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Abstract

This article develops duality principles and related convex dual formulations suitable for the
local and global optimization of non-convex primal formulations for a large class of models in
physics and engineering. The results are based on standard tools of functional analysis, calculus
of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau
type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote∫
Ω

[(−γ∇2 +KId)−1v∗]v∗ dx
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simply by ∫
Ω

(v∗)2

−γ∇2 +K
dx,

where Id denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently

clear.
Finally, ∇2 denotes the Laplace operator and for real constants K2 > 0 and K1 > 0, the

notation K2 � K1 means that K2 > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.
Let Ω ⊂ R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
For the primal formulation, consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω

(u2 − β)2 dx− 〈u, f〉L2 . (1)

Here γ > 0, α > 0, β > 0 and f ∈ L2(Ω) ∩ L∞(Ω).
Moreover, V = W 1,2

0 (Ω) and we denote Y = Y ∗ = L2(Ω).
At this point we define F1 : V × Y → R, F2 : V → R and G : V × Y → R by

F1(u, v∗0) =
γ

2

∫
Ω
∇u · ∇u dx− K

2

∫
Ω
u2 dx

+
K1

2

∫
Ω

(−γ∇2u+ 2v∗0u− f)2 dx+
K2

2

∫
Ω
u2 dx, (2)

F2(u) =
K2

2

∫
Ω
u2 dx+ 〈u, f〉L2 ,

and

G(u, v) =
α

2

∫
Ω

(u2 − β + v)2 dx+
K

2

∫
Ω
u2 dx.

We define also
J1(u, v∗0) = F1(u, v∗0)− F2(u) +G(u, 0),

J(u) =
γ

2

∫
Ω
∇u · ∇u dx+

α

2

∫
Ω

(u2 − β)2 dx− 〈u, f〉L2 ,

and F ∗1 : [Y ∗]3 → R, F ∗2 : Y ∗ → R, and G∗ : [Y ∗]2 → R, by

F ∗1 (v∗2, v
∗
1, v
∗
0)

= sup
u∈V
{〈u, v∗1 + v∗2〉L2 − F1(u, v∗0)}

=
1

2

∫
Ω

(
v∗1 + v∗2 +K1(−γ∇2 + 2v∗0)f

)2
(−γ∇2 −K +K2 +K1(−γ∇2 + 2v∗0)2)

dx

−K1

2

∫
Ω
f2 dx, (3)
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F ∗2 (v∗2) = sup
u∈V
{〈u, v∗2〉L2 − F2(u)}

=
1

2K2

∫
Ω

(v∗2 − f)2 dx, (4)

and

G∗(v∗1, v
∗
0) = sup

(u,v)∈V×Y
{〈u, v∗1〉L2 − 〈v, v∗0〉L2 −G(u, v)}

=
1

2

∫
Ω

(v∗1)2

2v∗0 +K
dx+

1

2α

∫
Ω

(v∗0)2 dx

+β

∫
Ω
v∗0 dx (5)

if v∗0 ∈ B∗ where
B∗ = {v∗0 ∈ Y ∗ : ‖v∗0‖∞ ≤ K/2}.

Define also
V2 = {u ∈ V : ‖u‖∞ ≤ K3},

A+ = {u ∈ V : u f ≥ 0 a.e. in Ω},

V1 = V2 ∩A+,

B∗2 = {v∗0 ∈ Y ∗ : −γ∇2 −K +K1(−γ∇2 + 2v∗0)2 > 0},

D∗3 = {(v∗1, v∗2) ∈ Y ∗ × Y ∗ : −1/α+ 4K1[u(v∗1, v
∗
2, v
∗
0)2] + 100/K2 ≤ 0,∀v∗0 ∈ B∗},

where
u(v∗2, v

∗
0) =

ϕ1

ϕ
,

ϕ1 = (v∗1 + v∗2 +K1(−γ∇2 + 2v∗0)f)

and
ϕ = (−γ∇2 −K +K1(−γ∇2 + 2v∗0)2 +K2),

D∗ = {v∗2 ∈ Y ∗ ; ‖v∗2‖∞ < K4}

E∗ = {v∗1 ∈ Y ∗ : ‖v∗1‖∞ ≤ K5},

for some K3,K4,K5 > 0 to be specified,
Finally, we also define J∗1 : [Y ∗]2 ×B∗ → R,

J∗1 (v∗2, v
∗
1, v
∗
0) = −F ∗1 (v∗2, v

∗
1, v
∗
0) + F ∗2 (v∗2)−G∗(v∗1, v∗0).

Assume now K1 = 1/[4(α+ ε)K2
3 ],

K2 � K1 � max{K3,K4,K5, 1, γ, α, β}.
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Observe that, by direct computation, we may obtain

∂2J∗1 (v∗2, v
∗
1, v
∗
0)

∂(v∗0)2
= − 1

α
+ 4K1u(v∗)2 +O(1/K2) < 0,

for v∗0 ∈ B∗3 .
Considering such statements and definitions, we may prove the following theorem.

Theorem 1.2. Let (v̂∗2, v̂
∗
1, v̂
∗
0) ∈ ((D∗ × E∗) ∩D∗3)× (B∗2 ∩B∗) be such that

δJ∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) = 0

and u0 ∈ V1, where

u0 =
v̂∗1 + v̂∗2 +K1(−γ∇2 + 2v∗0)f

K2 −K − γ∇2 +K1(−γ∇2 + 2v̂∗0)2
.

Under such hypotheses, we have
δJ(u0) = 0,

so that

J(u0) = inf
u∈V1

{
J(u) +

K1

2

∫
Ω

(−γ∇2u+ 2v̂∗0u− f)2 dx

}
= inf

v∗2∈D∗

{
sup

(v∗1 ,v
∗
0)∈E∗×B∗

J∗1 (v∗2, v
∗
1, v
∗
0)

}
= J∗1 (v̂∗2, v̂

∗
1, v̂
∗
0). (6)

Proof. Observe that δJ∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) = 0 so that, since (v̂∗2, v̂

∗
1) ∈ D∗3,v̂∗0 ∈ B∗2 and J∗1 is quadratic

in v∗2, we may infer that

J∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) = inf

v∗2∈Y ∗
J∗1 (v∗2, v̂

∗
1, v̂
∗
0)

= sup
(v∗1 ,v

∗
0)∈E∗×B∗

J∗1 (v̂∗2, v
∗
1, v
∗
0). (7)

Therefore, from a standard saddle point theorem, we have that

J∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) inf

v∗2∈Y ∗

{
sup

(v∗1 ,v
∗
0)∈E∗×B∗

J∗1 (v∗2, v
∗
1, v
∗
0)

}
.

Now we are going to show that
δJ(u0) = 0.

From
∂J∗1 (v̂∗2, v̂

∗
1, v̂
∗
0)

∂v∗2
= 0,

we have

−u0 +
v̂∗2
K2

= 0,

and thus
v̂∗2 = K2u0.
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From
∂J∗1 (v̂∗2, v̂

∗
1, v̂
∗
0)

∂v∗1
= 0,

we obtain

−u0 −
v̂∗1 − f

2v̂∗0 +K
= 0,

and thus
v̂∗1 = −2v̂∗0u0 −Ku0 + f.

Finally, denoting
D = −γ∇2u0 + 2v̂∗0u0 − f,

from
∂J∗1 (v̂∗2, v̂

∗
1, v̂
∗
0)

∂v∗0
= 0,

we have

−2Du0 + u2
0 −

v̂∗0
α
− β = 0,

so that
v̂∗0 = α(u2

0 − β − 2Du0). (8)

Observe now that

v̂∗1 + v̂∗2 +K1(−γ∇2 + 2v̂∗0)f = (K2 −K − γ∇2 +K1(−γ∇2 + 2v̂∗0)2)u0

so that

K2u0 − 2v̂0u0 −Ku0 + f

= K2u0 −Ku0 − γ∇2u0 +K1(−γ∇2 + 2v̂∗0)(−γ∇2u0 + 2v̂∗0u0 − f). (9)

The solution for this last system of equations (8) and (9) is obtained through the relations

v̂∗0 = α(u2
0 − β)

and
−γ∇2u0 + 2v̂∗0u0 − f = D = 0,

so that
δJ(u0) = −γ∇2u0 + 2α(u2

0 − β)u0 − f = 0

and

δ

{
J(u0) +

K1

2

∫
Ω

(−γ∇2u0 + 2v̂∗0u0 − f)2 dx

}
= 0.

Moreover, from the Legendre transform properties

F ∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) = 〈u0, v̂

∗
2 + v̂∗1〉L2 − F1(u0, v̂

∗
0),

F ∗2 (v̂∗2) = 〈u0, v̂
∗
2〉L2 − F2(u0),

G∗(v̂∗1, v̂
∗
0) = −〈u0, v̂

∗
1〉L2 − 〈0, v̂∗0〉L2 −G(u0, 0),
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so that

J∗1 (v̂∗2, v̂
∗
1, v̂
∗
0) = −F ∗1 (v̂∗2, v̂

∗
1, v̂
∗
0) + F ∗2 (v̂∗2)−G∗(v̂∗1, v̂∗0)

= F1(u0, v̂
∗
0)− F2(u0) +G(u0, 0)

= J(u0). (10)

Observe now that

J(u0) = J∗1 (v̂∗2, v̂
∗
1, v̂
∗
0)

≤ γ

2

∫
Ω
∇u · ∇u dx− K

2

∫
Ω
u2 dx

+
K1

2

∫
Ω

(−γ∇2u+ v̂∗0u− f)2 dx+ 〈u, v̂∗1〈L2−〈u, f〉L2

−1

2

∫
Ω

(v∗1)2

2v∗0 +K
dx− 1

2α

∫
Ω

(v∗0)2 dx− β
∫

Ω
v∗0 dx

≤ γ

2

∫
Ω
∇u · ∇u dx− 〈u, f〉L2

+
K1

2

∫
Ω

(−γ∇2u+ v̂∗0u− f)2 dx

+ sup
(v∗1 ,v

∗
0)∈D∗×B∗

{
+〈u, v̂∗1〈L2−

1

2

∫
Ω

(v∗1)2

2v∗0 +K
dx

− 1

2α

∫
Ω

(v∗0)2 dx− 1

2α

∫
Ω

(v∗0)2 dx− β
∫

Ω
v∗0 dx

}
= J(u) +

K1

2

∫
Ω

(−γ∇2u+ 2v̂∗0u− f)2 dx, (11)

∀u ∈ V1.
Hence, we have got

J(u0) = inf
u∈V1

{
J(u) +

K1

2

∫
Ω

(−γ∇2u+ 2v̂∗0u− f)2 dx

}
.

Joining the pieces, we have got

J(u0) = inf
u∈V

{
J(u) +

K1

2

∫
Ω

(−γ∇2u+ 2v̂∗0u− f)2 dx

}
= inf

v∗2∈Y ∗

{
sup

(v∗1 ,v
∗
0)∈E∗×(B∗∩Br(v̂∗0))

J∗1 (v∗2, v
∗
1, v
∗
0)

}
= J∗1 (v̂∗2, v̂

∗
1, v̂
∗
0). (12)

The proof is complete.
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2 Another duality principle suitable for the primal

formulation global optimization

In this section we establish one more duality principle and related convex dual formulation
suitable for a local optimization of the primal variational formulation.

Let Ω ⊂ R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

For the primal formulation, we define V = W 1,2
0 (Ω) and consider a functional J : V → R

where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx+

α

2

∫
Ω

(u2 − β)2 dx

−〈u, f〉L2 . (13)

Here we assume f ∈ L2(Ω), and define Y = Y ∗ = L2(Ω),

V2 = {u ∈ V : ‖u‖∞ ≤ K4},

A+ = {u ∈ V : u f > 0, a.e. in Ω},

and
V1 = A+ ∩ V2,

for an appropriate constant K4 > 0 to be specified.
Define also the functionals F1 : V × [Y ]2 → R and G : Y → R by

F1(u, v∗3, v
∗
0) =

γ

2

∫
Ω
∇u · ∇u dx+ 〈u2, v∗0〉L2

−〈u, f〉L2 +
K1

2

∫
Ω

(v∗3u−K3)2 dx, (14)

and

G(u2) =
α

2

∫
Ω

(u2 − β)2 dx,

for appropriate positive constants K1,K3,K4 to be specified.
Moreover, define F ∗1 : [Y ∗]2 → R and G∗ : Y ∗ → R, by

F ∗1 (v∗3, v
∗
0) = sup

u∈V
{−F2(u, v∗3, v

∗
0)}

=
1

2

∫
Ω

(f +K1K3v
∗
3)2

−γ∇2 + 2v∗0 +K1(v∗3)2
dx

−K1

2

∫
Ω
K2

3 dx

and

G∗(v∗0) = sup
v∈Y
{〈v, v∗0〉L2 −G(v)}

=
1

2α

∫
Ω

(v∗0)2 dx+ β

∫
Ω
v∗0 dx. (15)
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Furthermore, we define
B∗ = {v∗3 ∈ Y ∗ : u1(v∗3) ∈ V1},

where

u1(v∗3) =
K3

v∗3
.

Define also
C∗1 = {v∗0 ∈ Y ∗ : ‖v∗0‖∞ ≤ K2}

for an appropriate real constant K2 > 0 to be specified, and J∗1 : B∗ × C∗1 → R by

J∗1 (v∗3, v
∗
0) = −F ∗2 (v∗3, v

∗
0)−G∗(v∗0).

Moreover, we assume K1 � K2 � max{1,K3,K4, α, β, γ, ‖f‖∞}.
By directly computing δ2J∗1 (v∗3, v

∗
0) denoting

A = −K1K3,

B = 2K1v
∗
3,

ϕ = −γ∇2 + 2v∗0 +K1(v∗3)2,

ϕ1 = f +K1K3v
∗
3,

u =
ϕ1

ϕ
,

we may also obtain,

∂2J∗1 (v∗3, v
∗
0)

∂(v∗3)2

= −(A− uB)2

ϕ
+K1u

2

= −K1(K1K
2
3 (3u2 − 4uu1 + u2

1)− u2u1(−γ∇2 + 2v∗0)u1)

K1K2
3 + u1(−γ∇2 + 2v∗0)u1

=
K2

1H1 +K1H2

K1K2
3 + u1(−γ∇2 − 2v∗0)u1)

(16)

on B∗ × C∗1 .
where

u1 = u1(v∗3) =
K3

v∗3
,

H1 = K2
3 (3u2 − 4uu1 + u2

1),

and
H2 = u2[(−γ∇2 + 2v∗0)u1]u1.

At a critical point we have H1 = 0 and

H2 = u2
0 fu0 > 0, a.e in Ω.

8
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With such results, for a sufficiently small ε1 > 0, we may define the restrictions

Cv∗0
= {v∗3 ∈ B∗ : |H1(v∗3, v

∗
0)| ≤ ε1(v∗3)2 in Ω}

and
(C3)v∗0 = {v∗3 ∈ B∗ : H2(v∗3, v

∗
0) ≥ 0 in Ω}.

At this point, we prove that (C)v∗0 is a convex set.
Firstly, fixing v∗0 ∈ C∗1 observe that for K7 sufficiently large

|H1(v∗3, v
∗
0)| − ε1(v∗3)2 +K7(v∗3)2

is convex in v∗3 on B∗.
Observe also that

|H1(v∗3, v
∗
0)| ≤ ε1(v∗3)2

is equivalent to
|H1(v∗3, v

∗
0)| − ε1(v∗3)2 +K7(v∗3)2 ≤ K7(v∗3)2,

which is equivalent to √
|H1(v∗3, v

∗
0)| − ε1(v∗3)2 +K7(v∗3)2 ≤

√
K7|v∗3|.

Moreover, this last inequality is equivalent to

H5(v∗3, v
∗
0) =

√
|H1(v∗3, v

∗
0)| − ε1(v∗3)2 +K7(v∗3)2 −

√
K7|v∗3| ≤ 0.

Since for v∗3 ∈ B∗ we have v∗3f ≥ 0, a.e. in Ω, we may obtain that −
√
K7|v∗3| is a convex

function on B∗, so that H5 is convex in v∗3 on B∗

From such results, we may easily infer that Cv∗0
is a convex set, ∀v∗0 ∈ C∗1 .

Similarly, we may prove that (C3)v∗0 is a convex set, ∀v∗0 ∈ C∗1 .
On the other hand, clearly we have

∂2J∗1 (v∗3, v
∗
0)

∂(v∗0)2
< 0 in B∗ × C∗1 .

2.1 A concerning duality principle and a related convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (v̂∗3, v̂
∗
0) ∈ (C3)v̂∗0 × C

∗
1 be such that

δJ∗1 (v̂∗3, v̂
∗
0) = 0

and u0 ∈ V1 be such that

u0 =
ϕ1

ϕ
=

f +K1K3v̂
∗
3

−γ∇2 + 2v̂∗0 +K1(v̂∗3)2
.

9
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Assume also
u0 6= 0, a.e. in Ω.

Under such hypotheses, denoting B∗1 = Cv∗0
∩ (C3)v∗0 , we have

δJ(u0) = 0,

v̂∗3u0 −K3 = 0, a.e. in Ω,

and

J(u0) = inf
u∈V1

{
J(u) +

K1

2

∫
Ω

(v̂∗3u−K3)2 dx

}
= inf

v∗3∈B∗
1

{
sup

v∗0∈C∗
1

J∗1 (v∗3, v
∗
0)

}
= J∗1 (v̂∗3, v̂

∗
0). (17)

Proof. Observe that δJ∗1 (v̂∗3, v̂
∗
0) = 0 so that, since v̂∗0 ∈ C∗ and v̂∗3 ∈ Cv̂∗0

, from the results in
the previous lines, for a sufficiently small ε1 > 0, we have that

J∗1 (v̂∗3, v̂
∗
0) = inf

v∗3∈B∗
1

J∗1 (v∗3, v̂
∗
0) = sup

v∗0∈C∗
1

J∗1 (v̂∗3, v
∗
0).

Consequently, from this and the Saddle Point Theorem, we have

J∗1 (v̂∗3, v̂
∗
0) = inf

v∗3∈B∗
1

{
sup

v∗0∈C∗
1

J∗1 (v∗3, v
∗
0)

}
.

Now we are going to show that
δJ(u0) = 0.

Firstly, observe that
F ∗2 (v∗3, v

∗
0) = sup

u∈V
{−F2(u, v∗3, v

∗
0)}.

Denoting
H(v∗3, v

∗
0, u) = −F2(u, v∗3, v

∗
0),

there exists û ∈ V such that
∂H(v̂∗3, v̂

∗
0, û)

∂u
= 0,

and
F ∗1 (v̂∗3, v̂

∗
0) = H(v̂∗3, v̂

∗
0, û),

so that

u2
0 =

∂F ∗1 (v̂∗3, v̂
∗
0)

∂v∗0
=

∂H(v̂∗3, v̂
∗
0, û)

∂v∗0

+
∂H(v̂∗3, v̂

∗
0, û)

∂u

∂û

∂v∗0
= û2. (18)

10
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Summarizing, we this last equation is satisfied through the relation

u0 = û.

Hence from the variation of J∗1 in v∗0, we obtain

u2
0 −

v∗0
α
− β = 0,

so that
v∗0 = α(u2

0 − β).

On the other hand, from the variation of J∗1 in v∗3, we have

∂F ∗1 (v̂∗3, v̂
∗
0)

∂v∗3

= −K1(v̂∗3u0 −K3)u0 +
∂H(v̂∗3, v̂

∗
0, û)

∂u

∂û

∂v∗3
= −K1(v̂∗3u0 −K3)u0

= 0. (19)

From such results, since
u0 6= 0, a.e. in Ω,

we get
v̂∗3u0 −K3 = 0, a.e. in Ω.

Consequently, from such last results and from

u0 =
f +K1K3v̂

∗
3

−γ∇2 + 2v̂∗0 +K1(v̂∗3)2
,

we obtain

−γ∇2u0 + 2v∗0u0 +K1(v̂∗3)2u0 − f −K1K3v̂
∗
3

= −γ∇2u0 + 2α(u2
0 − β)u0 − f

= δJ(u0)

= 0. (20)

Summarizing,
δJ(u0) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have

F ∗1 (v̂∗3, v̂
∗
0) = −F1(u0, v̂

∗
3, v̂
∗
0),

G∗(v̂∗0) = 〈u2
0, v
∗
0〉L2 −G(u2

0),

so that

J∗1 (v̂∗0)

= −F ∗1 (v̂∗3, v̂
∗
0)−G∗(v̂∗0)

= J(u0). (21)
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Finally, observe that
J∗1 (v∗3, v

∗
0) ≤ F1(u, v∗3, v

∗
0)−G∗(v∗0),

∀u ∈ V1, v∗3 ∈ B∗, v∗0 ∈ C∗1 .
Therefore,

J∗1 (v̂∗3, v̂
∗
0) ≤ sup

v∗0∈C∗
1

{F2(u, v̂∗3, v
∗
0)−G∗(v∗0)}

= J(u) +
K1

2

∫
Ω

(v̂∗3u−K3)2 dx, (22)

∀u ∈ V1.
Summarizing, we have obtained

J(u0) = inf
u∈V1

{
J(u) +

K1

2

∫
Ω

(v̂∗3u−K3)2 dx

}
= inf

v∗3∈B∗
1

{
sup

v∗0∈C∗
1

J∗1 (v∗3, v
∗
0)

}
= J∗1 (v̂∗3, v̂

∗
0). (23)

The proof is complete.

3 Conclusion

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.
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