Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2022 d0i:10.20944/preprints202210.0157.v1

ADVERSARIAL ARTIFICIAL INTELLIGENCE IN
INSURANCE: FROM AN EXAMPLE TO SOME
POTENTIAL REMEDIES

Behnaz Amerirad, McGill University, Canada
Matteo Cattaneo, Innovation Lab, Reale Mutua Group*
Ron S. Kenett, KPA Group, Samuel Neaman Institute, Technion, Israel and University of Torino

Elisa Luciano, University of Torino, Collegio Carlo Alberto?

Abstract

Acrtificial intelligence (Al) is a tool that financial intermediaries and insurance companies use in most cases
or are willing to use it in almost all their activities. Al can have a positive impact on almost all aspects of
the insurance value chain.: pricing, underwriting, marketing, claims management, after-sales services.
While it is very important and useful, Al is not free of risks, including its robustness against cyber-attacks
and so-called adversarial attacks. Adversarial attacks are conducted by external entities to misguide and
defraud the Al algorithms. The paper is designed to provide a review of adversarial Al and discuss its
implications for the insurance sector.

The study starts with a taxonomy of adversarial attacks and presents a fully-fledged example of claims
falsification in health insurance. Some remedies, consistent with the current regulatory framework, are

presented.

1. Introduction

Al is a set of techniques and technologies that the financial industry considers as a strategic priority and
potentially as a source of relevant competitive advantages and in which it invests a significant efforts and
resources. This paper focuses on insurers who apply Al in their processes, exploiting the large databases

they already have or the data they can collect from customers through, for example, web-based interaction
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and wearable devices. Indeed, Al is more and more used in product design and development, pricing and
underwriting, marketing and distribution, customer service and relationship with the clients, claims

management, from claims filing to settlement.

While it is very important and useful, Al is not free of risks. EIOPA itself highlights the relevance of Al
“robustness”. Al systems should be robust not only in the sense of being fit-for-purpose, regularly
maintained and subject to tests, but also in being deployed in infrastructures protected from cyberattacks.
Within the notion of cyberattacks one can confidently consider adversarial Al attacks aimed at defrauding

an Al system, a way that the result is often detected by the human eye, but not by the system.

To prevent and fix adversarial attacks, an underwriter must first categorize such attacks according to several
dimensions, i.e., have a taxonomy. After providing a taxonomy in Section 1, the paper provides an example
built on public data from health insurance. In Section 2, it illustrates the subtlety and powerfulness of those

attacks. We conclude with practical remedies against adversarial attacks, in Section 3.

2. Adversarial Attacks and Their Taxonomy
An adversarial example is a sample of input data that has been very slightly altered in a way that is intended
to mislead a ML system (Kurakin, Goodfellow and Bengio, 2017a). The result is that the Al application

makes incorrect predictions.

Although Al applications on images, videos, text, or voice, are becoming increasingly sophisticated, they
still are vulnerable to adversarial attacks based on specific perturbations of their input data. Sometimes
these perturbations can be small, imperceptible to human detection. Under this context, not only Machine
Learning (ML) systems are fooled for their detection, but also higher level of these perturbations can
increase the success rate of the attack by lowering the accuracy of the system. A famous adversarial example
is the image of a panda, provided by (Goodfellow, Shlens and Szegedy, 2015). In this example, the author
explained that how small, invisible perturbations on the input pixels of a panda image result in its
misclassification as a gibbon. The Appendix clarifies how adversarial attacks are generated based on

different algorithms.

Adversarial attacks can be categorized based on its goal, properties, or capabilities as shown in Figure 1.
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Figure 1 Adversarial Attack Taxonomy

2.1 Adversarial goal

Based on their goal, adversarial attacks can be divided into four categories: i) those that lead to confidence
reduction, ii) to an untargeted misclassification, iii) to a target misclassification and iv) those that target a
specific source for misclassification (see (Qiu, Liu, Zhou and Wu, 2019).

¢ When the aim is confidence reduction, the attackers attempt to reduce the accuracy of the target
model prediction, i.e., the attack results in the model having very low accuracy.®

¢ When the aim is to obtain an untargeted misclassification, the attacker tries to change the original
class of the input to any class that differs from the original one.

o When the aim is to obtain a targeted misclassification, the adversaries attempt to change the output
to a specific target class.

e Finally, in source/target misclassification, the adversaries try to change the output classification of

a particular input.

2.2 Adversarial Capability
While attacks on the training phase seek to learn, influence, or corrupt the model itself, attacks in the
inference phase do not tamper with the targeted model but rather either produce adversary selected outputs

or gather evidence about the model characteristics. (Ren, Zheng, Qin and Liud, 2020).

3 Accuracy in Al is defined as the ratio of true positives and true negatives to all positive and negative outcomes. It
measures how frequently the model gives a correct prediction out of the total predictions it made.
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Attacks in the training phase: The attack strategies used in the training phase can be divided into three
categories:

o Data Injection: The attacker has no access to training data or learning algorithms, but can add new
data to the training data set in order to falsify the target model.

o Data Modification: Without access to the learning algorithm, but to all training data, the attacker
can poison the target model by manipulating the training data.

e Logic Corruption: The attacker has access to interfere with the target model's learning algorithms.

Attacks in the inference phase: There are three common threat models in the inference phase for
adversarial attacks: the white-box, gray-box, and black-box models (Ren et al., 2020). The effectiveness of
such attacks is largely determined by the information available to the attacker about the model and its use

in the target environment.

o White-Box Attack: In white-box attacks, the attackers know the details of the target model,
including the model architecture, model parameters and training data. The attackers use the
available information to identify the most vulnerable areas of the target model, and then use
adversarial pattern generation methods to create inputs that exploit these vulnerabilities. (Qiu et al.,
2019).

o Black-Box Attack: In the black box model, attackers do not know the structure of target networks
and parameters but exploit system vulnerabilities using information about the environment or past
inputs. Black box attacks can always compromise a naturally trained non-defensive system.

e Gray-Box Attack: In the Gray box model, an attacker is assumed to know the architecture of the
target model but does not have access to the model parameters. In this threat model, it is assumed
that the attacker creates adversarial examples at a surrogate classifier of the same architecture. Due
to the additional structural information, a gray-box attacker always shows better attack performance
compared to a black-box attacker.

We give, in Appendix 1, more details on the further split of White and Black-box attacks models, together

their intuition.

2.3 Adversarial Properties

Adversarial attacks have three basic properties,: i) transferability, ii) adversarial instability and iii) the

possibility of reaching regularization effect (Zhang and Li, 2018).
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e Transferability: Transferable adversarial examples are not limited to attacking specific model
architectures but can be generated by one model and tend to deceive other models with the same
probability.

e Adversarial Instability: After physical transformations of the data, such as translation, rotation,
and illumination of images for image-based attacks, the ability of the latter may be lost. In such a
case, the Al model correctly classifies the data, and the adversarial attack is said to be unstable.

e Regularization Effect: Consists in training the Al so as to reveal its defects — especially neural
network systems — and consequently to improve its resilience. Adversarial training (Goodfellow et

al., 2015), that we discuss in the last Section, is an example of regularization method.

3. A Health Insurance Example and the Assessment of Damages

The Adversarial attack example we provide below consists of falsifying the health status of potential
customers, by corrupting the breast images of female patients, who are not affected by malign cancer but
will end up being classified as such by the Al system. Regardless of the high personal costs and
implications, an occurrence of this type may be extremely costly for an insurance company in countries like
the United States, where the health insurance system is almost completely private, and household massively
rely on insurance coverage. The US spent approximately 18% of GDP on healthcare already in 2016, well
before the COVID pandemic. This amount runs the risk of being inflated by fraud. Although there are no
recent estimates of fraud, we know that it was already estimated this number to be $272 billion in 2011, as
(Finlayson, Chung, Kohane and Beam, 2019). report. Unfortunately, fraud can be committed by a diverse

set of individuals, including professionals in healthcare together with their patients.

Fraud in health insurance may occur both in underwriting phase and in the claim filing one. In the first case
it may occur when the applicants make false, misleading, or at least incomplete information about their
medical history or current health in order to deceive the system and gain more benefits. As part of the
underwriting process, insurers determine the price of coverage by assessing the risks based (also) on the
applicant's medical history. For this evaluation, insurers are allowed to ask questions about applicants' pre-
existing conditions and then decide whom to offer coverage to, whom to deny coverage to, and whether to

charge additional fees for individually purchased coverage.

Even in the claim filing phase, adversarial attacks occur when an attacker with access to medical imaging
material can alter the content to make a misdiagnosis. Specifically, attackers can add or remove evidence
of certain medical conditions from 3D medical scans, including: copying content from one image to another
(image splicing), duplicating content within the same image to cover or add something (copy-move), and

enhancing an image to give it a different appearance (image retouching), as in (Singh, Kumar, Singh and
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Mohan, 2017) (Sadeghi, Dadkhah, Jalab, Mazzola and Uliyan, 2018). For example, the attacks may consist
in injecting and removing pixels on CT scans of patients' lung cancer (Mirsky, Mahler, Shelef and Elovici,
2019).

Finlayson et al. discuss how pervasive is fraud in healthcare and the need for intelligent algorithms to
diagnose the condition of insurance claimants for reimbursement (Finlayson et al., 2019). Their model was
first developed for the classification of diabetic retinal disease using fundoscopic images, pneumothorax
using chest X-rays, and melanoma using dermatoscopic images. Subsequently, the robustness of the model
has been tested using both PGD and universal attacks that are imperceptible by humans (see the definition

in the Appendix).

Another study (Wetstein, Gonz alez-Gonzalo, Bortsova, Liefers, Dubost, Katramados, Veta 2020)
evaluated several unexplored factors, including the degree of perturbation and the transmissibility of the
adversarial attack, affecting the susceptibility of DL, in Medical Image Analysis systems (MedlA) mainly
focused on diabetic retinopathy detection, ChestX-Ray for thoracic diseases, and histopathological images
of lymph node sections.

(Hirano, Minagi and Takemoto, 2021) used universal attack in clinical diagnosis for classification of skin
cancer, diabetic retinopathy and pneumonia. Their results confirmed that DNNs are susceptible universal
attacks, resulting in an input being assigned to an incorrect class, and cause the DNN to classify an input

into a specific class. Our example is built on public data and proceeds as follows.

3.1 Dataset

We explore the possibility of adversarial attacks on insurance claimants' information on breast
abnormalities of mammograms. Our data source (Suckling, 1996) is the mini database MIAS, which
consists of 323 mammogram images, each with a size of 1024x1024 pixels. In the database MIAS, the
mammogram images are divided into three classes: glandular dense, fatty, and fatty glandular. Each class

is subdivided into images of normal, benign, and malignant tissue.

Each abnormal image, either benign or malignant, has a type such as calcification, mass, and asymmetry.
A total of 207 normal images and 116 abnormal (64 benign and 52 malignant) images were obtained. In
this study, only the abnormal images from the dataset are used to classify the "benign" and "malignant"

classes.

Our construction of the attack has been conducted using Python and consisted of three main stages:

preprocessing, training, and adversarial attack on the abnormal images of breast cancer.
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First stage

A common step in computer-aided diagnosis systems is preprocessing, which improves the characteristics
of the image by applying a series of transformations to improve performance (Li, Ge, Zhao, Guan and Yan,
2018). An applied approach in this research is data augmentation, often used in the context of Deep
Learning (DL), which refers to the process of generating new samples from existing data, used to improve
data sparsity and prevent overfitting, as in (Kooi, Litjens, Ginneken, Gubern-Mérida, Sanchez, Mann,
Karssemeijer 2017), who studied large scale deep learning for computer aided detection of mammographic
lesions. Here, all breast cancer images are rotated to artificially expand the size of a training dataset by
creating modified versions of the same images This allows us to improve the performance and

generalization ability of the model.

Second stage

In the training stage part of this study, we use a novel Convolutional Neural Network (CNN) model that
has been previously proposed to classify benign or malignant tumors. Our methodology has achieved the
highest accuracy rate (which is the ratio of the sum of the true positive and true negative predictions out of
all the predictions), 99% and 97.0% in the train and test data sets, respectively. The high accuracy as well
as other excellent evaluation indicators show that the CNN has a high performance. This is key in our
mammography diagnosis.

Let us remind that the the loss is the error one tries to minimize in the Al process. Figures 2a and 2b provide
an overview of the training process, by depicting the loss and the accuracy of the training (indicated in
green) and validation datasets (indicated in blue) as a function of the epoch. As shown in Figure 2., in some
cases, the loss function and accuracy of the validation set are better than the training set's counterparts. To
clarify the reason, it should be noted that loss and accuracy are measured after each period of training. As
the model improves in the learning process, malignancy status of cancer is more accurately detected in the

validation data set compared to the training dataset.
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Figure 2. Loss and Accuracy Plots for the Training Phase

Figure 3 presents the confusion matrix, which presents the true negative and positives on the main diagonal,
the false negatives on the top right cell and the false positives in the bottom left one. The sum of the main
diagonal cells therefore indicates that, as anticipated above, the accuracy for the train set is 99% (Figure 3
a), and for the test set it is 97% (Figure 3 b). An implication of this result is that the pre-attack model will

detect 97% of all patients with the correct type of cancer.
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Figure 3 a. Confusion Matrix for Train Dataset Figure 3 b. Confusion Matrix for Test Dataset

Figure 3. Confusion Matrices for Train and Test Dataset

Moreover, the sensitivity, which gives the model’s probability for predicting malignancy when the patient
has the malignant cancer, being the ratio of true positives over false negatives and true positives, is 91%

for the training and 97.7% for the test dataset. Similarly, specificity, which indicates the probability of
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predicting a benign model when a patient has benign cancer, being the ratio of true negatives over false
positives and true negatives, is very high: 99% and 99.76% in the train and test sets respectively.

Third stage

To evaluate the model robustness of the diagnosis system, we simulated an adversarial attack with two

widely used methods: PGD and Universal Patch.

Figure 4 shows the results of a PGD attack on mammaography images, where the first column shows clean
images, the second and third columns show perturbations and the results of the misclassification of the
attack.

Table 1 shows the results of our experiments with different degrees of perturbation in the PGD attack. By
its very nature, higher degrees of perturbation lead to much lower performance of the target models.
Although this results in a sure misdiagnosis of the systems, it also increases the probability of the insurer
noticing when the systems are attacked with. Therefore, conspicuous perturbations that could be easily
detected during the insurer's assessment can be weeded out without much effort. There is a trade-off
between the perceptibility and the success rate in PGD Attack. A higher perturbation can make an attack
appear as a certain deception of the classification system, but the attacked image may in the end appear to

be falsified to a trained human eye.

Table 1 The Perturbation Impact on the Accuracy Level of the Target Model

Perturbation e Model Accuracy | Perturbation € Accuracy
0 0.959 0.006 0.626
0.001 0.927 0.007 0.610
0.002 0.878 0.008 0.569
0.003 0.821 0.010 0.512
0.004 0.756 0.015 0.431
0.005 0.691 0.20 0.390
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Figure 4. A Sample of Perturbation Caused by PGD and Misclassification Result

We also report another attack on medical images, the so-called universal attack, which comes directly from
research of (Moosavi-Dezfooli, Fawzi, Fawzi, & Frossardy, 2017). Figure 5 shows the results of the
universal attack on breast cancer image. Not only is benign tumor detected as malignant cancer, like PGD
attacks, but in some cases, adversarial images are even diagnosed with higher accuracy than the original

image.

10


https://doi.org/10.20944/preprints202210.0157.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2022 d0i:10.20944/preprints202210.0157.v1

image + Perturbation
0.76 Malignant Tumor

Original Image
0.95 Benign Tumor

image + Perturbation
0.68 Malignant Tumor

Figure 5. A Sample of Perturbation Caused by Universal attack and Misclassification Result

In the universal attack, the probability of a given classification after the attack can also be higher than before

(see the first line of figure 5).

Overall, he results of the experiments show the model can be fooled for detecting the type of patients’
cancer. Based on the above case studies, there are two possible scenarios:

1. Healthy individuals submit fake claims.

2. Patients can conceal their pre-existing (PED) conditions with malignant cancer.
For the first possible scenario, assume a person that has been diagnosed with a benign tumor based on their
mammogram with 90% accuracy. If the system was attacked by either PGD or by a universal attack, this
time the tumor will be detected as malignant even with higher accuracy than the pre-attacked image. On
the other hand, in the second scenario, we consider an insurance applicant who seeks for insurance coverage
and wants to have low premiums. Also, in this case the individual has an incentive to manipulate the images

through medical doctors or image providers by concealing his risk factors. As it is clear in both cases, an
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attacker - who could be an individual applying directly for insurance or anyone on his behalf - has a financial
motivation to attack an automated Al system in order to gain a higher benefit.

4. Preparing for Adversarial Attacks

A number of papers and books suggest how to make Al systems more robust to adversarial attacks. Defenses
are divided into heuristic defenses, whose effectiveness is based only on experimental evidence, and has no
general validity, and certified or proved defenses, which exploit theoretical properties and are therefore
principle-validated. The most well known category of heuristic defenses is adversarial training. Training
works exactly as the word suggests, very much in the spirit of training of the whole al approach. So-called
certified defenses do not provide only a training, but also a certification of the accuracy of the Al application
with and without specific adversarial attacks.

For a comprehensive taxonomy one can see Ren, Zheng, Qin and Liud (2020), who include among the
heuristic methods FGSM adversarial training, PGD adversarial training, ensemble adversarial training,
adversarial logit pairing, generative adversarial training, randomization, random input transformation,
random noising, random feature pruning, denoising, conventional input rectification, GAN-based input
cleaning, auto encoder-based input denoising, feature denoising, Among the provable defenses they
distinguish semidefinite programming-based certificated defense, distributional robustness certification,
weight-sparse DNNSs, dual approach-based provable defense, KNN-based defenses, Bayesian model and
consistency-based defenses. As for DNNs, which we have applied above, t he book by Warr (2019) explains
how to make .applications of DNNSs to image processing more resilient. (Xu, Ma, Liu, Deb, Liu, Tang, and

Jain, 2020) extend the analysis to DNNs applied to graphs and text.

It is obvious from the rich taxonomy above that the artirelly at disposal in order to prevent adversarial
attacks is rich. Sometimes defense methods are also quite powerful. Kurakin, Goodfellow and Bengio
(2017b) for instance show, using ImageNet, that adversarially trained models perform better on adversarial
examples than on non-attacked ones, as it happened in some of our examples. That is the case because when
constructing the adversarial attack one uses the true characteristics of the example, and the model learns,

as any Al model.

12
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Most of the current literature however focuses on specific attacks and on how to strenghten the
corresponding Al applications, because there is neither a universal patch nor a consensus on the best defense
for a specific attack.

In that sense Ren et al. (2020) state that certified attacks are the state of the art, although, until now, they
present the problem of being seldom scalable. There is no defense which succeeds in being efficient and
effective against adversarial attacks, since the most effective defense, which according to them is an
heuristic adversarial training, is too computationally intensive to be efficient. Other defenses, which are
computationally less costly, are quite vulnerable and do not guarantee enough robustness in industries like

finance and insurance.

While the research on defenses continues, it is our opinion that to make an Al model in insurance more
robust against potential adversarial attacks requires a holistic view. It is not just about defending it through
technical solutions, but about understanding the broader impact of such attacks on an organization, and

detect where attacks can hurt more, so as to prioritize the search for resiliency.

The first countermeasure one can take adopting this holistic view is similar to the approach suggested by
the European Commission and the Joint Research Centre when evaluating model risk and validating models
for policy purposes, namely, to conduct sensitivity analysis on the input data and so-called “sensitivity
audits”. Sensitivity audits ascertain how model results used in impact assessments and elsewhere depend
upon the information fed into them, their structure and underlying assumptions. It extends the impact
assessment of model assumptions to different sets of input data. For examples of sensitivity audit

applications see the EU Science Hub.*

Given the wide experience actuaries, risk managers, tariff producers have of data and its order of magnitude,
sensitivity analysis is likely to be conducted effectively in insurance, at least when adversarial attacks are
not as subtle as the health insurance one we provided, or when, even in that case, the image is complemented

by more medical data about the patient.

This does not mean to withhold innovation. In this sense, the World Economic Forum recommends to
empower employees so that they look responsibly at Al and raise concerns about it, with the aim of making

innovation more helpful, not of lowering its pace. Also in preparing against adversarial attacks, what

% https://ec.europa.eu/search/?QueryText=sensitivity+audit&op=Search&swlang=en&form_build_id=form-
WZ65edbU064IIfvfZtaOeEFLhj510LUbYfEFLNJ707Q&form_id=nexteuropa_europa_search_search_form
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matters according to the World Economic Forum is to find an equilibrium between the autonomy of Al and
human oversight.®> Sensitivity is just one step in that direction.

5. Conclusions

Summing up, insurance fraud can be typically qualified as soft insurance fraud and hard insurance fraud.
Soft fraud is usually unplanned and arises when the opportunity presents itself. It is the more prevalent form
of fraud. An example of this type of fraud would be getting into a car accident and claiming your injuries
are worse than they really are, getting you a bigger settlement than you would get if you were telling the
truth about your injuries. Hard fraud takes planning. An example of hard fraud would be falsifying
documentation of an accident on purpose so that you can claim the insurance money. Adversarial attacks
gualify as hard insurance fraud. The ability to monitor and pre-empt adversarial attacks requires insurance
companies to upskill their abilities, beyond, for example, recourse to private investigators®. This recourse
has been quite pervasive in the US, because there, the total cost of insurance fraud (excluding health
insurance) is estimated to exceed $40 billion per year, which means an increase in premiums $400 and $700
per year and per household. In the era of Al, defenses against adversarial Al could save a lot of this money.7
How to do this is still an open issue, with an holistic, sensitivity-based approach as a first, universal defense,
together with a balance between autonomy and human oversight in Al applications.

Appendix
If an attacker has access to the architecture and parameters of the model, these models are called white-box
attacks. If not, these methods are called black-box attacks.

1. White-Box Attacks

To theoretically explain the adversarial attack of group “a”, let the input domain X € R¢, the class domain
be Y € {0,1}¢, and let H(x): X — Y be a functional mapping the d —dimensional input domain X toa C —
dimensional discrete class domain. Denote the loss function of a network by J(8, x,y), where 6 are the
parameters of the network, x is the input image and y is the class label associated with x. Given a test image
x with class y, the goal of an attack procedure is to generate a new image x4, such that H(x,4,,) # y and

the amount of perturbation is minimized:

5 http://ow.ly/01Uh50L2n5E

6 See for instance https://www.pinow.com/articles/305/insurers-on-the-alert-for-false-claims-turn-to-private-
investigators

7 See https://www.fbi.gov/stats-services/publications/insurance-fraud
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minimize ||xqq, — x|l 5. t. H(Xgay) # ¥ (1.1)

where ||. || ,is the norm that measures the extent of perturbation. Some commonly used L,norms are Ly, L,
or L. This, as mentioned earlier, applies to an untargeted attack, which means that the attacker only needs
to perturb input x to any class that is incorrect. The attack can also be “targeted”, in which case the input
x is perturbed into a specific incorrect class yiqrger # y. Accordingly, the problem of the targeted

adversarial attack generation is defined as:

minimize |[Xqq, — x”p s.t.H(xqay) = Ytarget Y 1.2)

In general, targeted adversarial examples are more difficult to generate than untargeted adversarial
examples. Different ways to solve both (1.1) and (1.2) lead to different attack methods that have been
proposed to generate adversarial examples to attack DNN. Note that the generation of adversarial examples
is a post-processing method for an already trained network. Therefore, adversarial generation updates the
input x instead of the model parameters, which contrasts with network training where the parameters 6 are
updated. Moreover, adversarial generation aims to maximize the loss function to fool the network to make
errors, while in the training phase the network aims to minimize the loss function. The following is an

overview of the most widespread adversarial attacks.

e Fast Gradient Sign Method
e Projected Gradient Descent
o DeepFool

e Carlini and Wagner

1.1 Fast Gradient Sign Method: The Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) can
be targeted or untargeted. FGSM falls into the group that maximizes the attack success rate given a limited
budget, which perturbs each feature of an input x by a small amount towards maximizing the prediction
loss J (6, x,y). FGSM performs a single gradient descent step in the case of a targeted attack (¢ is the target

label instead of true label y)

Xqay = X —€.5ign (V,. J (0, x,t)) (1.3)
and a single gradient ascent step in the case of untargeted attack

Xqay = X + €.sign (V,. J(6,x,y)) (1.4)
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FGM is a fast method that only perturbs the input once, with € — the direction of the steepest ascent - that
is fixed. Therefore, it is not guaranteed to successfully perturb the input to an adversarial class (i.e.,
H(x.4,) # y). The success rate can be improved by increasing the perturbation magnitude e, although this

may result in large perturbations that are perceptible to human observers.

1.2 Projected Gradient Descent: As a simple extension of FGSM, Projected Gradient Descent (PGD)
(Kurakin et al., 2017a) applies FGSM iteratively with a small step size and projects the intermediate results
around the original image x. In (1.5), clip, ¢(.) is an element-wise clipping to ensure that this condition is
satisfied. In general, the projection onto an € — [P —ball is a difficult problem and closed form solutions

are only known for a few values of p. Formally, it is

xgdv =X, xtizdv = Clipx,e (xtlz?i}: + GSign(vxé—d}} ](9; x}l;l%’ y))) (1'5)
The perturbation process can stop in two cases: first, when the misclassification H(x,4,,) # v is reached,

or second, when a fixed number of iterations has been performed.

Another white-box attack method is called Iterative FGSM (I-FGSM). It was introduced in (Kurakin et al.,
2017b) and it iteratively performs the FGSM attack. This is an improved white box attack in which the
FGSM attack is updated iteratively at a smaller step size and clips the signals of the intermediate results to
ensure its proximity to the original signal. Essentially, I-FGSM is the same as PGD, the only difference
being that the PGD attack initializes the perturbation with a random noise, while I-FGSM initializes the
perturbation with only zero values (Zhang , Benz, Lin, Karjauv, Wu and Kweon, 2021). This random
initialization can help improve the success rate of the attack, especially when the number of iterations is

limited to a relatively small value.

1.3 DeepFool: The DeepFool algorithm (Moosavi-Dezfooli, Fawzi, & Frossard, 2016) was developed with
the goal of providing an efficient yet accurate method for computing minimal perturbations with respect to
the [P —norm. Since DeepFool iteratively produces the perturbations by updating the gradient with respect
to the decision boundaries of the model, it falls into the attack category that attempts to minimize the size
of the perturbation. The authors propose DeepFool as an untargeted attack, but the algorithm can in principle

be easily modified for the targeted setting.

By considering DNNs, Dezfooli et al. argue that the minimum perturbation of the adversary can be
constructed as an orthogonal projection onto the nearest decision boundary hypersurface. To account for
the fact that DNNs are not truly linear, the authors propose an iterative procedure in which the orthogonal
projection onto the first-order approximation of these decision boundaries is computed at each step. The

search ends with finding a true adversarial example (Qiu et al., 2019).
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1.4 Carlini & Wagner Attack (C&W): C&W's attack (Carlini and Wagner, 2017) attempts at finding the
minimally biased perturbation problem - similarly to the DeepFool algorithm - as follows:

min|lx — x'||3 + c. H(x',t), s.tx' €[0,1]™ (11.6)

Carlini and Wagner study several loss functions and find that the loss that maximizes the gap between the
target class logit and the highest logit (without the target class logit) leads to superior performance (C.
Zhang et al., 2021). Then H is defined as H(x', t) = (max;.:Z(x"); — Z(x");)™, where Z is the last layer
score in DNNs before the so-called Softmax. Minimizing J(x’, t) encourages the algorithm to find an x’ that
has a larger score for class t than any other label, so the classifier will predict x’ to be class t. Next, by

applying a line search to the constant c, we can find the one that has the smallest distance from x.

The function H(x, y) can also be considered as a loss function for data as J(x, y). It penalizes the situation
where there are some labels i whose values Z(x); are larger than Z(x),,. It can also be called a margin loss

function.

The authors claim that their attack is one of the strongest attacks that breaks many defense strategies that
have proven to be successful. Therefore, their attack method can be used as a benchmark to study the

security of DNN classifiers or the quality of other adversarial examples.

2 Black-Box Attacks

While the definition of a "white-box" attack on DNNs is clear and precise, i.e., providing complete
knowledge of and full access to a targeted DNN, the definition of a "black-box" attack on DNNs may vary
with respect to an attacker's capabilities. From an attacker's perspective, a black-box attack may refer to the
most difficult case where only benign images and their class labels are given, but the targeted DNN is
completely unknown. Therefore, attacks that mainly focus on backpropagation information which is not

available in the black box setting. Here, two common black-box attacks are described:

e  Substitute Model

e Gradient Estimation

2.1 Substitute Model: the paper (Papernot, McDaniel, Goodfellow, Jha, Celik, and Swami, 2017)
presented the first effective algorithm for a black-box attack on DNN classifiers. An attacker can only input
x to obtain the output label y from the classifier. The attacker may have only partial knowledge of 1) the
classifier's data domain (e.g., handwritten digits, photographs, human faces) and 2) the classifier's
architecture (e.g., CNN, DNN).
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The authors in (Zhang et al., 2021) exploit the “transferability” property (defined in Section 2.3 above) of
adversarial examples: an example x' can attack H,, it is also likely to attack H,, which has similar structure
to H;. Therefore, the authors present a method to train a surrogate model H' to mimic the target-victim
classifier H, and then create the adversarial example by attacking surrogate model H'. The main steps are

as follows:

1. Synthesize a substitute training dataset: Create a “replica” training set. For example, to attack
handwritten digits recognition, create an initial substitute training set X by: a) requiring samples
from the test dataset; or b) creating handcrafting samples.

2. Training the surrogate model: Feed the surrogate training dataset X into the victim classifier to
obtain their labels Y. Select a surrogate DNN model to train on (X,Y) to obtain H'. Based on the
attacker’s knowledge, the chosen DNN should have a similar structure to the victim model.

3. Dataset augmentation: Augment the dataset (X, Y) and iteratively re-train the substitute model H'.
This procedure helps to increase the diversity of the replica training set and improve the accuracy
of the substitute model H'.

4. Attacking the substitute model: use the previously presented attack methods, such as FGSM, to
attack the model H'. The generated adversarial examples are also very likely to mislead the target

model H, due to the “transferability” property.

2.2 Gradient Estimation: Another approach for black-box attacks is the gradient estimation method ZOO,
proposed by (Chen, Zhang, Sharma, Yi and Hsieh, 2017). They apply zero-order optimization over pixel-
wise finite differences to estimate the gradient, and then construct adversarial examples based on the

estimated gradient using white-box attack algorithms.

According to their assumption of having access to the prediction confidence from the output of the victim
classifier, it is not necessary to build the substitute training set and model. Chen et al. give an algorithm to
obtain the gradient information around the victim sample by observing the changes in the prediction

confidence H(x) as the pixels of x are changed.

Equation (1.7) shows that for each index i of sample x, we add (or subtract) to an e multiple of another

vector e; to have x; = x * ee; by. If € is small enough, we can extract the gradient information for H(.)
by

0H (x) - H(x + €e;) —H(x — €e;) 1.7
dx; ~ 2€
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3. Universal Attack

Adversarial attacks described so far always manipulate a single image to fool a classifier with the specific
combination of the image and an adversarial perturbation. In other words, these perturbations are image
dependent, i.e., one cannot apply a perturbation designed for image A to another image B and expect the
attack to work successfully. In the paper (Moosavi-Dezfooli et al., 2017), an algorithm was presented to
create universal or image-independent perturbations. Universal perturbations can pose a greater threat
than the previous ones in this Appendix. The goal of a universal perturbation is to make the classifier
classify the perturbed image differently from what is should, on at least a percentage 1 — § of cases. Let

H() be the classifier, n be the adversarial perturbation, P denote the probability. The universal goal is
P(Hx+n) #HXx)=1-6

This goal must be reached under a constraint, that the distance of the perturbed image from the original is

small, to ensure imperceptibility of the perturbation and to fool as many images as possible:
<
Inll, <€ (1.8)

In the constraint the p —norm is required to be smaller than a constant e meat to be small.
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