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Abstract

This article develops duality principles and related convex dual formulations suitable for the
local and global optimization of non-convex primal formulations for a large class of models in
physics and engineering. The results are based on standard tools of functional analysis, calculus
of variations and duality theory. In particular, we develop applications to a Ginzburg-Landau
type equation.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation suitable
for the local optimization of the primal formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity
in the absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote
/[(—’yvz + K1) ' v* da
Q
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where 1y denotes a concerning identity operator.
Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V? denotes the Laplace operator and for real constants Ko > 0 and K; > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

J(u) = g/QVu-Vudx

+5 | @ =87 do = (u. ) 1)

Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).
Moreover, V = W&’z(Q) and we denote Y = Y* = L?(Q).
At this point we define F; : V XY - R Fh:V >Rand G:V xY — R by

K
Fi(u,vg) = V/Vu-Vudz‘—2/u2dx
Q
K

K
+/(—7V2u+2v8u—f)2 dx+2/u2 dx, (2)
2 Ja 2 Ja

K
Fafu) =32 [ o do+ (u e
2 Ja
and K
G(u,v):a/(u2—5+v)2 daz—i—/uQ dx.
2 Ja 2 Ja
We define also
Ji(u,v5) = Fi(u,vy) — Fa(u) + G(u,0),
J(u) = 7/ Vu-Vud:c—i-a/(uQ—ﬂ)Q dx — (u, f)re,
2 Ja 2 Jo
and Fy : [V*PP 5 R, F} :V* > R, and G* : [Y*]2 > R, by

FT (v3, 07, vg)
= sup{(u,vi +v3)r2 — Fi(u,v5)}

ueV
1 (v} + 05 + K1 (—9V2 + 205)f)°
B /( YV2 — K + Ky + K1 (—7V2 + 2v})2)

m/ﬂ (3)
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Fy(vz) = Slelp{<u ,V3) 12 — Fa(u)}
- 5 Lw—pra ()
and
G*(vi,v5) = sup {(u,v7)r2 — (v,v5) 2 — G(u,v)}
(u,0)EV XY
_ 1 (v})? 1 .
— _/ QUO:LKdm—F%/Q(UO)de
+8 [ v da (5)

if v5 € B* where
B*={vg Y™ : |lv5lleo < K/2}.

Define also
Va={ueV : [Jull < K3},

At ={ueV : uf>0ae. in Q},
m:‘/?mA+7

By ={v,eY* : —4V? - K 4+ K{(—/V? +2v})? > 0},

D} = {(vi,v3) €eY* xY* : —1/a+ 4K [u(v], v}, v5)%] + 100/ Ky < 0,V € B*},

where o1
u(vy,v5) = —,
2> Vg ”
o1 = (v} +v5 + K1(—V? +205) f)
and

0= (—7V? = K + K1 (—V? + 20})% + K),

D" ={vy €Y"; [luloo < Ka}
E*={v1 €Y" : |l < K5},

for some K3, K4, K5 > 0 to be specified,
Finally, we also define J; : [Y*]? x B* — R,

Ji(v3,07,v5) = —F7 (v3, 01, v5) + F5 (v3) — G¥(v1, vp).
Assume now K; = 1/[4(a +¢)K?2],

Ko>» K> Hla.X{K3, K4>K5a 1777057/8}'
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Observe that, by direct computation, we may obtain

82J* U*,’U*,U* 1 *
0

for v§ € B3.
Considering such statements and definitions, we may prove the following theorem.

Theorem 1.2. Let (03, 07,05) € ((D* x E*) N D3) x (B3 N B*) be such that
6.J1 (03,01, 9) = 0
and ug € V1, where
_ 0 0+ Ka( VR +2uh) f
Ky — K —yV2 + K1 (—yV2 +205)%

Under such hypotheses, we have

Uug

dJ(ug) =0,
so that
. . Kl 2 Ak 2
J(ug) = inf S J(u)+— [ (—yVu+ 205u— f)° dx
ueVy 2 Q

v3€D" | (v1,03)€E* xB*
= Ji(d3, 01, 0p)- (6)

— inf { sup J{‘(vé‘,vi‘,vé)}
(v

Proof. Observe that 0.J; (03,07, 05) = 0 so that, since (03,07) € D3,05 € By and J{ is quadratic
in v, we may infer that

J(E00.0) = .66
2
= sup J1 (03,07, v5)- (7)
(v} ,v5)EE*xB*

Therefore, from a standard saddle point theorem, we have that

K (ak Ak Ak : k(ok ok *
‘]1 (’1)2, U1, U()) ,}nf . sup Jl (U27 U1, UO) :
V€Y | (v} ) €E* x B*

Now we are going to show that

(SJ(U(]) =0.
From e
9.Ji (03, 07, g) -0
ovs ’
we have "
—ug+ -2 =0
0 K2 ’
and thus
Uy = Koug
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From ax ax on
9J7 (03,07, 0)
S 00—,
ovy
we obtain 5
0] —
—Uup — = =0,
0T 205+ K
and thus
0] = —205up — Kug + f.

Finally, denoting
D = —V?ug + 205ug — f,

from e s
9.Ji (03, 07, g) -0
ovg ’
we have .
0
—2Dug +ui — 2 - B =0,
o)
so that

oy = a(ul — B — 2Duyg). (8)

Observe now that
OF + 0% + K (—y V24200 f = (Ko — K — AV + K1 (—yV? + 208)%)uo
so that

KQUO — 2@011,0 — KU() + f
= Koug — Kug — yV?ug + K1 (—=7V? 4 208) (—yV?ug + 205uo — f). (9)

The solution for this last system of equations (8) and (9) is obtained through the relations

and
—’}’VQUO + 2@8’&0 —f=D=0,
so that
6. (uo) = —yV?ug + 2a(uf — Bug — f =0
and

) {J(uo) + % /Q(—’)’VZUO + 205ug — f)? d:c} =0.
Moreover, from the Legendre transform properties
Fy (03,07, 09) = (uo, 03 4 01) 2 — Fi(uo, 0p),
F3(03) = (uo, 03) 12 — Fa(uo),

G*(01,09) = —(uo, 07) 2 — (0,95) L2 — G(u0,0),
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so that

Observe now that

Ji(03,07,05) = —Fy(03,07,05) + F5(03) — G* (07, 0p)
= Fi(up,?) — Fa(uo) + G(uo,0)
= J(uo).
@;a@L@O)

J(ug) =

<

IN

Yu € V7.
Hence, we have got

/Vu Vudx——/u dz

-|-—/( ’yV u-l—vou—f) dx + (u, 07 (r2—(u, f) 12
Q

1 [ (1) 1/ o /
o Y g dr — d
2/92US+K T 5 J o) de =B | v de

1/Vu-Vud:L‘—<u,f>L2

K
+71/(—7V2u+@a‘u—f)2 dx
Q

1 (v})?
+ sup {—i—(u,vl(Lz——/ —— dx
(vi,v5)ED* xB* 2 Q 27}8 + K

__/ dx—%/Q(US)Qd:L‘—B/Qdew}

J(u )-I-—/Q(—'yv2u+2@§u—f)2 dz,

ueVy

J(ug) = inf {J( )+%/ﬂ( AV2u 4 205u — f)? dx}.

Joining the pieces, we have got

J(uo)

The proof is complete.

= inf {J( )+ %/(—’yVQu—i-%a‘u—f)Q dm}
Q

ueV
= *lnf sup Jik (’U;) Ufa US)
V€Y | (vF,0)EE* X (B*NB.(87))

= ']1 (@;7/01(7@8)

(12)
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2  Another duality principle suitable for the primal
formulation global optimization

In this section we establish one more duality principle and related convex dual formulation
suitable for a local optimization of the primal variational formulation.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.

For the primal formulation, we define V' = WO1 () and consider a functional J : V — R
where

J(u) = W/Vu-Vudx—i-a/(uQ—ﬂ)Q dx
2 Ja 2 Ja
—(u, f)re. (13)
Here we assume f € L?(f2), and define Y = Y* = L?(Q),
Va={ueV : |ulleo < Ky},

At ={ueV : uf>0, ae inQ},

and
Vi=ATNV,,

for an appropriate constant K4 > 0 to be specified.
Define also the functionals F} : V x [Y]? = R and G : Y — R by

Fi(u,ol,0) = g/vu.wdxﬂu%gm
Q

~ufle+ 5 [ (Gu = Ka)? da, (14)

and
¢ =2 / (- B)? da,
Q

for appropriate positive constants K7, K3, K4 to be specified.
Moreover, define Fy : [Y*]2 - R and G* : Y* — R, by

Y (v3,v5) = sgg{—F2(u,v§7v8)}
u
1/ (f + K1 K3v35)?
Q

= d
“AVE 120 + Ky (05)2

2

K
—I/Kgdx
2 Jo

G*(vg) = sup{(v,vp)r2 — G(v)}

veY

1

= 5 Loy da:+ﬂ/ﬂv3 da. (15)

and

7
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Furthermore, we define

where

Define also
Ci={v €Y : [[v5llc < K2}

for an appropriate real constant K» > 0 to be specified, and J} : B* x C] — R by
Ji(v3,v9) = —F3 (v3,v9) — G (vp)-

Moreover, we assume K; > Ky > max{1, K3, K4, ®, 5,7, || fllco }-
By directly computing §2.J; (v3,v3) denoting

A=-K K3,

B = 2K, 3,

p =7V + 205 + K1 (v5)?,
1= f+ K1 K303,

Y1
u= -,
¥
we may also obtain,
0%J5 (v3, vg)
9(v3)?
A—uB)?
_ _A-uB) e
¥

K1 (K1 K3(3u? — 4uuy + u?) — v?uy (—yV? + 208)uq)
K1K2 +ui1(—yV2 + 208w
K{H| + K\ H,

B K1 K2 + ui (—yV? = 208)u) (16)
on B* x CfY.
where K,
uy = uy(vy) = W
Hy = K3(3u? — duuy +ul),
and

Hy = u?[(—yV? + 2v))ur]ug.

At a critical point we have H; = 0 and

Hy = ug fug >0, a.ein .
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With such results, for a sufficiently small £; > 0, we may define the restrictions
Cye ={v3 € B* @ [Hy(v3,v5)] < e1(v3)? in Q)

and
(C3)yy = {v3 € B* : Ha(v3,v5) > 0in Q}.

At this point, we prove that (C), is a convex set.
Firstly, fixing vj € C] observe that for K7 sufficiently large

|[Hi(v5, 05)| — en(v3)* + Kr(v3)?

is convex in v3 on B*.
Observe also that

[H1(v5, 05)| < e1(v5)?

is equivalent to
| Hi (v, 05)] — €1(v5)” + K7 (v3)? < Kr(v3)?,

which is equivalent to

VI (05, 08)] — £1(63)? + Fr(03)2 < V/E o},

Moreover, this last inequality is equivalent to

H (03, 05) = /11 (05, 08) | — £1(03)2 + Kn(03)2 — /Ko |e3] < 0.

Since for v € B* we have v3f > 0, a.e. in {2, we may obtain that —v/K7|vz| is a convex
function on B*, so that Hj is convex in v3 on B*

From such results, we may easily infer that Cy is a convex set, Vuj € C7.

Similarly, we may prove that (C3),s is a convex set, Vvg € C7.

On the other hand, clearly we have

0%J¢ (v3, vg)

< 0in B* x C*.
0(vg)> !

2.1 A concerning duality principle and a related convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 2.1. Let (93,75) € (C3)s; x C7 be such that
53065, 55) = 0

and ug € V1 be such that R
2 [+ K1 K303

Uy = — = = = .

o =V 4208 + K1 (0%)?

9
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Assume also
ug # 0, a.e. in Q.

Under such hypotheses, denoting Bf = Cys N (Cg)va, we have
dJ(ug) =0,
vsug — K3 =0, a.e. in Q,
and

Tw) = nf {J(u)+% /Q (%0 — K)? dw}

= inf < sup Jj(v3,vp)

v;E€B; {vgecl* ’

= Ji(3, ). (17)

Proof. Observe that §.J7 (93, 95) = 0 so that, since 95 € C* and 93 € Cy;, from the results in
the previous lines, for a sufficiently small €; > 0, we have that

Ji(03,89) = U?,:igjfgr Ji (v3, %) = JSup, J1 (03, v5)-
0 1

Consequently, from this and the Saddle Point Theorem, we have

Ji(03,09) = inf {Sup Jf(v§,v6")}-

* *
v3EBT | vieCs

Now we are going to show that
oJ (UQ) =0.

Firstly, observe that

Fy (v3,vp) = sup{—F3(u, v3,v5)}.
ueV

Denoting
H(v3, vy, u) = —Fa(u,v3, vp),

there exists @ € V such that
O0H (03,05, )

=0
ou ’
and
FY (93, 0) = H(03, 09, 0),
so that
o OFY(03,05) _  OH(03,95,4)
Uy = v - v
Yo Yo
0H (03,05, 1) O
+—
ou ovg
= 42 (18)

10
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Summarizing, we this last equation is satisfied through the relation
Uupg = U.

Hence from the variation of J} in v, we obtain

so that
v = alug — B).
On the other hand, from the variation of Jj in v3, we have
OFy (03, 05)
ovs
O0H (03,05, w) O
ou ovg

= —Ki(93u0 — K3)ug +
= —Kl(@§u0 — K3)’LL(]

= 0. (19)

From such results, since
ug # 0, a.e. in £,

we get
tzup — K3 =0, a.e. in (.

Consequently, from such last results and from

w — [+ K1 K303
07 AV 4205 + Ky (05)%
we obtain
—yV2ug + 2viug + K1 (03)*ug — f — K1 K303
Vg + 20(ug — B)uo — f
= 0J(uo)
= 0. (20)
Summarizing,

dJ(ug) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have

Fy (03, 09) = —F1(uo, 03, 0p),

G*(05) = (ud, v5) 12 — G(up),

so that

J1 (%)

= —F7(03,9) — G" ()
)

= J(uo). (21)

11
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Finally, observe that
JT(U‘:’:? US) < Fl(ua vék’ US) - G*(US)’

Yu e Vi, vy € B, vj e Cf.

Therefore,
Ji(03,05) < sup {Fp(u,d3,v5) — G*(vp)}
vy €CY
K
= J(u)+ 71 (03u — K3)? da, (22)
Q
Yu € V7.
Summarizing, we have obtained
K
J(ug) = inf {J(u) + 1/(ﬁ§u—K3)2 dw}
ueVy 2 Q
= inf sup Ji (v, v
v3€B] {vSECf 1(v5,%5)
= J1(03,%). (23)
The proof is complete.
O

3 Conclusion

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau
type equation. In a future research, we intend to extend such results for some models of plates
and shells and other models in the elasticity theory.
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