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A Duality Principle and a Concerning Convex Dual
Formulation Suitable for Non-Convex Variational
Optimization

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, Florian6polis - SC, Brazil

Abstract: This article develops a duality principle and a related convex dual formulation suitable
for a large class of models in physics and engineering. The results are based on standard tools of
functional analysis, calculus of variations and duality theory. In particular, we develop applications
to a model in non-linear elasticity.
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model in non-linear elasticity
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1. Introduction

In this article we establish a duality principle and a related convex dual formulation for a large
class of models in non-convex optimization.

More specifically, the main duality principle is applied to a model in non-linear elasticity.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,10,11] and on a D.C.
optimization approach developed in Toland [12].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [4-7,9]. Finally, the model in non-linear
elasticity here presented may be found in [8].

Remark. In this text we adopt the standard Einstein convention of summing up repeated indices unless
otherwise indicated.

At this point we start to describe the primal and dual variational formulations.

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).
For the primal formulation, consider a functional | : V — R where

Jw) = 5 [ Hyeoen(u) dx — G, f) 2 g

Here {H;ji; } is a fourth order symmetric positive definite tensor and

1 1
{eij(”)} = {Z(ui'j + u]',i) + 2(”m,i”m,j)} ’
where
u=(ug,up,uz) €V = WOM(Q;RS)

denotes the field of displacements resulting from the action of the external forces f = (f1, f2, f2) €
L%(0); R3) on the elastic solid comprised by Q) C R3.
Moreover, denoting Y = Y* = LZ(Q,' R3X3), the stress tensor o € Y* is defined by
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{oij(u)} = {Hjjper (u) }-
At this point we define the functionals F; : VXY - R, F,: V -+ Rand G: V — Rby

wo) = ~ K[
Fi(u,o0) = -— —/ u;;)° dx
=2 /0

3 Ky 2

+ Yo [+ (@inttng) i+ £)? dx

i=1 Q

K

22 [ sy dx— (i, f) @

for appropriate positive real constants, K, K1, Ky to be specified,

_K

F(u) = 3 it 4%,

and

1 3 K )
G(u) =3 /()Hi]'kleij(u)ekl(”) dx + 1221 5 /Q(ui,i) dx.
Here, it is worth highlighting that

3

K *
Fi(u,0) = B(u) + G(u) = J(u) + ) 71 /Q(Ul-j,]- + (Cimbm,j) j + fi)rdx,Yu eV, oceY*
i=1

Furthermore, we define the functionals F; : [Y*]*> 5 R, F; : Y* - Rand G* : [Y*]> = Rby

F(0,QQ) = Su‘l:/’{_<ui,jr‘7ij>L2 — (uij, Qij) 2 + (uij, Qi) 2 — Fi(u,0)},
ue

F(Q)

sup {((Uz)zj/ Qij)pz — % /0(02)1‘]‘(02)1']' dx}

v eY
1 ~ =~
= 5% iy dx, ®)
and

G*"(0,Q) = sup  {((01)ij, 7ij) 2 + ((v2)ij, Qij) 12 — G(v1,02)},
(v1,02)€Y XY

where
G(oy,00) = %/QHijkl ((Ul)z‘j*";(vz)mi(%)mj) ((Ul)kl'f‘;(vZ)mk(vZ)ml) dx
3 K
+i_212/0((7]2>ii>2 dx, @

so that 1 1
G*(0,Q) = 5 /()(U{;)QmiQmj dx + 3 /Qﬁijklaij‘fkl dx,

if © € B* where

B* = {0' eY* : ||0'ij||oo < K/8, Vl,] S {1,2,3} and {0’1‘]‘} < —Sld},
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for some small parameter ¢ > 0 and where I; denotes the 3 x 3 identity matrix. Observe that such a
definition for B* corresponds to the case of negative definite stress tensors, which refers to compression
in a solid mechanics context.

Here
o1 +K o 013
K
{oit=1| o 022 + K 023 Q)
031 032 033 + K
K _ 5 Ky—-1
gij = {‘Tij ’

and
o -1
{Hiju} = {Hiju }
in an appropriate tensor sense.
At this point we define

J'(0,Q,Q) = —F(0,Q,Q) + K (Q) — G*(¢,Q).
Specifically for
Ky > Kq > K> max{1/¢2,1,K3, | Hija[l 3,
we define
D*={QeY" : [[Qjllc <K, Vi,j € {1,2,3}}.
By direct computation, we may obtain

?J*(0,Q, Q)
{ 303Q } <O

and

?J*(0,Q,Q)
(750

on B* x D* x Y*, so that J* is concave in (¢, Q) and convex in Q on B* x D* x Y*.
2. The main duality principle and a related convex dual variational formulation

Our main duality principle is summarized by the following theorem.

Theorem 1. Considering the statements and definitions of the previous section, suppose (0, Q, é) € B* x
D* x Y* is such that

5J(6,Q,Q) = 0.
Let ug € V be such that

oF; (Q)

(u0)ij =

Under such hypotheses, we have

. > K R ,
J(ug) = mln{](”)+izl21/()(‘Tij,j+(‘7imum,j),j+fi)2 dx}

= inf { sup (0, Q, Q)}
Q

(0,Q)E€B* x D*

= J1*6,0,0). ©)
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Proof. Observe that there exists 71 € V such that, defining
H(u,0,Q,Q) = —(uij, 03j) 12 — (uij, Qij) 2 + (uij, Qi) 2 — Fi(u,0),

we have .
0H(1,0,Q,Q)
P AR e S a— O
ou

and . .
F(0,0,Q) = H(1,0,0,Q).

Moreover, from the variation in of J* in Q, we obtain

where

= 1. @)

From such last two equations we get

2 N

_B(Q) @00 .

(uo)ij = —2= ’ =1,
1 aQy 9Qjj v
so that from the concerning boundary conditions,
Uupg = .
On the other hand, from the variation of [* in Q we have
_F@,00) 610,09 _
0Qj; 0Qj; ’
so that
(u0)ij — 0K Quj =0,
and therefore
Qij = Oim (u0) m,j + K0ij(u0); -
Finally, from the variation of [* in o we obtain
LR0,00) 6,0 _

801-]- 8(71-]-
so that

1 n
(u0)ij+ E(MO)m,i(MO)m,j — Hiji0r = 0.
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Thus, since { Hyjy; } is symmetric, we get
& = Hijrrex (uo)-
From these last results and from
oH(1,6,0,0)
=0
Jou
we obtain
0ijj + (Oim(uo0)m,),j + fi =0, Vi € {1,2,3},
so that
6] (uo) = 0.
Finally, from such last results and the Legendre transform properties, we have
F(6,Q,Q)
= —((u0)i, 03) 12 — ((u0)ij, Qij) 12 + ((40)ij, Qij) 12 — Fu(u0, ), ®)
F5(Q) = ((u0)ij, Qij) 12 — F2(uo),
and
G*(0,Q) = ((u0)ij, 0ij) 12 + ((u0)i,j, Qij) 12 — G(uo)-
From these results, we obtain
]*(ﬁIQA/Q) = _F*(A/Q/Q)_‘_FZ*( ~)_G*(&/QA)
= F(uo,0) — Fa(uo) + G(uo)
= J(uo). )
Joining the pieces, we have got
. 3, Ky . . 2
J(uo) = min J(u) + l; 5 /Q(Uz‘j,j + (Cimttm,) j + fi)” dx
= inf sup  J*(0,Q,Q)
QeY* | (¢,Q)eB* xD*
= J*0,Q,Q). (10)

The proof is complete.
O

Remark. A similar result is valid if we would define
B* ={ceY" : |0l < K/8, Vi,j €{1,2,3} and {0} > elz}.
This case refers to a positive definite tensor {c;; } and the previous case to a negative definite one.

3. A closely related primal-dual variational formulation for a similar model

In this section we present a new primal-dual variational formulation for a closely related model
of plates.
At this point we start to describe the primal formulation.
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Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness /1. The boundary of (), which is assumed to be regular (Lipschitzian), is denoted by 0Q).
The vectorial basis related to the cartesian system {x1, x2, x3} is denoted by (a,, a3), where « = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to (). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

A ~

u = {ua, ﬁ3} = ﬁaaa + 123&13.
The Kirchhoff-Love relations are

ﬁa(xlrx2/ x3) = utx(xlle) - x3w(x1/ x2),1x

and ﬁ3(X1, X2, X3) = w(xl, Xz). (11)
Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where
U = {(u,w) € WAQRY) x W2(Q),

d
ua:w:£:0 on o0}

= Wy (O R?) x W2 (Q).

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We define the operator A : U — Y x Y, where Y = Y* = L2((); R?>*?), by

Au) = {r(u),x(u)},

Uy g+ U WaW,
'Ya/S(u) = 2 5 Ba + ucz ﬁ/

Ka/g(u) = —Wap-

The constitutive relations are given by
Nﬂéﬁ(”) = Huﬁ/\y'Y/\y(u)r (12)

Ma/i(u) = hzxﬁ/\yK/\y (u), (13)
2
where: {Hg,, } and {ha‘Bx\u =15
now on, we denote {Hupry} = {Haprn} " and {happn} = {Hapru}
Furthermore {N,z} denote the membrane force tensor and {M,g} the moment one. The plate
stored energy, represented by (G o A) : U — R is expressed by

Hupay }, are symmetric positive definite fourth order tensors. From

(GoA)(u 2/ 1) Yap(u) dx + 2/ Map (1)Kap (1) dx (14)
and the external work, represented by F : U — R, is given by
F(u) = (w, P) 2 + (ta, Pa) 12, (15)

where P, Py, P, € L?(Q) are external loads in the directions a3, a; and a; respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) — F(u)
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More explicitly, recalling that

Uy g+ Ug, 1
'704[3(”) = % + Ew,lxw,ﬁ/

we have

J(u)

1 ua,ﬁ + uﬁ,a 1 u)\,]i + u]/l,)\ 1
= E /() Hﬂ(ﬁ)\]i (2 + Ew,aw,ﬁ f + Ew,)\w’y dx

1
+5 /Q oA apWry dX — (Ua, Po)p2 — (w, P)p2

1
= _<7a/3(u)/ Na,B>L2 + 2 /Q HaﬁAy')/aﬁ(u)’Y/\y(u) dx

1 Upp +Upa 1
+§ /O ha,;;//\,yw,ww,)w dx + <2 + Ew,,xw,ﬁ, Nucﬁ

—(ua, Pu)p2 — (w, P) 2

. 1
;2{/{(0“5, Nug) 2 + 5 /Q HypruVapVau dx}

1

+ inf {/ haﬁ/\},w/“}gwrw dx
(e[ 270

n <u,x,,g + Ug 1

T Jung N ) = (R} z = (D)

L2

v

v

1 7 —
_E/QH"‘.B/\VN"‘.BN/\V dx
1 h J 1
+§ /Q wpAuWapW Ay dx + 5 Wat,p, Nyg - —(w, P)2
= Ji(u,N), (16)
Vu € U,N € B*, where B* = B} N B;,
Bik = {N ey : N"‘ﬁ/ﬁ + P, =0, in Q},

By ={NeY" : [[Nllo <K},

for an appropriate constant K > 0
At this point, we also define

Vi= {T/l el : ||w,alg||oo < Ksj, \V/IX,‘B S {1,2}},

for an appropriate constant K3 > 0

We highlight the constants K3 > 0 and K > 0 must be such that the restrictions which define B}
and Vj are not active at a concerning critical point.

Here we present the following primal-dual formulation suitable for an optimization of the original
primal variational formulation

* * K1 2
(4, N) = Ji (1, N) + = /O ((raprutong) o5 — (Nupwp)a — P) dx.

More specifically,
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% 1 [ =
J(u,N) = —Q/QHaﬁAyNﬂéﬁNM dx
1 1
+§ /Q h,x,ﬁ,/\,yw,,xﬁw,;w dx + <2w""wfﬁ’N’X/3>L2
—(w, P)p2
K 2
+5 | ((hepruta) g = (Nopwg) o —P) dx. (17)

We may observe that for

1
K~O|—s
4(|H||K3

and K3 > 0 sufficiently small, 5 is convex in u and concave in N and on V; x B*.
Finally, we may also define J3 by

J3(u) = sup J5(u,N).
NeB*

We observe that J3 has a large region of convexity around any critical point.

4. A duality principle for a related model in phase transitions

In this section we present a duality principle for a related model in phase transition.
Let Q) = [0,1] C R and consider a functional | : V — R where

2/( Zdx + = /udx

V={ueW" Q) : u(0) =0and u(1) = 1/2}.

and where

A global optimum point is not attained for ] so that the problem of finding a global minimum for
J has no solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

From the Ekeland variational principle the equation

0] (ug) =0,

may be approximately satisfied by points for which ] is arbitrarily close to its infimum.
We intend to use duality theory to approximately solve such a global optimization problem.
At this point we define, F: V — Rand G: V — Rby

2/ —1 dx—i—z/ X,

1 K
Gu)=—= [ u*d ++—/ "2 dx,
(u) 1 dx 5 Q(u) x

and

2
so that
J(u) = F(u) — G(u),Yu € V.

Observe that if K > 0 is large enough, both F and G are convex.
Denoting Y = Y* = L2(Q) we also define the polar functionals F* : Y* — Rand G* : Y* — Rby

F*(0%) = sgg{w, v) 2 = F(u)},
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and
G*(v*) = sup{(u,v*);2 — G(u)}.

uev
From the standard Toland result in [12] for D.C. optimization, we may obtain
inf = inf {F(u) — = inf {G*(v*) — F*(v")}.
inf J(u) = inf {F(u) — G(u)} = inf {G"(v") —F"(v")}
In fact, we may also obtain
inf = inf G*(v*) = (u,v") 2+ F(u)}.
i j)= it (G0~ (o) + Fw)

With such results in mind, we define a primal dual variational formulation for the primal problem,
represented by J; : V x Y* — R, where

Ji(u,0%) = G*(v*) — (u,v") ;2 + F(u).

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm.

1. SetK > 1.and 0 < e € 1.
2. Choose 11 € V, such that |[u1]]1,00 < K/4.
3. Setn =1.
4. Calculate v}, solution of equation:
O (1, 03) _
21 nl —,
ov*
that is
G ()
ov* - bn — 0/
so that
oF G (uy)
" Ju
5. Calculate u,1 by solving the equation:
i i)
ou ’

that is oF
—vy + % =0.

6. If [[uy — uy41| < ¢ then stop, else set n := n + 1 and go to item 4.

We have obtained numerical results for K = 10000000. For the solution u( obtained please see
Figure 1.
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Figure 1. solution u(x) through the primal dual formulation for a large K > 0
5. Conclusion

In this article we have developed a convex dual variational formulation suitable for non-convex
variational primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principle here presented is applied to a model in non-linear
elasticity. In a future research, we intend to extend such results for other related models of plates and
shells.
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