg Y™ : |lv5lleo < K/2}.

Define also
Va={ueV : [Jull < K3},

At ={ueV : uf>0ae. in Q},
m:‘/?mA+7

By ={v,eY* : —4V? - K 4+ K{(—/V? +2v})? > 0},

D} = {(vi,v3) €eY* xY* : —1/a+ 4K [u(v], v}, v5)%] + 100/ Ky < 0,V € B*},

where o1
u(vy,v5) = —,
2: 0 "

01 = (v + v + K1 (—yV? +208) f)
and
0= (—7V? = K + K1 (—V? + 20})% + K),
D* ={v5 € Y*; [[v3]loc < Ka}
E*={vi €Y" : ||v]]leo < K5},

for some K3, K4, K5 > 0 to be specified,
Finally, we also define J; : [Y*]? x B* — R,

Ji(v3,07,v5) = —F7 (v3, 01, v5) + F5 (v3) — G¥(v1, vp).
Assume now K; = 1/[4(a +¢)K?2],

Ko>» K> Hla.X{K3, K4>K5a 1777057/8}'
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Observe that, by direct computation, we may obtain

82J* U*,’U*,U* 1 *
0

for v§ € B3.
Considering such statements and definitions, we may prove the following theorem.

Theorem 1.2. Let (03, 07,05) € ((D* x E*) N D3) x (B3 N B*) be such that
6.J1 (03,01, 9) = 0
and ug € V1, where
_ 0 0+ Ka( VR +2uh) f
Ky — K —yV2 + K1 (—yV2 +205)%

Under such hypotheses, we have

Uug

dJ(ug) =0,
so that
. . Kl 2 Ak 2
J(ug) = inf S J(u)+— [ (—yVu+ 205u— f)° dx
ueVy 2 Q

v3€D" | (v1,03)€E* xB*
= Ji(d3, 01, 0p)- (6)

— inf { sup J{‘(vé‘,vi‘,vé)}
(v

Proof. Observe that 0.J; (03,07, 05) = 0 so that, since (03,07) € D3,05 € By and J{ is quadratic
in v, we may infer that

J(E00.0) = .66
2
= sup J1 (03,07, v5)- (7)
(v} ,v5)EE*xB*

Therefore, from a standard saddle point theorem, we have that

k[ ak Ak Ak : k(K * ok
‘]1 (U27U1?U0) = *lnf* sup Jl (UQ’UlaUO) :
V3EY™ | (vt ,05)EE* X B*

Now we are going to show that

(SJ(U(]) =0.
From e
9.Ji (03, 07, g) -0
ovs ’
we have "
—ug+ -2 =0
0 K2 ’
and thus
Uy = Koug
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From ax ax on
9J7 (03,07, 0)
S 00—,
ovy
we obtain 5
0] —
—Uup — = =0,
0T 205+ K
and thus
0] = —205up — Kug + f.

Finally, denoting
D = —V?ug + 205ug — f,

from e s
9.Ji (03, 07, g) -0
ovg ’
we have .
0
—2Dug +ui — 2 - B =0,
o)
so that

oy = a(ul — B — 2Duyg). (8)

Observe now that
OF + 0% + K (—y V24200 f = (Ko — K — AV + K1 (—yV? + 208)%)uo
so that

KQUO — 2@011,0 — KU() + f
= Koug — Kug — yV?ug + K1 (—=7V? 4 208) (—yV?ug + 205uo — f). (9)

The solution for this last system of equations (8) and (9) is obtained through the relations

and
—’}’VQUO + 2@8’&0 —f=D=0,
so that
6. (uo) = —yV?ug + 2a(uf — Bug — f =0
and

) {J(uo) + % /Q(—’)’VZUO + 205ug — f)? d:c} =0.
Moreover, from the Legendre transform properties
Fy (03,07, 09) = (uo, 03 4 01) 2 — Fi(uo, 0p),
F3(03) = (uo, 03) 12 — Fa(uo),

G*(01,09) = —(uo, 07) 2 — (0,95) L2 — G(u0,0),
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so that
= Fi(uo, %) — Fa(uo) + G(ug,0)
= J(’LLO) (10)

Observe now that

Ak Ak AX

Jluo) = i (%5, 0, %)

K
< V/Vu-Vudx—/lﬂd:ﬂ
2 Ja 2 Jo
K, 2 A~ 2 A~k
5 (=yV7u + ogu — f)* dx + (u, 07 (2 —(u, f) 12
Q
1 (v
_2/2%+K _/ o) d:c—ﬁ/vodw
< W/Vu-Vuda:—(u,ﬁLz
K
+21/(—7V2u+17§u—f)2 dx
Q

1 *\2
+ sup {+<u,@I>L2 - / _(i)” dx

*
(v} wg)ED* x B* 2 Ja2v5 + K

_/ d—/vo dx—ﬁ/vodm}

= J()+2/Q( YV2u + 205u — f)? d, (11)

Yu € V7.
Hence, we have got

J(up) = inf {J(u) + £ /Q(—7V2u—|— 205u — f)? d;z;}.

ueVy 2

Joining the pieces, we have got

J(ug) = inf {J(u) + % / (—yV2u + 205u — f)? dl‘}
Q

ueV

= inf sup Ji (v, v1,vp)
viEY* (vi,vE)EE* X (B*NB,(9))
= ‘]1 (U;,’(A)ik,@o) (12)

The proof is complete.
O

2 Another duality principle suitable for a local opti-
mization of the primal formulation

In this section we develop a second duality principle which the dual formulation is concave.
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We start by describing the primal formulation.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = ;/QVu-Vudx

+5 | =8 da = (u. )1 (13)

Here v >0, >0, 3> 0and f € L2(Q) N L>®(Q).
Moreover, V' = W01’2(Q) and we denote Y = Y* = L?(Q).
Define the functionals 7 : V xY — R, Fy: V — R by

Fuu,0f) = g/QVu-Vud:r—i-(uQ,v’S}Lz

K K
=1 / (—V2u+ 2vfu — f)? do + =2 / (V2u)? dx
2 Ja 2 Ja

1
~tufe = 5o [ (@) da

—B/QQJS dz, (14)

and

Fy(u) = ?/gz(v? w)? dz.

We define also F} : [Y*]> = R and Fy : Y* — R, by
Fy (v3, vp)
= sup{(u,v3) 2 — F1(u,vp)}

ueV
_ 1 (3 + f — K (V2 +209)f)°
q KoVt — V2 4+ 20f — K (—y V2 + 20%)?
K1 S 7 (15)
and,
Fi(v2) = sup{(u,v3)r2 — Fo(u)}
_ 21K2 /Q (”éf da. (16)

Here we denote
B*={v5€Y" : 205l < K/2},

for an appropriate real constant K > 0.
Furthermore, we define

D' = {u3 €Y : [[us]loc < 5Ka/4}
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and J; : D* x B* =+ R, by
Ji(v3,v5) = —F7 (v3, vp) + F3 (v3).
Assuming 0 < aw < 1 (through a re-scaling, if necessary) and
KQ > K1 > K> max{||f|!oo,04757% 1}

by directly computing 62.J5 (v}, vy) we may easily obtain that for such specified real constants,
J{ in concave in (v3,v§) on D* x B*.

2.1 The main duality principle and a concerning convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (03,7;) € D* x B* be such that
d.J7(93,95) =0
and ug € V be such that
o = O3 (53)
ol
Under such hypotheses, we have
5J(u0) = 0,

and

. 1 03 2\’
J(ug) = 52‘5{‘7(“) + 2K2/Q (_v2 — Ko(—V u)) daz}
= sup  Jy(vg,vp)

(v3,05)ED* x B*
= Ji(, ). (17)

Proof. Observe that 6J7(v3,05) = 0 so that, since J; is concave in (v3,v5) on D* x B*, we
obtain
k[ Ak Ak *( k%
Ji(03,9) = sup Ji (vg, vp)-
(v3,v§)ED* xB*

Now we are going to show that

(5J(’LLO) =0.
From o
9.7 (03, 05) -0
ovs ’
and s
OF;(03) _
ov;
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we have OFH (53, v7)
1 Y2, Y
_ZT1\"2» M0/ -0

31); +UQ

and
o5 — KoV4ug = 0.

Observe now that denoting
H (v3,vp,u) = (u,v3) 12 — F1(u, vg),

there exists u € V such that
OH (03,9, 1)

ou =0,
and
FY (03, 00) = H (03, 09,4),
so that
OF} (03, 73) 0H (03,05, )
s - o}
O0H (03,05, w) O
* ou 8_125
= u (18)

Summarizing, we have got
_ OFy (03, 0)

= 1.
*
ov;

Up

Also, denoting
A(ug, 05) = —yV?ug + 205uo — f,

from L
aH(UQ*v US? UO)
—— = 00—,
ou
we have
— (= Vg + 20%ug — f — K1(=yV? + 208) A(uo, 0) — 05 + KaVug) = 0,
so that

A(UO, @3) — Kl(—nyQ + 2@3)14(11,0, @8) =0. (19)
From such results, we may infer that
Alug, 05) = —yV?ug + 205 — f =0, in Q.
Moreover, from
0J1(55. %) _
dvg ’

we have .

—KlA(uo,@g)Quo — U—O + ’U,(2) — ,8 =0,
[0

9
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so that

From such last results we get
—yV2ug + 2a(ug — B)ug — f =0,

and thus
5J(’U,Q) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
FY(03,99) = (uo,03) 2 — F1(uo, Bp),
F5(03) = (uo, 93) 12 — F2(uo),
so that
Ji (93, 75)
= —F{(d3,9) + F5(03)
F(uo, 9g) — F2(uo)
J(’LL(]) (20)

Finally, observe that

Ji(v3,v5) < —(u,v3) 2 + Fi(u,vg) + F3 (v3),
Yu eV, vy € D", v € B*.
Thus, we may obtain

J1 (03, %)

< —(u,03)r2 + /Vu Vu dz + (u?,08) 12
K, 2 A~k K [~k
5 (—yV?u + 205u — f)? dz + Fa(u) + F5(03) — (u, f) 12
Q
@ )2 dx—ﬁ/f) dx

< —(u,03)r2 + /Vu Vu dz + (u?,08) 12

+F(u) + Fy (03) — (u, f) 12

——/ dx—,@/ﬁg dx

Q

<

sup {—(u, V3) 2 + 1/ Vu - Vu dx + (u?,98) 12
,U*EY* 2

-I'FQ +F2(U2) U f 12

— [ @) de—B | v da
2o J o' da =5 [ i}

= J(u) + Fo(u) — (u,03) 2 + FE(8), Yue V. (21)

10
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Summarizing, we have got
J{ (05, 05) < J(u) + Fo(u) — (u, 03) 12 + F5(03), Yu € V. (22)

Joining the pieces, from a concerning convexity in u, we have got

J(ug) = gg’/_{J(u)jLﬂl{Z/Q <_@é2 —KQ(—V%L)>2 d:c}

* * *
= sup Ji (03, v5)
(v3,v§)ED* xB*

= Ji(93,7)- (23)

The proof is complete.
O

3 A third duality principle also suitable for the pri-
mal formulation local optimization

In this section we establish one more duality principle and related convex dual formulation
suitable for a local optimization of the primal variational formulation.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.

For the primal formulation, we define V = VVO1 2(Q)) and consider a functional J : V — R
where

J(u) = 7/Vu-Vudx+a/(u2—B)2 dx
2 Ja 2 Ja
—(u, f) 2. (24)
Here we assume f € L?(f), and define Y = Y* = L%(Q),
Vo={ueV : ||ul|ew < K},
At ={ueV : u f>0, ae. in Q},

and
Vi=A" NV,

for an appropriate constant K4 > 0 to be specified.
Define also the functionals F} : V x [Y]? 5 R and G : Y — R by
Fi(u,v3,v5) = g/ Vu - Vu dz 4 (u?,v)) 12
Q

—(u, f)r2 + % /Q(v§u — K3)2 dzx, (25)

and
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for appropriate positive constants K1, K3, K4 to be specified.
Moreover, define Fy : [Y*]2 - R and G* : Y* — R, by

Fy(v3,v9) = sup{—Fa(u,v3,v5)}
ueV
_ 1/ (f + K1 K3v5)?
Q

— dx
—yV2 4+ 208 + K1 (v3)?

2

K
——I/Kgdz
2 Ja

G*(vg) = sup{(v,vp)2 — G(v)}

veY
= 5 /Q(UO) d:L’-i-B/QUO dzx. (26)

and

Furthermore, we define
B*={vz;eY" : ui(v3) € i},

where K
¥ _ 3
ul('U3) - ,Ug .
Define also

Cr={w €Y : |ligllee < K2}
for an appropriate real constant Ks > 0 to be specified, and J} : B* x C] — R by
Ji(v3,vp) = —F3 (v3,v5) — G™(vp).-

Moreover, we assume K; > Ky > max{l, K3, K4, ®, 53,7, || fllc }-
By directly computing §2.J; (v3,v3) denoting

A=-KKs3,

B =2K,v3,

p =V + 205 + K1 (v5)?,
o1 = f+ K1 K33,

Y1
U=,
¥
we may also obtain,
0% J3 (v3, v5)
9(v3)?
A —uB)?
P

K1 (K1K3(3u? — duuy + u?) — u?ug (—yV? + 208)u1)
K1K2 + ui (—yV?2 + 208wy
K{H, + K Hy
K1K3 4 ui(—yV? — 203)uq)

12
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on B* x CT.
where K
ur = U1(U§) = UT*;’
Hy = K2(3u? — duuy + u?),
and

Hy = u?[(—yV? + 208 )ui]uy.
At a critical point we have Hy = 0 and
Hy = u} fug >0, a.ein Q.
With such results, for a sufficiently small €; > 0, we may define the restrictions
Cyy ={vs € B* @ [Hi(v3,v)] < 51(1);):)2 in Q}

and
(C3)vs = {v3 € B* : Ha(v3,v5) > 0in Q}.

At this point, we prove that (C),s is a convex set.
Firstly, fixing v§ € C] observe that for K7 sufficiently large

|[H1(v3,05)] — e1(v5)? + K7(v5)?

is convex in v3 on B*.
Observe also that

[H1 (v5, 05)| < e1(v5)”

is equivalent to
| Hi(v5,v5)] — €1(v3)” + K7 (v3)? < K7 (v3)%,

which is equivalent to

VI (05, 0)] — e1(65)2 + K7 (05)2 < v/Klu|

Moreover, this last inequality is equivalent to

H(05,05) = /| Ha (05 0)] — 21(03)2 + K7 (03)? — v/Frluj] < 0,

Since for v € B* we have vif > 0, a.e. in Q, we may obtain that —/K7|v}| is a convex
function on B*, so that Hs is convex in v on B*

From such results, we may easily infer that C,x is a convex set, Vv; € C7.

Similarly, we may prove that (C3),s is a convex set, Vvg € C7.

On the other hand, clearly we have

0%J} (v3, vg)

<0in B* x C¥.
O(v)? !

13
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3.1 A concerning duality principle and a related convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 3.1. Let (03,95) € (Cs)az x CF be such that
6.J7 (d3,05) =0

and ug € V1 be such that

U — ﬂ _ f+K1K3f}§
07 o T A2 4200 + Ky (03)2

Assume also
ug # 0, a.e. in 1.

Under such hypotheses, denoting Bf = Cy: N (C3)s;, we have
dJ(ug) =0,
taup — K3 =0, a.e. in §Q,
and

J(ug) = inf {J(u)—l—lgl /Q (030 — K)? dx}

ueVy
= inf < sup Jj(v3,vp)
v3EeB] {vgec'f
= Ji(03,%)- (28)
Proof. Observe that 6.Jf(05,73) = 0 so that, since o5 € C* and 05 € Cyg, from the results in
the previous lines, for a sufficiently small e; > 0, we have that

T (05,95) = nf (05, 65) = sup J(05,05).
0 1

Consequently, from this and the Saddle Point Theorem, we have

Ji(83,65) = in {sup Ji‘(v§,v8)}-

* *
v3EBT | vieCs

Now we are going to show that
oJ (UO) =0.

Firstly, observe that

Fy (v3,vg) = sup{—F3(u, v3,v5)}.
ueV

Denoting
H(U§7 US’ u) = —F(u, v;’;’ US)?

14
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there exists « € V such that
OH (03,9, 1)

ou =0,
and
F{(03,9) = H(03, 09, 1),
so that
Wl = OFy (03,77) _ 0H (03,05, 1)
ovg v
+8H(ﬁ§,®§,ﬁ) ot
ou ovg
= % (29)

Summarizing, we this last equation is satisfied through the relation
ug = U.

Hence from the variation of J; in v, we obtain

so that
v = alug — B).
On the other hand, from the variation of Ji in v3, we have
OFy (03, 05)
ovs
O0H (03,05, 1) Ou

Ky (0fug — K
1850 = KaJuo + =5 == 5

= —Kl(@§u0 — K3)U0
= 0. (30)
From such results, since
ug # 0, a.e. in Q,

we get
O3up — K3 =0, a.e. in Q.

Consequently, from such last results and from

. f—}—KlKg@;
—yV2 + 20§ + Ky (05)?

Uuo

we obtain
—~vV2uy + 2upup + Kl(@g)zu() — f— K1 K303
= —Vuy + 2a(uf — B)ug — f
= 0J(uo)
~ 0. (31)

15
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Summarizing,

5J(U0) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
FY (03, 09) = —F1(uo, 03, 0p),

G*(05) = (ud, v5) 12 — G(up),

so that
J1 (%)
—Fy(03,9) — G" ()
= J(up). (32)
Finally, observe that
Jik(v;vvg) <F1(U7U37UO) G*(U6)7
Vu e Vi, vy € B, vy € CY.
Therefore,
Ji(03,89) < sup {Fy(u,03,v5) — G*(vg)}
v eCT
K
= Jw+ / (50 — K3)? dx, (33)
Q
Yu € V.
Summarizing, we have obtained
. Kl ~ 2
= f — su— K3)* d
sy = jng {5 [ (G50 2 as
= inf sup Ji (va, v
v3 €8] {ugecl* b 0)}
= Ji(d3,0p). (34)
The proof is complete.
O

4 Conclusion

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.

16
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