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Abstract

This article develops a duality principle and a related convex dual formulation suitable for
a large class of models in physics and engineering. The results are based on standard tools of
functional analysis, calculus of variations and duality theory. In particular, we develop applica-
tions to a model in non-linear elasticity.
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1 Introduction

In this article we establish a duality principle and a related convex dual formulation for a
large class of models in non-convex optimization.

More specifically, the main duality principle is applied to a model in non-linear elasticity.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 10, 11] and on a
D.C. optimization approach developed in Toland [12].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [7, 4, 5, 6, 9]. Finally, the model
in non-linear elasticity here presented may be found in [8].

Remark 1.1. In this text we adopt the standard Einstein convention of summing up repeated
indices unless otherwise indicated.

At this point we start to describe the primal and dual variational formulations.
Let  C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.
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For the primal formulation, consider a functional J : V' — R where

J(u) = ;/S)Hijkleij(u)ekl(u) dx — (ug, fi) 12 (1)

Here {H;ji} is a fourth order symmetric positive definite tensor and

{eij(u)} = {;(ui,j + uji) + ;(um,z‘um,y‘)} 7

where

u= (uy,ug,ug) €V = W&A(Q;R?’)

denotes the field of displacements resulting from the action of the external forces f = (f1, f2, f2) €
L%(Q;R3) on the elastic solid comprised by Q C R3.
Moreover, denoting Y = Y* = L?(€; R3*3), the stress tensor o € Y* is defined by

{oij(w)} = {Hjjriern(u)}.
At this point we define the functionals F1 : V XY - R, F5:V - Rand G:V — R by

K
Fl(u,a) = _ZQ/Q(ui’i)Q dx
i=1

3
K;
+ZQ/Q(%‘J + (Cimtum,j).j + f)* dx
=1

K.
+72 w; juij dr — (ui, fi) 12, (2)
Q

for appropriate positive real constants, K, K1, K9 to be specified,

K
Fg(u) = 72 /Qui’jui’j d.T,

and

3
1 K
G(u) = 5 /Q Hijeij(u)ep (u) do + Z 5 /Q(W,i)Q dx.
=1

Here, it is worth highlighting that

3

K
Fl(u,a) - FQ(U) + G(u) = J(u) + E 71 / (Uij,j + (Uz'mum,j),j + f,,)2 de,YueV,oceY".
i=1 &

Furthermore, we define the functionals F} : [Y*]3 - R, F} : Y* — R and G* : [Y*]?> = R by

Fi(0,Q,Q) = Slel‘]a{_<ui,j70'ij>L2 — (uij, Qij) 2 + (uij, Qij) 2 — Fi(u,0)},
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- ~ K
F5(Q) = sup {((v2)ijaQij>L2 - 22/(”2)2‘]‘(02%7' dx}
v2€Y Q
1 -
= m/QQijQij dx, (3)
and )
G (0,Q) = sup  {{(v1)ij,0ij) 2 + ((v2)ij; Qij) 2 — G(v1,v2)},
(v1,02)EY XY
where
G(vi,v2) = ;/QHijkl <(7J1)ij + ;(U2)mi(v2)mj> <(U1)kl + ;(U2)mk(1}2)ml> dx
3
+3 7 [ (0? da. (4)
so that ) o )
G*(0,Q) = 3 /Q(Ug)QmiQmj dz + 5 /QHijklo'ijO'kl dz,

if 0 € B* where
B*={oceY" : ||oijlloo < K/8, Vi,j € {1,2,3} and {o;} < —ely},

for some small parameter € > 0 and where I; denotes the 3 x 3 identity matrix. Observe that
such a definition for B* corresponds to the case of negative definite stress tensors, which refers
to compression in a solid mechanics context.

Here
ol +K 012 013
{U{J{} = | 091 o+ K 0923 (5)
031 032 o33 + K
U{]{ = {05 -1
and

{Hiji} = {Hiju} '
in an appropriate tensor sense.
At this point we define

J(0,Q,Q) = —F{(0,Q,Q) + F5(Q) — G*(0, Q).

Specifically for
Ko> K > K> max{l/eQ, 1, K3, HH’LJMH}7

we define
D*={Q€eY" : |Qijllc < K3, Vi,j € {1,2,3}}.

By direct computation, we may obtain

0%J*(0,Q,Q)
{ 9000 }<°’
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and

P19 | _
0Q> ’

on B* x D* x Y*, so that J* is concave in (o, Q) and convex in Q on B* x D* x Y*,

2  The main duality principle and a related convex
dual variational formulation

Our main duality principle is summarized by the following theorem.
Theorem 2.1. Considering the statements and definitions of the previous section, suppose
(6,Q,Q) € B* x D* x Y* is such that
6J(6,Q,Q) =0.

Let ug € V be such that ~
OF%
(UO)i,j —_ 2~(Q) .
0Qi;

Under such hypotheses, we have
3 K,
J(uo) = min {J(U) + ; -5 /Q(?nj,j + (Gimtm.) j + fi)? diﬂ}

= inf { sup J*(J,Q,Q)}
Qev* | (0,Q)eB*xD*

= J6,0,0Q). (6)
Proof. Observe that there exists & € V' such that, defining

H(u,0,Q,Q) = —(uij,0i) 12 — (Ui j, Qij) 2 + (Wi, Qij) 2 — Fi(u, o),

we have .
0H(1,6,0Q,Q)
A w
ou

and

Moreover, from the variation in of J* in (), we obtain

~

OF3(Q)
0Q;

R (5,Q,0)
Qs

+ =0,
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where

OF;(5,0,Q)

0Qij
_ 9H(4,6,Q,Q)
aQij
8H(a)&7Q)Q) 871
+ _
ou Qi
= Uijj. (7)

From such last two equations we get

_OF(Q) _0F(6.Q.Q) _ .
" any 8@13

- ui,j?
so that from the concerning boundary conditions,

(uo)

ug = U.

On the other hand, from the variation of J* in ) we have

L OF1(3,0,Q)  9G*(5,Q)
0Qi; 0Qi;

=0,

so that

(u0)ij — 615,Qumj = 0,
and therefore X
Qij = Gim(u0)m,j + Kij(uo)i ;-
Finally, from the variation of J* in ¢ we obtain

COF1(3,0,Q)  9G*(5,Q)

adi' 8@-
J J

=0,
so that 1

(uo0)ij + §(U0)m,i(uo)m,j — Hijpiow = 0.
Thus, since {Hji } is symmetric, we get

6ij = Hijrieri(uo)-

From these last results and from

we obtain

Gijj + (Gim(uo)m,j),; + fi =0, Vi € {1,2,3},

5
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so that
(5J(u0) =0.

Finally, from such last results and the Legendre transform properties, we have
F1(6,Q,Q)
= —((w0)ij, i)z — ((w0)ij, Qij) 2 + ((w0)ig, Qij) 2 — Fi(uo, 6), (8)
F3(Q) = ((u0)ij> Qi) > — Fa(uo),
and R R
G*(6,Q) = ((u0)ij» Fij) L2 + ((u0)i > Qij) L2 — G(uo)-

From these results, we obtain

J6,0,Q) = —Fj(6,0,Q)+ F;

Il

=
=

2
ST
|

5

<

N

+ /\l)
Q<
<

<

Joining the pieces, we have got

3
J(uwp) = min {J(U) + Z % /Q(&ij,j + (GimUm,j),j + fz)2 daz}
=1

ueV

= inf { sup J*(07Q7Q)}
(0,Q)

Qey* €B* x D*
= J5,Q,Q). (10)

The proof is complete.

Remark 2.2. A similar result is valid if we would define
B*={oce€Y" : |oijlloo < K/8, Vi,j € {1,2,3} and {oi;} > el4}.

This case refers to a positive definite tensor {o;;} and the previous case to a negative definite
one.

3 One more duality principle and concerning convex
dual formulation also suitable for a local optimization
of the primal formulation

In this section we develop a duality principle suitable for a global optimization of the primal
variational formulation.
We start with the following remark.
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Remark 3.1. Denoting Y1 = Y = L2(;R3), consider the functionals Fy : V x Y7 — R and
F:V — R, where

K K
Fi(u,v3) = —Z /u”dx—i—z 1/ (Ka(v3)iu; — Kz) dx
K
+27/ﬂ(u1)2 dz, (11)
i=1

3
A
VL2

Define Fy : [Y']? = R and Fy : Y{* — R where denoting

i = Li(w),

FY (v3,03)
= sup{(u;, (v3)i) 12 — Fi(u,v3)}

ueV
o\ 2o Ky = KL} + K1 K3(v3)7 ’
and
Fy(vy) = sgg{wi, (v2)i)r2 — Fa(u)}
1
*\2
= — “dzx. 13
> o (13)
Define also

C*={v3 €Y : |[(v3)illooc < K/8, and (v3); < —e in Q, Vi € {1,2,3}},
for some small parameter € > 0 and
E*={vy €Y : [[(v3)illoo < K2, Vi€ {1,2,3}}.

Assume K = 2Ky and Ky > Ko > max{1,1/¢%}.
Under such hypotheses, defining

Fy(v3,v3) = —F7 (v2,v3) + F3 (v3),

we have that F3 is convexr in vy and concave in vy on E* x C*.
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At this point we start again to describe the primal and dual variational formulations.

Let Q C R3? be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0.

For the primal formulation, consider a functional J : V' — R where

1
I = 5 [ Hyueswentu) do — (ui f)1e (14)
Q
Here {H;ji} is a fourth order symmetric positive definite tensor and

{eij(u)} = {;(ui,j + uji) + ;(um,z‘um,y‘)} ,

where
u = (uy,us,uz) € V =Wy (4 R?)

denotes the field of displacements resulting from the action of the external forces f = (f1, f2, f2) €
L?(£2;R?) on the elastic solid comprised by Q C R3.

Moreover, denoting Y = Y* = L}(Q;R3*3) and Y; = Y;* = L?(;R3), the stress tensor
o € Y* is defined by

{oij(u)} = {Hijrer(u)}-
At this point we define the functionals F1 : V x Y] >R, Fo: V - Rand G:V — R by

K
HW@>——ZQAwﬁW
=1
3
K .
+ Z 7 /Q(Kg(vg,)iui - K2)2 dx
=1

3
Ky
+ § > /QUZQ dx — (us, fi) 2, (15)
i1

for appropriate positive real constants, K, K1, Ko to be specified,

K.
R = Y052 [ ad da.
=1

7

and
o =L [ Hes SLY T
u) = 5 /QH”MeU (w)eg(u) dx + ; 5 /Q(um) dz.
Here, it is worth highlighting that
3
Fi(u,v3) — Fo(u) + G(u) = J(u) + Z % /Q(KQ(U;)z'Ui — Ky)?dx,Yu eV, o €Y™
i=1

Furthermore, we define the functionals F} : [Y*]? x Y* = R, Fy : Y* — Rand G* : [Y*]? —
R by
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Fi(0,Q,Q) = 2161‘13{—<Uz‘7ja‘7ij>[,2 — (i g, Qij) 2 + (wi, (v3)i) 2 — Fi(u,v3)},

Fy(v3) = sup {(ui, (v3)i) 2 — Fa(u)}
v€Y
3
1 o
_ X_;% /Q (w3); dz, (16)
and R
G (0,Q) = sup  {{(v1)ij,0ij) 2 + ((v2)ij: Qij) 2 — G(v1,v2)},
(v1,02)EY XY
where
G(vr,v9) = %/QHijkl ((111)@' + %(U2)mz’(v2)mj> ((Ul)kl + %(UQ)mk(U2)ml> dx
3
K 2
3o [ e am)
so that ) o )
G'(0,Q) =5 /Q(Ug)QmiQmj dz + 5 /Qﬁijklo'ijo'kl dx,

if 0 € B* where
B*={oeY" : |0l < K/8, Vi,j€{1,2,3}}.

Here
on+ K 012 013
K
{0’@]} = 021 0922 —+ K 0923 (18}

031 032 o33+ K

K _  Ky-1

05 = {Uij )

and

{Hiju} = {Hiju} ™
in an appropriate tensor sense.
At this point we define

JT(U,Q,U;,’U;) = _Ff(anﬂvsvvg) +F2*(U>2k) - G*(U7 Q)

Specifically for
Ko>»> K> K> max{1/82, 1, ||Hijkl||}’

we define
D*={QeY" : |Qijllc <(3/2)K, Vi,j € {1,2,3}}.

From the last theorem, we may obtain J{ is concave in (o,Q) and convex in (vj,v3) on
B* x D* x E* x C*.
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Theorem 3.2. Considering the statements and definitions of the previous sections, suppose
(6,Q,05,03) € B* x D* x E* x C* is such that

Assume ug € V' such that

1s also such that
(up)i # 0, a.e. inQ, Vi€ {1,2,3}.

Under such hypotheses, we have

K5(93)i(uo)i — K2 = 0, Vi € {1,2,3},

and

(KQ(@g)iui — K2)2 d.ilf}

3
J(up) = Zrél‘r/l{J(u)—FZ%/

i=1 Q

= 1nf { sup JT(O',Q,’U;,'U;)}
(

'UEGE* U,Q,’Ug)eB* X D* x C'*
= Ji(6,0,75, ). (19)

Proof. Observe that there exists @ € V' such that, defining

H(u,0,Q,v3,v3) = —(uij, 0ij) 12 — (Ui, Qij) 2 + (Wi, (v3)i) 2 — Fi(u, v3),
we have .
8H(ﬁ,&,Q,@§,f)§)
=0
ou
and

Fi(6,Q,03,03) = H(,6,Q,05,03).

Moreover, from the variation in of J} in (), we obtain

where

10
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From such last two equations we get

OF;(55) _ OF{(6,Q.95,03) _
0(v3); o(v3); g

(uo)i =
so that from the concerning boundary conditions,
ug = U.
On the other hand, similarly from the variation of J{ in @) we have

_OF}(6,Q,03,05)  9G*(6,Q)

=0,
0Q;; 0Qij
so that .
0G*(6,Q)
wp)ij = — L 0,
( 0) »J ang
and thus R
(u0)i,j — 610, Qmj = 0,
and therefore )
Qij = Gim(u0)m,j + Koij(uo)i ;-
Finally, from the variation of J{ in ¢ we obtain
COFT(5,Q,03,03)  9G*(6,Q) _ 0

80@‘ 80’@'
so that )
(uo0)ij + §(uo)m,i(uo)m,j — Hjjj6 = 0.

Thus, since {H;jx;} is symmetric, we get
Gij = Hijrier(uo)-
Also from the variation of J§ in vi, we have
1 3

" OH(1,6,Q,85,05) 0y
K i i — K2) K ( Y
K (K2(93)i(uo) 2) K (uo)i + Ouj 9(v3)s °

so that, since
(up)i # 0, a.e. in Q,

we get
KQ(’[);)Q(U())l — KQ =0.

From these last results and from
OH(1,6,Q, 05, 0%)

=0
811,1'

we obtain

Gijj + (Gim(uo)m,j),; + fi =0, Vi € {1,2,3},

11
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so that
5J(U0) =0.

Finally, from such last results and the Legendre transform properties, we have
Fi(6,Q,05,03)
= —((0)iys Gij) 12 — ((w0)igs Qishr> + ()i (83)i) 12 — Fi(uo, 85), (21)
Fy(93) = ((u0)i; (93)i) 2 — Fa(uo),
and X )
G*(6,Q) = ((w0)ij: Gij) 2 + ((w0)iy, Qij) 2 — G(uo).

From these results, we obtain

= Fi(uo,93) — F2(uo) + G(uo)
= J(UO) (22)

Finally, observe that

Ji(6,Qv3,85) < (ui, (v3)i)r2 + Fi(u, 85)
+F5(v3) + G(u), Yu € V,u3E™. (23)
In particular
Ji (o, Q,@;, v3) = inf sup Ji (0, Q,v5,v3)
v3€E" | (0,Q,03)€B* x D* xC*

inf {(ui, (v3)i)r2 + F1(u, 03)
vy EE*

+15 (v3) + G(u)}

IN

3
K
= Ju)+ ) 71 /Q(K2(@3)iui — Ky)? dx, Yu e V. (24)
1=1

Summarizing, we have got

JH(6,Q,05,03) = inf { sup Jf(a,Q,v;,vg)}
(

V€87 | (0,Q,03)€B* x D* xC*
S K
< T+ / (Ko(g)stts — K>)? das, Y € V. (25)
i=1 @

Joining the pieces, we have got

ueV

3
J(uy) = min{J(u) £y % /Q (Ka(s)iui — Kp)? dw}

V3€E" | (0,Q,03)€B* x D* xC*

= inf { sup JT(U,Q,U;,Ug)}
= U6, 0,05, 05). (26)

12
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The proof is complete.

O
Remark 3.3. Indeed in such a infinite dimensional space context perhaps it is mecessary to
replace
3
Fy(u) = 22/(2(%‘) dx
=1
by

3
R =35 [ b

In fact this is very simple to be done with a few changes in the results obtained.

4 Conclusion

In this article we have developed a convex dual variational formulation suitable for non-
convex variational primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principle here presented is applied to a model in non-linear
elasticity. In a future research, we intend to extend such results for other related models of
plates and shells.
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