
Article

Not peer-reviewed version

A Duality Principle and a Concerning Convex Dual Formulation Suitable for Non-convex Variational Optimization

[Fabio Botelho](#) *

Posted Date: 12 January 2023

doi: 10.20944/preprints202210.0116.v8

Keywords: Convex dual variational formulation; duality principle for non-convex optimization; model in non-linear elasticity

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Duality Principle and a Concerning Convex Dual Formulation Suitable for Non-Convex Variational Optimization

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, Florianópolis - SC, Brazil

Abstract: This article develops a duality principle and a related convex dual formulation suitable for a large class of models in physics and engineering. The results are based on standard tools of functional analysis, calculus of variations and duality theory. In particular, we develop applications to a model in non-linear elasticity.

Keywords: Convex dual variational formulation, duality principle for non-convex optimization, model in non-linear elasticity

MSC: 49N15

1. Introduction

In this article we establish a duality principle and a related convex dual formulation for a large class of models in non-convex optimization.

More specifically, the main duality principle is applied to a model in non-linear elasticity.

Such results are based on the works of J.J. Telega and W.R. Bielski [2,3,10,11] and on a D.C. optimization approach developed in Toland [12].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results on convex analysis and duality theory are addressed in [4–7,9]. Finally, the model in non-linear elasticity here presented may be found in [8].

Remark. *In this text we adopt the standard Einstein convention of summing up repeated indices unless otherwise indicated.*

At this point we start to describe the primal and dual variational formulations.

Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J : V \rightarrow \mathbb{R}$ where

$$J(u) = \frac{1}{2} \int_{\Omega} H_{ijkl} e_{ij}(u) e_{kl}(u) dx - \langle u_i, f_i \rangle_{L^2}. \quad (1)$$

Here $\{H_{ijkl}\}$ is a fourth order symmetric positive definite tensor and

$$\{e_{ij}(u)\} = \left\{ \frac{1}{2}(u_{i,j} + u_{j,i}) + \frac{1}{2}(u_{m,i}u_{m,j}) \right\},$$

where

$$u = (u_1, u_2, u_3) \in V = W_0^{1,4}(\Omega; \mathbb{R}^3)$$

denotes the field of displacements resulting from the action of the external forces $f = (f_1, f_2, f_3) \in L^2(\Omega; \mathbb{R}^3)$ on the elastic solid comprised by $\Omega \subset \mathbb{R}^3$.

Moreover, denoting $Y = Y^* = L^2(\Omega; \mathbb{R}^{3 \times 3})$, the stress tensor $\sigma \in Y^*$ is defined by

$$\{\sigma_{ij}(u)\} = \{H_{ijkl}e_{kl}(u)\}.$$

At this point we define the functionals $F_1 : V \times Y \rightarrow \mathbb{R}$, $F_2 : V \rightarrow \mathbb{R}$ and $G : V \rightarrow \mathbb{R}$ by

$$\begin{aligned} F_1(u, \sigma) &= - \sum_{i=1}^3 \frac{K}{2} \int_{\Omega} (u_{i,i})^2 dx \\ &\quad + \sum_{i=1}^3 \frac{K_1}{2} \int_{\Omega} (\sigma_{ij,j} + (\sigma_{im}u_{m,j})_j + f_i)^2 dx \\ &\quad + \frac{K_2}{2} \int_{\Omega} u_{i,j}u_{i,j} dx - \langle u_i, f_i \rangle_{L^2}, \end{aligned} \quad (2)$$

for appropriate positive real constants, K, K_1, K_2 to be specified,

$$F_2(u) = \frac{K_2}{2} \int_{\Omega} u_{i,j}u_{i,j} dx,$$

and

$$G(u) = \frac{1}{2} \int_{\Omega} H_{ijkl}e_{ij}(u)e_{kl}(u) dx + \sum_{i=1}^3 \frac{K}{2} \int_{\Omega} (u_{i,i})^2 dx.$$

Here, it is worth highlighting that

$$F_1(u, \sigma) - F_2(u) + G(u) = J(u) + \sum_{i=1}^3 \frac{K_1}{2} \int_{\Omega} (\sigma_{ij,j} + (\sigma_{im}u_{m,j})_j + f_i)^2 dx, \forall u \in V, \sigma \in Y^*.$$

Furthermore, we define the functionals $F_1^* : [Y^*]^3 \rightarrow \mathbb{R}$, $F_2^* : Y^* \rightarrow \mathbb{R}$ and $G^* : [Y^*]^2 \rightarrow \mathbb{R}$ by

$$F_1^*(\sigma, Q, \tilde{Q}) = \sup_{u \in V} \{-\langle u_{i,j}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,j}, Q_{ij} \rangle_{L^2} + \langle u_{i,j}, \tilde{Q}_{ij} \rangle_{L^2} - F_1(u, \sigma)\},$$

$$\begin{aligned} F_2^*(\tilde{Q}) &= \sup_{v_2 \in Y} \left\{ \langle (v_2)_{ij}, \tilde{Q}_{ij} \rangle_{L^2} - \frac{K_2}{2} \int_{\Omega} (v_2)_{ij}(v_2)_{ij} dx \right\} \\ &= \frac{1}{2K_2} \int_{\Omega} \tilde{Q}_{ij}\tilde{Q}_{ij} dx, \end{aligned} \quad (3)$$

and

$$G^*(\sigma, Q) = \sup_{(v_1, v_2) \in Y \times Y} \{ \langle (v_1)_{ij}, \sigma_{ij} \rangle_{L^2} + \langle (v_2)_{ij}, Q_{ij} \rangle_{L^2} - \hat{G}(v_1, v_2) \},$$

where

$$\begin{aligned} \hat{G}(v_1, v_2) &= \frac{1}{2} \int_{\Omega} H_{ijkl} \left((v_1)_{ij} + \frac{1}{2} (v_2)_{mi} (v_2)_{mj} \right) \left((v_1)_{kl} + \frac{1}{2} (v_2)_{mk} (v_2)_{ml} \right) dx \\ &\quad + \sum_{i=1}^3 \frac{K}{2} \int_{\Omega} ((v_2)_{ii})^2 dx, \end{aligned} \quad (4)$$

so that

$$G^*(\sigma, Q) = \frac{1}{2} \int_{\Omega} (\overline{\sigma_{ij}^K}) Q_{mi} Q_{mj} dx + \frac{1}{2} \int_{\Omega} \overline{H_{ijkl}} \sigma_{ij} \sigma_{kl} dx,$$

if $\sigma \in B^*$ where

$$B^* = \{\sigma \in Y^* : \|\sigma_{ij}\|_{\infty} \leq K/8, \forall i, j \in \{1, 2, 3\} \text{ and } \{\sigma_{ij}\} < -\varepsilon I_d\},$$

for some small parameter $\varepsilon > 0$ and where I_d denotes the 3×3 identity matrix. Observe that such a definition for B^* corresponds to the case of negative definite stress tensors, which refers to compression in a solid mechanics context.

Here

$$\{\sigma_{ij}^K\} = \begin{bmatrix} \sigma_{11} + K & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} + K & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} + K \end{bmatrix} \quad (5)$$

$$\overline{\sigma_{ij}^K} = \{\sigma_{ij}^K\}^{-1},$$

and

$$\{\overline{H}_{ijkl}\} = \{H_{ijkl}\}^{-1}$$

in an appropriate tensor sense.

At this point we define

$$J^*(\sigma, Q, \tilde{Q}) = -F_1^*(\sigma, Q, \tilde{Q}) + F_2^*(\tilde{Q}) - G^*(\sigma, Q).$$

Specifically for

$$K_2 \gg K_1 \gg K \gg \max\{1/\varepsilon^2, 1, K_3, \|H_{ijkl}\|\},$$

we define

$$D^* = \{Q \in Y^* : \|Q_{ij}\|_\infty \leq K_3, \forall i, j \in \{1, 2, 3\}\}.$$

By direct computation, we may obtain

$$\left\{ \frac{\partial^2 J^*(\sigma, Q, \tilde{Q})}{\partial \sigma \partial Q} \right\} < 0,$$

and

$$\left\{ \frac{\partial^2 J^*(\sigma, Q, \tilde{Q})}{\partial \tilde{Q}^2} \right\} > 0,$$

on $B^* \times D^* \times Y^*$, so that J^* is concave in (σ, Q) and convex in \tilde{Q} on $B^* \times D^* \times Y^*$.

2. The main duality principle and a related convex dual variational formulation

Our main duality principle is summarized by the following theorem.

Theorem 1. Considering the statements and definitions of the previous section, suppose $(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) \in B^* \times D^* \times Y^*$ is such that

$$\delta J^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) = \mathbf{0}.$$

Let $u_0 \in V$ be such that

$$(u_0)_{i,j} = \frac{\partial F_2^*(\tilde{Q})}{\partial \tilde{Q}_{ij}}.$$

Under such hypotheses, we have

$$\begin{aligned} J(u_0) &= \min_{u \in V} \left\{ J(u) + \sum_{i=1}^3 \frac{K_1}{2} \int_{\Omega} (\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im} u_{m,j})_{,j} + f_i)^2 dx \right\} \\ &= \inf_{\tilde{Q} \in Y^*} \left\{ \sup_{(\sigma, Q) \in B^* \times D^*} J^*(\sigma, Q, \tilde{Q}) \right\} \\ &= J^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}). \end{aligned} \quad (6)$$

Proof. Observe that there exists $\hat{u} \in V$ such that, defining

$$H(u, \sigma, Q, \tilde{Q}) = -\langle u_{i,j}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,j}, Q_{ij} \rangle_{L^2} + \langle u_{i,j}, \tilde{Q}_{ij} \rangle_{L^2} - F_1(u, \sigma),$$

we have

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial u} = \mathbf{0}$$

and

$$F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) = H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}).$$

Moreover, from the variation in of J^* in \tilde{Q} , we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} + \frac{\partial F_2^*(\hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \mathbf{0},$$

where

$$\begin{aligned} & \frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} \\ = & \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} \\ & + \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial u} \frac{\partial \hat{u}}{\partial \tilde{Q}_{ij}} \\ = & \hat{u}_{i,j}. \end{aligned} \tag{7}$$

From such last two equations we get

$$(u_0)_{i,j} = \frac{\partial F_2^*(\hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \hat{u}_{i,j},$$

so that from the concerning boundary conditions,

$$u_0 = \hat{u}.$$

On the other hand, from the variation of J^* in Q we have

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial Q_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial Q_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} - \overline{\hat{\sigma}_{im}^K} \hat{Q}_{mj} = 0,$$

and therefore

$$\hat{Q}_{ij} = \hat{\sigma}_{im} (u_0)_{m,j} + K \delta_{ij} (u_0)_{i,j}.$$

Finally, from the variation of J^* in σ we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \sigma_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial \sigma_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} + \frac{1}{2} (u_0)_{m,i} (u_0)_{m,j} - \overline{H}_{ijkl} \hat{\sigma}_{kl} = 0.$$

Thus, since $\{H_{ijkl}\}$ is symmetric, we get

$$\hat{\sigma}_{ij} = H_{ijkl}e_{kl}(u_0).$$

From these last results and from

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial u} = \mathbf{0}$$

we obtain

$$\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im}(u_0)_{m,j})_j + f_i = 0, \quad \forall i \in \{1, 2, 3\},$$

so that

$$\delta J(u_0) = \mathbf{0}.$$

Finally, from such last results and the Legendre transform properties, we have

$$\begin{aligned} & F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) \\ &= -\langle (u_0)_{i,j}, \hat{\sigma}_{ij} \rangle_{L^2} - \langle (u_0)_{i,j}, \hat{Q}_{ij} \rangle_{L^2} + \langle (u_0)_{i,j}, \hat{\tilde{Q}}_{ij} \rangle_{L^2} - F_1(u_0, \hat{\sigma}), \\ & F_2^*(\hat{\tilde{Q}}) = \langle (u_0)_{i,j}, \hat{\tilde{Q}}_{ij} \rangle_{L^2} - F_2(u_0), \end{aligned} \quad (8)$$

and

$$G^*(\hat{\sigma}, \hat{Q}) = \langle (u_0)_{i,j}, \hat{\sigma}_{ij} \rangle_{L^2} + \langle (u_0)_{i,j}, \hat{Q}_{ij} \rangle_{L^2} - G(u_0).$$

From these results, we obtain

$$\begin{aligned} J^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) &= -F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) + F_2^*(\hat{\tilde{Q}}) - G^*(\hat{\sigma}, \hat{Q}) \\ &= F_1(u_0, \hat{\sigma}) - F_2(u_0) + G(u_0) \\ &= J(u_0). \end{aligned} \quad (9)$$

Joining the pieces, we have got

$$\begin{aligned} J(u_0) &= \min_{u \in V} \left\{ J(u) + \sum_{i=1}^3 \frac{K_1}{2} \int_{\Omega} (\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im}u_{m,j})_j + f_i)^2 dx \right\} \\ &= \inf_{\tilde{Q} \in Y^*} \left\{ \sup_{(\sigma, Q) \in B^* \times D^*} J^*(\sigma, Q, \tilde{Q}) \right\} \\ &= J^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}). \end{aligned} \quad (10)$$

The proof is complete.

□

Remark. A similar result is valid if we would define

$$B^* = \{\sigma \in Y^* : \|\sigma_{ij}\|_{\infty} \leq K/8, \forall i, j \in \{1, 2, 3\} \text{ and } \{\sigma_{ij}\} > \varepsilon I_d\}.$$

This case refers to a positive definite tensor $\{\sigma_{ij}\}$ and the previous case to a negative definite one.

3. A closely related primal-dual variational formulation for a similar model

In this section we present a new primal-dual variational formulation for a closely related model of plates.

At this point we start to describe the primal formulation.

Let $\Omega \subset \mathbb{R}^2$ be an open, bounded, connected set which represents the middle surface of a plate of thickness h . The boundary of Ω , which is assumed to be regular (Lipschitzian), is denoted by $\partial\Omega$. The vectorial basis related to the cartesian system $\{x_1, x_2, x_3\}$ is denoted by $(\mathbf{a}_\alpha, \mathbf{a}_3)$, where $\alpha = 1, 2$ (in general Greek indices stand for 1 or 2), and where \mathbf{a}_3 is the vector normal to Ω , whereas \mathbf{a}_1 and \mathbf{a}_2 are orthogonal vectors parallel to Ω . Also, \mathbf{n} is the outward normal to the plate surface.

The displacements will be denoted by

$$\hat{\mathbf{u}} = \{\hat{u}_\alpha, \hat{u}_3\} = \hat{u}_\alpha \mathbf{a}_\alpha + \hat{u}_3 \mathbf{a}_3.$$

The Kirchhoff-Love relations are

$$\begin{aligned} \hat{u}_\alpha(x_1, x_2, x_3) &= u_\alpha(x_1, x_2) - x_3 w(x_1, x_2)_{,\alpha} \\ \text{and } \hat{u}_3(x_1, x_2, x_3) &= w(x_1, x_2). \end{aligned} \quad (11)$$

Here $-h/2 \leq x_3 \leq h/2$ so that we have $u = (u_\alpha, w) \in U$ where

$$\begin{aligned} U &= \left\{ (u_\alpha, w) \in W^{1,2}(\Omega; \mathbb{R}^2) \times W^{2,2}(\Omega), \right. \\ &\quad \left. u_\alpha = w = \frac{\partial w}{\partial \mathbf{n}} = 0 \text{ on } \partial\Omega \right\} \\ &= W_0^{1,2}(\Omega; \mathbb{R}^2) \times W_0^{2,2}(\Omega). \end{aligned}$$

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We define the operator $\Lambda : U \rightarrow Y \times Y$, where $Y = Y^* = L^2(\Omega; \mathbb{R}^{2 \times 2})$, by

$$\begin{aligned} \Lambda(u) &= \{\gamma(u), \kappa(u)\}, \\ \gamma_{\alpha\beta}(u) &= \frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2} + \frac{w_{,\alpha} w_{,\beta}}{2}, \\ \kappa_{\alpha\beta}(u) &= -w_{,\alpha\beta}. \end{aligned}$$

The constitutive relations are given by

$$N_{\alpha\beta}(u) = H_{\alpha\beta\lambda\mu} \gamma_{\lambda\mu}(u), \quad (12)$$

$$M_{\alpha\beta}(u) = h_{\alpha\beta\lambda\mu} \kappa_{\lambda\mu}(u), \quad (13)$$

where: $\{H_{\alpha\beta\lambda\mu}\}$ and $\{h_{\alpha\beta\lambda\mu} = \frac{h^2}{12} H_{\alpha\beta\lambda\mu}\}$, are symmetric positive definite fourth order tensors. From now on, we denote $\{\bar{H}_{\alpha\beta\lambda\mu}\} = \{H_{\alpha\beta\lambda\mu}\}^{-1}$ and $\{\bar{h}_{\alpha\beta\lambda\mu}\} = \{h_{\alpha\beta\lambda\mu}\}^{-1}$.

Furthermore $\{N_{\alpha\beta}\}$ denote the membrane force tensor and $\{M_{\alpha\beta}\}$ the moment one. The plate stored energy, represented by $(G \circ \Lambda) : U \rightarrow \mathbb{R}$ is expressed by

$$(G \circ \Lambda)(u) = \frac{1}{2} \int_{\Omega} N_{\alpha\beta}(u) \gamma_{\alpha\beta}(u) \, dx + \frac{1}{2} \int_{\Omega} M_{\alpha\beta}(u) \kappa_{\alpha\beta}(u) \, dx \quad (14)$$

and the external work, represented by $F : U \rightarrow \mathbb{R}$, is given by

$$F(u) = \langle w, P \rangle_{L^2} + \langle u_\alpha, P_\alpha \rangle_{L^2}, \quad (15)$$

where $P, P_1, P_2 \in L^2(\Omega)$ are external loads in the directions $\mathbf{a}_3, \mathbf{a}_1$ and \mathbf{a}_2 respectively. The potential energy, denoted by $J : U \rightarrow \mathbb{R}$ is expressed by:

$$J(u) = (G \circ \Lambda)(u) - F(u)$$

More explicitly, recalling that

$$\gamma_{\alpha\beta}(u) = \frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2} + \frac{1}{2}w_{,\alpha}w_{,\beta},$$

we have

$$\begin{aligned}
& J(u) \\
&= \frac{1}{2} \int_{\Omega} H_{\alpha\beta\lambda\mu} \left(\frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2} + \frac{1}{2}w_{,\alpha}w_{,\beta} \right) \left(\frac{u_{\lambda,\mu} + u_{\mu,\lambda}}{2} + \frac{1}{2}w_{,\lambda}w_{,\mu} \right) dx \\
&\quad + \frac{1}{2} \int_{\Omega} h_{\alpha\beta\lambda\mu} w_{,\alpha\beta} w_{,\lambda\mu} dx - \langle u_{\alpha}, P_{\alpha} \rangle_{L^2} - \langle w, P \rangle_{L^2} \\
&= -\langle \gamma_{\alpha\beta}(u), N_{\alpha\beta} \rangle_{L^2} + \frac{1}{2} \int_{\Omega} H_{\alpha\beta\lambda\mu} \gamma_{\alpha\beta}(u) \gamma_{\lambda\mu}(u) dx \\
&\quad + \frac{1}{2} \int_{\Omega} h_{\alpha,\beta,\lambda,\mu} w_{,\alpha\beta} w_{,\lambda\mu} dx + \left\langle \frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2} + \frac{1}{2}w_{,\alpha}w_{,\beta}, N_{\alpha\beta} \right\rangle_{L^2} \\
&\quad - \langle u_{\alpha}, P_{\alpha} \rangle_{L^2} - \langle w, P \rangle_{L^2} \\
&\geq \inf_{v \in Y} \left\{ \langle v_{\alpha\beta}, N_{\alpha\beta} \rangle_{L^2} + \frac{1}{2} \int_{\Omega} H_{\alpha\beta\lambda\mu} v_{\alpha\beta} v_{\lambda\mu} dx \right\} \\
&\quad + \inf_{\{u_{\alpha}\} \in [W_0^{1,2}(\Omega)]^2} \left\{ \frac{1}{2} \int_{\Omega} h_{\alpha\beta\lambda\mu} w_{,\alpha\beta} w_{,\lambda\mu} dx \right. \\
&\quad \left. + \left\langle \frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2} + \frac{1}{2}w_{,\alpha}w_{,\beta}, N_{\alpha\beta} \right\rangle_{L^2} - \langle u_{\alpha} P_{\alpha} \rangle_{L^2} - \langle w, P \rangle_{L^2} \right\} \\
&\geq -\frac{1}{2} \int_{\Omega} \bar{H}_{\alpha\beta\lambda\mu} N_{\alpha\beta} N_{\lambda\mu} dx \\
&\quad + \frac{1}{2} \int_{\Omega} h_{\alpha,\beta,\lambda,\mu} w_{,\alpha\beta} w_{,\lambda\mu} dx + \left\langle \frac{1}{2}w_{,\alpha}w_{,\beta}, N_{\alpha\beta} \right\rangle_{L^2} - \langle w, P \rangle_{L^2} \\
&= J_1^*(u, N), \tag{16}
\end{aligned}$$

$\forall u \in U, N \in B^*$, where $B^* = B_1^* \cap B_2^*$,

$$B_1^* = \{N \in Y^* : N_{\alpha\beta,\beta} + P_{\alpha} = 0, \text{ in } \Omega\},$$

$$B_2^* = \{N \in Y^* : \|N\|_{\infty} \leq K\},$$

for an appropriate constant $K > 0$

At this point, we also define

$$V_1 = \{u \in U : \|w_{,\alpha\beta}\|_{\infty} \leq K_3, \forall \alpha, \beta \in \{1, 2\}\},$$

for an appropriate constant $K_3 > 0$

We highlight the constants $K_3 > 0$ and $K > 0$ must be such that the restrictions which define B_2^* and V_1 are not active at a concerning critical point.

Here we present the following primal-dual formulation suitable for an optimization of the original primal variational formulation

$$J_2^*(u, N) = J_1^*(u, N) + \frac{K_1}{2} \int_{\Omega} \left((h_{\alpha\beta\lambda\mu} w_{,\lambda\mu})_{,\alpha\beta} - (N_{\alpha\beta} w_{,\beta})_{,\alpha} - P \right)^2 dx.$$

More specifically,

$$\begin{aligned}
J_2^*(u, N) = & -\frac{1}{2} \int_{\Omega} \bar{H}_{\alpha\beta\lambda\mu} N_{\alpha\beta} N_{\lambda\mu} dx \\
& + \frac{1}{2} \int_{\Omega} h_{\alpha,\beta,\lambda,\mu} w_{,\alpha\beta} w_{,\lambda\mu} dx + \left\langle \frac{1}{2} w_{,\alpha} w_{,\beta}, N_{\alpha\beta} \right\rangle_{L^2} \\
& - \langle w, P \rangle_{L^2} \\
& + \frac{K_1}{2} \int_{\Omega} \left((h_{\alpha\beta\lambda\mu} w_{,\lambda\mu})_{,\alpha\beta} - (N_{\alpha\beta} w_{,\beta})_{,\alpha} - P \right)^2 dx. \tag{17}
\end{aligned}$$

We may observe that for

$$K_1 \approx \mathcal{O} \left(\frac{1}{4\|H\|K_3^2} \right)$$

and $K_3 > 0$ sufficiently small, J_2^* is convex in u and concave in N and on $V_1 \times B^*$.

Finally, we may also define J_3 by

$$J_3(u) = \sup_{N \in B^*} J_2^*(u, N).$$

We observe that J_3 has a large region of convexity around any critical point.

4. A duality principle for a related model in phase transitions

In this section we present a duality principle for a related model in phase transition.

Let $\Omega = [0, 1] \subset \mathbb{R}$ and consider a functional $J : V \rightarrow \mathbb{R}$ where

$$J(u) = \frac{1}{2} \int_{\Omega} ((u')^2 - 1)^2 dx + \frac{1}{2} \int_{\Omega} u^2 dx,$$

and where

$$V = \{u \in W^{1,4}(\Omega) : u(0) = 0 \text{ and } u(1) = 1/2\}.$$

A global optimum point is not attained for J so that the problem of finding a global minimum for J has no solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J . From the Ekeland variational principle the equation

$$\delta J(u_0) \approx 0,$$

may be approximately satisfied by points for which J is arbitrarily close to its infimum.

We intend to use duality theory to approximately solve such a global optimization problem.

At this point we define, $F : V \rightarrow \mathbb{R}$ and $G : V \rightarrow \mathbb{R}$ by

$$F(u) = \frac{1}{2} \int_{\Omega} ((u')^2 - 1)^2 dx + \frac{K}{2} \int_{\Omega} (u')^2 dx,$$

and

$$G(u) = -\frac{1}{2} \int_{\Omega} u^2 dx + \frac{K}{2} \int_{\Omega} (u')^2 dx,$$

so that

$$J(u) = F(u) - G(u), \forall u \in V.$$

Observe that if $K > 0$ is large enough, both F and G are convex.

Denoting $Y = Y^* = L^2(\Omega)$ we also define the polar functionals $F^* : Y^* \rightarrow \mathbb{R}$ and $G^* : Y^* \rightarrow \mathbb{R}$ by

$$F^*(v^*) = \sup_{u \in V} \{ \langle u, v^* \rangle_{L^2} - F(u) \},$$

and

$$G^*(v^*) = \sup_{u \in V} \{ \langle u, v^* \rangle_{L^2} - G(u) \}.$$

From the standard Toland result in [12] for D.C. optimization, we may obtain

$$\inf_{u \in U} J(u) = \inf_{u \in U} \{ F(u) - G(u) \} = \inf_{v^* \in Y^*} \{ G^*(v^*) - F^*(v^*) \}.$$

In fact, we may also obtain

$$\inf_{u \in U} J(u) = \inf_{(u, v^*) \in U \times Y^*} \{ G^*(v^*) - \langle u, v^* \rangle_{L^2} + F(u) \}.$$

With such results in mind, we define a primal dual variational formulation for the primal problem, represented by $J_1^* : V \times Y^* \rightarrow \mathbb{R}$, where

$$J_1^*(u, v^*) = G^*(v^*) - \langle u, v^* \rangle_{L^2} + F(u).$$

Having defined such a functional, we may obtain numerical results by solving a sequence of convex auxiliary sub-problems, through the following algorithm.

1. Set $K \gg 1$. and $0 < \varepsilon \ll 1$.
2. Choose $u_1 \in V$, such that $\|u_1\|_{1,\infty} \ll K/4$.
3. Set $n = 1$.
4. Calculate v_n^* solution of equation:

$$\frac{\partial J_1^*(u_n, v_n^*)}{\partial v^*} = \mathbf{0},$$

that is

$$\frac{\partial G^*(v_n^*)}{\partial v^*} - u_n = 0,$$

so that

$$v_n^* = \frac{\partial G(u_n)}{\partial u}.$$

5. Calculate u_{n+1} by solving the equation:

$$\frac{\partial J_1^*(u_{n+1}, v_n^*)}{\partial u} = \mathbf{0},$$

that is

$$-v_n^* + \frac{\partial F(u_{n+1})}{\partial u} = 0.$$

6. If $\|u_n - u_{n+1}\| \leq \varepsilon$, then stop, else set $n := n + 1$ and go to item 4.

We have obtained numerical results for $K = 10000000$. For the solution u_0 obtained please see Figure 1.

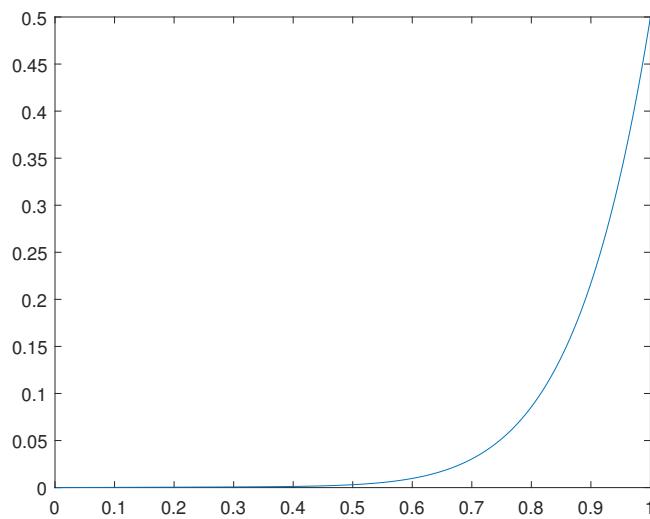


Figure 1. solution $u_0(x)$ through the primal dual formulation for a large $K > 0$

5. Conclusion

In this article we have developed a convex dual variational formulation suitable for non-convex variational primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and engineering.

We also emphasize the duality principle here presented is applied to a model in non-linear elasticity. In a future research, we intend to extend such results for other related models of plates and shells.

References

1. R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier, New York, 2003).
2. W.R. Bielski, A. Galka, J.J. Telega, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells. I. Simple case of moderate rotations around a tangent to the middle surface. Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 38, No. 7-9, 1988.
3. W.R. Bielski and J.J. Telega, A Contribution to Contact Problems for a Class of Solids and Structures, Arch. Mech., 37, 4-5, pp. 303-320, Warszawa 1985.
4. F.S. Botelho, Functional Analysis, Calculus of Variations and Numerical Methods in Physics and Engineering, CRC Taylor and Francis, Florida, 2020.
5. F.S. Botelho, *Variational Convex Analysis*, Ph.D. thesis, Virginia Tech, Blacksburg, VA -USA, (2009).
6. F. Botelho, *Topics on Functional Analysis, Calculus of Variations and Duality*, Academic Publications, Sofia, (2011).
7. F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzerland, 2014.
8. P.Ciarlet, *Mathematical Elasticity*, Vol. I – Three Dimensional Elasticity, North Holland Elsivier (1988).
9. R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, (1970).
10. J.J. Telega, *On the complementary energy principle in non-linear elasticity. Part I: Von Karman plates and three dimensional solids*, C.R. Acad. Sci. Paris, Serie II, 308, 1193-1198; Part II: Linear elastic solid and non-convex boundary condition. Minimax approach, ibid, pp. 1313-1317 (1989)

11. A.Galka and J.J.Telega *Duality and the complementary energy principle for a class of geometrically non-linear structures. Part I. Five parameter shell model; Part II. Anomalous dual variational principles for compressed elastic beams*, Arch. Mech. 47 (1995) 677-698, 699-724.
12. J.F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rat. Mech. Anal., 71, No. 1 (1979), 41-61.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.