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Abstract: This article develops a duality principle and a related convex dual formulation suitable
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functional analysis, calculus of variations and duality theory. In particular, we develop applications

to a model in non-linear elasticity.
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1. Introduction

In this article we establish a duality principle and a related convex dual formulation for a large

class of models in non-convex optimization.

More specifically, the main duality principle is applied to a model in non-linear elasticity.

Such results are based on the works of J.J. Telega and W.R. Bielski [2,3,10,11] and on a D.C.

optimization approach developed in Toland [12].

About the other references, details on the Sobolev spaces involved are found in [1]. Related

results on convex analysis and duality theory are addressed in [4–7,9]. Finally, the model in non-linear

elasticity here presented may be found in [8].

Remark. In this text we adopt the standard Einstein convention of summing up repeated indices unless

otherwise indicated.

At this point we start to describe the primal and dual variational formulations.

Let Ω ⊂ R
3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

For the primal formulation, consider a functional J : V → R where

J(u) =
1

2

∫

Ω
Hijkleij(u)ekl(u) dx − 〈ui, fi〉L2 . (1)

Here {Hijkl} is a fourth order symmetric positive definite tensor and

{eij(u)} =

{

1

2
(ui,j + uj,i) +

1

2
(um,ium,j)

}

,

where

u = (u1, u2, u3) ∈ V = W1,4
0 (Ω;R3)

denotes the field of displacements resulting from the action of the external forces f = ( f1, f2, f2) ∈

L2(Ω;R3) on the elastic solid comprised by Ω ⊂ R
3.

Moreover, denoting Y = Y∗ = L2(Ω;R3×3), the stress tensor σ ∈ Y∗ is defined by
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{σij(u)} = {Hijklekl(u)}.

At this point we define the functionals F1 : V × Y → R, F2 : V → R and G : V → R by

F1(u, σ) = −
3

∑
i=1

K

2

∫

Ω
(ui,i)

2 dx

+
3

∑
i=1

K1

2

∫

Ω
(σij,j + (σimum,j),j + fi)

2 dx

+
K2

2

∫

Ω
ui,jui,j dx − 〈ui, fi〉L2 , (2)

for appropriate positive real constants, K, K1, K2 to be specified,

F2(u) =
K2

2

∫

Ω
ui,jui,j dx,

and

G(u) =
1

2

∫

Ω
Hijkleij(u)ekl(u) dx +

3

∑
i=1

K

2

∫

Ω
(ui,i)

2 dx.

Here, it is worth highlighting that

F1(u, σ)− F2(u) + G(u) = J(u) +
3

∑
i=1

K1

2

∫

Ω
(σij,j + (σimum,j),j + fi)

2 dx, ∀u ∈ V, σ ∈ Y∗.

Furthermore, we define the functionals F∗
1 : [Y∗]3 → R, F∗

2 : Y∗ → R and G∗ : [Y∗]2 → R by

F∗
1 (σ, Q, Q̃) = sup

u∈V

{−〈ui,j, σij〉L2 − 〈ui,j, Qij〉L2 + 〈ui,j, Q̃ij〉L2 − F1(u, σ)},

F∗
2 (Q̃) = sup

v2∈Y

{

〈(v2)ij, Q̃ij〉L2 −
K2

2

∫

Ω
(v2)ij(v2)ij dx

}

=
1

2K2

∫

Ω
Q̃ijQ̃ij dx, (3)

and

G∗(σ, Q) = sup
(v1,v2)∈Y×Y

{〈(v1)ij, σij〉L2 + 〈(v2)ij, Qij〉L2 − Ĝ(v1, v2)},

where

Ĝ(v1, v2) =
1

2

∫

Ω
Hijkl

(

(v1)ij +
1

2
(v2)mi(v2)mj

)(

(v1)kl +
1

2
(v2)mk(v2)ml

)

dx

+
3

∑
i=1

K

2

∫

Ω
((v2)ii)

2 dx, (4)

so that

G∗(σ, Q) =
1

2

∫

Ω
(σK

ij )QmiQmj dx +
1

2

∫

Ω
Hijklσijσkl dx,

if σ ∈ B∗ where

B∗ = {σ ∈ Y∗ : ‖σij‖∞ ≤ K/8, ∀i, j ∈ {1, 2, 3} and {σij} < −εId},
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for some small parameter ε > 0 and where Id denotes the 3 × 3 identity matrix. Observe that such a

definition for B∗ corresponds to the case of negative definite stress tensors, which refers to compression

in a solid mechanics context.

Here

{σK
ij } =







σ11 + K σ12 σ13

σ21 σ22 + K σ23

σ31 σ32 σ33 + K






(5)

σK
ij = {σK

ij }
−1,

and

{Hijkl} = {Hijkl}
−1

in an appropriate tensor sense.

At this point we define

J∗(σ, Q, Q̃) = −F∗
1 (σ, Q, Q̃) + F∗

2 (Q̃)− G∗(σ, Q).

Specifically for

K2 ≫ K1 ≫ K ≫ max{1/ε2, 1, K3, ‖Hijkl‖},

we define

D∗ = {Q ∈ Y∗ : ‖Qij‖∞ ≤ K3, ∀i, j ∈ {1, 2, 3}}.

By direct computation, we may obtain

{

∂2 J∗(σ, Q, Q̃)

∂σ∂Q

}

< 0,

and
{

∂2 J∗(σ, Q, Q̃)

∂Q̃2

}

> 0,

on B∗ × D∗ × Y∗, so that J∗ is concave in (σ, Q) and convex in Q̃ on B∗ × D∗ × Y∗.

2. The main duality principle and a related convex dual variational formulation

Our main duality principle is summarized by the following theorem.

Theorem 1. Considering the statements and definitions of the previous section, suppose (σ̂, Q̂, ˆ̃Q) ∈ B∗ ×

D∗ × Y∗ is such that

δJ∗(σ̂, Q̂, ˆ̃Q) = 0.

Let u0 ∈ V be such that

(u0)i,j =
∂F∗

2 (Q̃)

∂Q̃ij

.

Under such hypotheses, we have

J(u0) = min
u∈V

{

J(u) +
3

∑
i=1

K1

2

∫

Ω
(σ̂ij,j + (σ̂imum,j),j + fi)

2 dx

}

= inf
Q̃∈Y∗

{

sup
(σ,Q)∈B∗×D∗

J∗(σ, Q, Q̃)

}

= J∗(σ̂, Q̂, ˆ̃Q). (6)
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Proof. Observe that there exists û ∈ V such that, defining

H(u, σ, Q, Q̃) = −〈ui,j, σij〉L2 − 〈ui,j, Qij〉L2 + 〈ui,j, Q̃ij〉L2 − F1(u, σ),

we have
∂H(û, σ̂, Q̂, ˆ̃Q)

∂u
= 0

and

F∗
1 (σ̂, Q̂, ˆ̃Q) = H(û, σ̂, Q̂, ˆ̃Q).

Moreover, from the variation in of J∗ in Q̃, we obtain

−
∂F∗

1 (σ̂, Q̂, ˆ̃Q)

∂Q̃ij

+
∂F∗

2 (
ˆ̃Q)

∂Q̃ij

= 0,

where

∂F∗
1 (σ̂, Q̂, ˆ̃Q)

∂Q̃ij

=
∂H(û, σ̂, Q̂, ˆ̃Q)

∂Q̃ij

+
∂H(û, σ̂, Q̂, ˆ̃Q)

∂u

∂û

∂Q̃ij

= ûi,j. (7)

From such last two equations we get

(u0)i,j =
∂F∗

2 (
ˆ̃Q)

∂Q̃ij

=
∂F∗

1 (σ̂, Q̂, ˆ̃Q)

∂Q̃ij

= ûi,j,

so that from the concerning boundary conditions,

u0 = û.

On the other hand, from the variation of J∗ in Q we have

−
∂F∗

1 (σ̂, Q̂, ˆ̃Q)

∂Qij
−

∂G∗(σ̂, Q̂)

∂Qij
= 0,

so that

(u0)i,j − σ̂K
imQ̂mj = 0,

and therefore

Q̂ij = σ̂im(u0)m,j + Kδij(u0)i,j.

Finally, from the variation of J∗ in σ we obtain

−
∂F∗

1 (σ̂, Q̂, ˆ̃Q)

∂σij
−

∂G∗(σ̂, Q̂)

∂σij
= 0,

so that

(u0)i,j +
1

2
(u0)m,i(u0)m,j − Hijkl σ̂kl = 0.
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Thus, since {Hijkl} is symmetric, we get

σ̂ij = Hijklekl(u0).

From these last results and from

∂H(û, σ̂, Q̂, ˆ̃Q)

∂u
= 0

we obtain

σ̂ij,j + (σ̂im(u0)m,j),j + fi = 0, ∀i ∈ {1, 2, 3},

so that

δJ(u0) = 0.

Finally, from such last results and the Legendre transform properties, we have

F∗
1 (σ̂, Q̂, ˆ̃Q)

= −〈(u0)i,j, σ̂ij〉L2 − 〈(u0)i,j, Q̂ij〉L2 + 〈(u0)i,j,
ˆ̃Qij〉L2 − F1(u0, σ̂), (8)

F∗
2 (

ˆ̃Q) = 〈(u0)i,j,
ˆ̃Qij〉L2 − F2(u0),

and

G∗(σ̂, Q̂) = 〈(u0)i,j, σ̂ij〉L2 + 〈(u0)i,j, Q̂ij〉L2 − G(u0).

From these results, we obtain

J∗(σ̂, Q̂, ˆ̃Q) = −F∗
1 (σ̂, Q̂, ˆ̃Q) + F∗

2 (
ˆ̃Q)− G∗(σ̂, Q̂)

= F1(u0, σ̂)− F2(u0) + G(u0)

= J(u0). (9)

Joining the pieces, we have got

J(u0) = min
u∈V

{

J(u) +
3

∑
i=1

K1

2

∫

Ω
(σ̂ij,j + (σ̂imum,j),j + fi)

2 dx

}

= inf
Q̃∈Y∗

{

sup
(σ,Q)∈B∗×D∗

J∗(σ, Q, Q̃)

}

= J∗(σ̂, Q̂, ˆ̃Q). (10)

The proof is complete.

Remark. A similar result is valid if we would define

B∗ = {σ ∈ Y∗ : ‖σij‖∞ ≤ K/8, ∀i, j ∈ {1, 2, 3} and {σij} > εId}.

This case refers to a positive definite tensor {σij} and the previous case to a negative definite one.

3. A closely related primal-dual variational formulation for a similar model

In this section we present a new primal-dual variational formulation for a closely related model

of plates.

At this point we start to describe the primal formulation.
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Let Ω ⊂ R
2 be an open, bounded, connected set which represents the middle surface of a plate

of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian), is denoted by ∂Ω.

The vectorial basis related to the cartesian system {x1, x2, x3} is denoted by (aα, a3), where α = 1, 2 (in

general Greek indices stand for 1 or 2), and where a3 is the vector normal to Ω, whereas a1 and a2 are

orthogonal vectors parallel to Ω. Also, n is the outward normal to the plate surface.

The displacements will be denoted by

û = {ûα, û3} = ûαaα + û3a3.

The Kirchhoff-Love relations are

ûα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α

and û3(x1, x2, x3) = w(x1, x2). (11)

Here −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =
{

(uα, w) ∈ W1,2(Ω;R2)× W2,2(Ω),

uα = w =
∂w

∂n
= 0 on ∂Ω}

= W1,2
0 (Ω;R2)× W2,2

0 (Ω).

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We define the operator Λ : U → Y × Y, where Y = Y∗ = L2(Ω;R2×2), by

Λ(u) = {γ(u), κ(u)},

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ.

The constitutive relations are given by

Nαβ(u) = Hαβλµγλµ(u), (12)

Mαβ(u) = hαβλµκλµ(u), (13)

where: {Hαβλµ} and
{

hαβλµ = h2

12 Hαβλµ

}

, are symmetric positive definite fourth order tensors. From

now on, we denote {Hαβλµ} = {Hαβλµ}
−1 and {hαβλµ} = {hαβλµ}

−1.

Furthermore {Nαβ} denote the membrane force tensor and {Mαβ} the moment one. The plate

stored energy, represented by (G ◦ Λ) : U → R is expressed by

(G ◦ Λ)(u) =
1

2

∫

Ω
Nαβ(u)γαβ(u) dx +

1

2

∫

Ω
Mαβ(u)καβ(u) dx (14)

and the external work, represented by F : U → R, is given by

F(u) = 〈w, P〉L2 + 〈uα, Pα〉L2 , (15)

where P, P1, P2 ∈ L2(Ω) are external loads in the directions a3, a1 and a2 respectively. The potential

energy, denoted by J : U → R is expressed by:

J(u) = (G ◦ Λ)(u)− F(u)
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More explicitly, recalling that

γαβ(u) =
uα,β + uβ,α

2
+

1

2
w,αw,β,

we have

J(u)

=
1

2

∫

Ω
Hαβλµ

(

uα,β + uβ,α

2
+

1

2
w,αw,β

)(

uλ,µ + uµ,λ

2
+

1

2
w,λw,µ

)

dx

+
1

2

∫

Ω
hαβλµw,αβw,λµ dx − 〈uα, Pα〉L2 − 〈w, P〉L2

= −〈γαβ(u), Nαβ〉L2 +
1

2

∫

Ω
Hαβλµγαβ(u)γλµ(u) dx

+
1

2

∫

Ω
hα,β,λ,µw,αβw,λµ dx +

〈

uα,β + uβ,α

2
+

1

2
w,αw,β, Nαβ

〉

L2

−〈uα, Pα〉L2 − 〈w, P〉L2

≥ inf
v∈Y

{

〈vαβ, Nαβ〉L2 +
1

2

∫

Ω
Hαβλµvαβvλµ dx

}

+ inf
{uα}∈

[

W1,2
0 (Ω)

]2

{

1

2

∫

Ω
hαβλµw,αβw,λµ dx

+

〈

uα,β + uβ,α

2
+

1

2
w,αw,β, Nαβ

〉

L2

− 〈uαPα〉L2 − 〈w, P〉L2

}

≥ −
1

2

∫

Ω
HαβλµNαβNλµ dx

+
1

2

∫

Ω
hα,β,λ,µw,αβw,λµ dx +

〈

1

2
w,αw,β, Nαβ

〉

L2

− 〈w, P〉L2

= J∗1 (u, N), (16)

∀u ∈ U, N ∈ B∗, where B∗ = B∗
1 ∩ B∗

2 ,

B∗
1 = {N ∈ Y∗ : Nαβ,β + Pα = 0, in Ω},

B∗
2 = {N ∈ Y∗ : ‖N‖∞ ≤ K},

for an appropriate constant K > 0

At this point, we also define

V1 =
{

u ∈ U : ‖w,αβ‖∞ ≤ K3, ∀α, β ∈ {1, 2}
}

,

for an appropriate constant K3 > 0

We highlight the constants K3 > 0 and K > 0 must be such that the restrictions which define B∗
2

and V1 are not active at a concerning critical point.

Here we present the following primal-dual formulation suitable for an optimization of the original

primal variational formulation

J∗2 (u, N) = J∗1 (u, N) +
K1

2

∫

Ω

(

(

hαβλµw,λµ

)

,αβ
− (Nαβw,β),α − P

)2
dx.

More specifically,
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J∗2 (u, N) = −
1

2

∫

Ω
HαβλµNαβNλµ dx

+
1

2

∫

Ω
hα,β,λ,µw,αβw,λµ dx +

〈

1

2
w,αw,β, Nαβ

〉

L2

−〈w, P〉L2

+
K1

2

∫

Ω

(

(

hαβλµw,λµ

)

,αβ
− (Nαβw,β),α − P

)2
dx. (17)

We may observe that for

K1 ≈ O

(

1

4‖H‖K2
3

)

and K3 > 0 sufficiently small, J∗2 is convex in u and concave in N and on V1 × B∗.

Finally, we may also define J3 by

J3(u) = sup
N∈B∗

J∗2 (u, N).

We observe that J3 has a large region of convexity around any critical point.

4. A duality principle for a related model in phase transitions

In this section we present a duality principle for a related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω
((u′)2 − 1)2 dx +

1

2

∫

Ω
u2 dx,

and where

V = {u ∈ W1,4(Ω) : u(0) = 0 and u(1) = 1/2}.

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

From the Ekeland variational principle the equation

δJ(u0) ≈ 0,

may be approximately satisfied by points for which J is arbitrarily close to its infimum.

We intend to use duality theory to approximately solve such a global optimization problem.

At this point we define, F : V → R and G : V → R by

F(u) =
1

2

∫

Ω
((u′)2 − 1)2 dx +

K

2

∫

Ω
(u′)2 dx,

and

G(u) = −
1

2

∫

Ω
u2 dx ++

K

2

∫

Ω
(u′)2 dx,

so that

J(u) = F(u)− G(u), ∀u ∈ V.

Observe that if K > 0 is large enough, both F and G are convex.

Denoting Y = Y∗ = L2(Ω) we also define the polar functionals F∗ : Y∗ → R and G∗ : Y∗ → R by

F∗(v∗) = sup
u∈V

{〈u, v∗〉L2 − F(u)},
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and

G∗(v∗) = sup
u∈V

{〈u, v∗〉L2 − G(u)}.

From the standard Toland result in [12] for D.C. optimization, we may obtain

inf
u∈U

J(u) = inf
u∈U

{F(u)− G(u)} = inf
v∗∈Y∗

{G∗(v∗)− F∗(v∗)}.

In fact, we may also obtain

inf
u∈U

J(u) = inf
(u,v∗)∈U×Y∗

{G∗(v∗)− 〈u, v∗〉L2 + F(u)}.

With such results in mind, we define a primal dual variational formulation for the primal problem,

represented by J∗1 : V × Y∗ → R, where

J∗1 (u, v∗) = G∗(v∗)− 〈u, v∗〉L2 + F(u).

Having defined such a functional, we may obtain numerical results by solving a sequence of

convex auxiliary sub-problems, through the following algorithm.

1. Set K ≫ 1. and 0 < ε ≪ 1.
2. Choose u1 ∈ V, such that ‖u1‖1,∞ ≪ K/4.
3. Set n = 1.
4. Calculate v∗n solution of equation:

∂J∗1 (un, v∗n)

∂v∗
= 0,

that is
∂G∗(v∗n)

∂v∗
− un = 0,

so that

v∗n =
∂G(un)

∂u
.

5. Calculate un+1 by solving the equation:

∂J∗1 (un+1, v∗n)

∂u
= 0,

that is

−v∗n +
∂F(un+1)

∂u
= 0.

6. If ‖un − un+1‖ ≤ ε, then stop, else set n := n + 1 and go to item 4.

We have obtained numerical results for K = 10000000. For the solution u0 obtained please see

Figure 1.
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Figure 1. solution u0(x) through the primal dual formulation for a large K > 0

5. Conclusion

In this article we have developed a convex dual variational formulation suitable for non-convex

variational primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and

engineering.

We also emphasize the duality principle here presented is applied to a model in non-linear

elasticity. In a future research, we intend to extend such results for other related models of plates and

shells.
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