Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

A duality principle and a concerning convex dual formulation suitable for non-convex variational optimization

Fabio Silva Botelho
Department of Mathematics
Federal University of Santa Catarina
Florianópolis - SC, Brazil

Abstract

This article develops a duality principle and a related convex dual formulation suitable for a large class of models in physics and engineering. The results are based on standard tools of functional analysis, calculus of variations and duality theory. In particular, we develop applications to a model in non-linear elasticity.

Key words: Convex dual variational formulation, duality principle for non-convex optimization, model in non-linear elasticity

MSC 49N15

1 Introduction

In this article we establish a duality principle and a related convex dual formulation for a large class of models in non-convex optimization.

More specifically, the main duality principle is applied to a model in non-linear elasticity.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 10, 11] and on a D.C. optimization approach developed in Toland [12].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results on convex analysis and duality theory are addressed in [7, 4, 5, 6, 9]. Finally, the model in non-linear elasticity here presented may be found in [8].

Remark 1.1. In this text we adopt the standard Einstein convention of summing up repeated indices unless otherwise indicated.

At this point we start to describe the primal and dual variational formulations.

Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J: V \to \mathbb{R}$ where

$$J(u) = \frac{1}{2} \int_{\Omega} H_{ijkl} e_{ij}(u) e_{kl}(u) dx - \langle u_i, f_i \rangle_{L^2}.$$
 (1)

Here $\{H_{ijkl}\}$ is a fourth order symmetric positive definite tensor and

$$\{e_{ij}(u)\} = \left\{\frac{1}{2}(u_{i,j} + u_{j,i}) + \frac{1}{2}(u_{m,i}u_{m,j})\right\},\,$$

where

$$u = (u_1, u_2, u_3) \in V = W_0^{1,4}(\Omega; \mathbb{R}^3)$$

denotes the field of displacements resulting from the action of the external forces $f = (f_1, f_2, f_2) \in L^2(\Omega; \mathbb{R}^3)$ on the elastic solid comprised by $\Omega \subset \mathbb{R}^3$.

Moreover, denoting $Y = Y^* = L^2(\Omega; \mathbb{R}^{3\times 3})$, the stress tensor $\sigma \in Y^*$ is defined by

$$\{\sigma_{ij}(u)\} = \{H_{ijkl}e_{kl}(u)\}.$$

At this point we define the functionals $F_1: V \times Y \to \mathbb{R}, F_2: V \to \mathbb{R}$ and $G: V \to \mathbb{R}$ by

$$F_{1}(u,\sigma) = -\sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} (u_{i,i})^{2} dx$$

$$+ \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (\sigma_{ij,j} + (\sigma_{im} u_{m,j})_{,j} + f_{i})^{2} dx$$

$$+ \frac{K_{2}}{2} \int_{\Omega} u_{i,j} u_{i,j} dx - \langle u_{i}, f_{i} \rangle_{L^{2}},$$
(2)

for appropriate positive real constants, K, K_1, K_2 to be specified,

$$F_2(u) = \frac{K_2}{2} \int_{\Omega} u_{i,j} u_{i,j} \ dx,$$

and

$$G(u) = \frac{1}{2} \int_{\Omega} H_{ijkl} e_{ij}(u) e_{kl}(u) \ dx + \sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} (u_{i,i})^{2} \ dx.$$

Here, it is worth highlighting that

$$F_1(u,\sigma) - F_2(u) + G(u) = J(u) + \sum_{i=1}^{3} \frac{K_1}{2} \int_{\Omega} (\sigma_{ij,j} + (\sigma_{im} u_{m,j})_{,j} + f_i)^2 dx, \forall u \in V, \ \sigma \in Y^*.$$

Furthermore, we define the functionals $F_1^*: [Y^*]^3 \to \mathbb{R}$, $F_2^*: Y^* \to \mathbb{R}$ and $G^*: [Y^*]^2 \to \mathbb{R}$ by

$$F_1^*(\sigma, Q, \tilde{Q}) = \sup_{u \in V} \{ -\langle u_{i,j}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,j}, Q_{ij} \rangle_{L^2} + \langle u_{i,j}, \tilde{Q}_{ij} \rangle_{L^2} - F_1(u, \sigma) \},$$

$$F_{2}^{*}(\tilde{Q}) = \sup_{v_{2} \in Y} \left\{ \langle (v_{2})_{ij}, \tilde{Q}_{ij} \rangle_{L^{2}} - \frac{K_{2}}{2} \int_{\Omega} (v_{2})_{ij} (v_{2})_{ij} dx \right\}$$

$$= \frac{1}{2K_{2}} \int_{\Omega} \tilde{Q}_{ij} \tilde{Q}_{ij} dx, \qquad (3)$$

and

$$G^*(\sigma, Q) = \sup_{(v_1, v_2) \in Y \times Y} \{ \langle (v_1)_{ij}, \sigma_{ij} \rangle_{L^2} + \langle (v_2)_{ij}, Q_{ij} \rangle_{L^2} - \hat{G}(v_1, v_2) \},$$

where

$$\hat{G}(v_1, v_2) = \frac{1}{2} \int_{\Omega} H_{ijkl} \left((v_1)_{ij} + \frac{1}{2} (v_2)_{mi} (v_2)_{mj} \right) \left((v_1)_{kl} + \frac{1}{2} (v_2)_{mk} (v_2)_{ml} \right) dx
+ \sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} ((v_2)_{ii})^2 dx,$$
(4)

so that

$$G^*(\sigma, Q) = \frac{1}{2} \int_{\Omega} (\overline{\sigma_{ij}^K}) Q_{mi} Q_{mj} \ dx + \frac{1}{2} \int_{\Omega} \overline{H}_{ijkl} \sigma_{ij} \sigma_{kl} \ dx,$$

if $\sigma \in B^*$ where

$$B^* = \{ \sigma \in Y^* : \|\sigma_{ij}\|_{\infty} \le K/8, \ \forall i, j \in \{1, 2, 3\} \text{ and } \{\sigma_{ij}\} < -\varepsilon I_d \},$$

for some small parameter $\varepsilon > 0$ and where I_d denotes the 3×3 identity matrix. Observe that such a definition for B^* corresponds to the case of negative definite stress tensors, which refers to compression in a solid mechanics context.

Here

$$\{\sigma_{ij}^{K}\} = \begin{bmatrix} \sigma_{11} + K & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} + K & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} + K \end{bmatrix}$$

$$\overline{\sigma_{ij}^{K}} = \{\sigma_{ij}^{K}\}^{-1},$$
(5)

and

$$\{\overline{H}_{ijkl}\} = \{H_{ijkl}\}^{-1}$$

in an appropriate tensor sense.

At this point we define

$$J^*(\sigma, Q, \tilde{Q}) = -F_1^*(\sigma, Q, \tilde{Q}) + F_2^*(\tilde{Q}) - G^*(\sigma, Q).$$

Specifically for

$$K_2 \gg K_1 \gg K \gg \max\{1/\varepsilon^2, 1, K_3, ||H_{ijkl}||\},$$

we define

$$D^* = \{ Q \in Y^* : \|Q_{ij}\|_{\infty} \le K_3, \ \forall i, j \in \{1, 2, 3\} \}.$$

By direct computation, we may obtain

$$\left\{ \frac{\partial^2 J^*(\sigma, Q, \tilde{Q})}{\partial \sigma \partial Q} \right\} < \mathbf{0},$$

and

$$\left\{ \frac{\partial^2 J^*(\sigma, Q, \tilde{Q})}{\partial \tilde{Q}^2} \right\} > \mathbf{0},$$

on $B^* \times D^* \times Y^*$, so that J^* is concave in (σ, Q) and convex in \tilde{Q} on $B^* \times D^* \times Y^*$.

2 The main duality principle and a related convex dual variational formulation

Our main duality principle is summarized by the following theorem.

Theorem 2.1. Considering the statements and definitions of the previous section, suppose $(\hat{\sigma}, \hat{Q}, \hat{Q}) \in B^* \times D^* \times Y^*$ is such that

$$\delta J^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) = \mathbf{0}.$$

Let $u_0 \in V$ be such that

$$(u_0)_{i,j} = \frac{\partial F_2^*(\tilde{Q})}{\partial \tilde{Q}_{ij}}.$$

Under such hypotheses, we have

$$J(u_{0}) = \min_{u \in V} \left\{ J(u) + \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im} u_{m,j})_{,j} + f_{i})^{2} dx \right\}$$

$$= \inf_{\tilde{Q} \in Y^{*}} \left\{ \sup_{(\sigma,Q) \in B^{*} \times D^{*}} J^{*}(\sigma,Q,\tilde{Q}) \right\}$$

$$= J^{*}(\hat{\sigma},\hat{Q},\hat{Q}). \tag{6}$$

Proof. Observe that there exists $\hat{u} \in V$ such that, defining

$$H(u, \sigma, Q, \tilde{Q}) = -\langle u_{i,i}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,i}, Q_{ij} \rangle_{L^2} + \langle u_{i,i}, \tilde{Q}_{ij} \rangle_{L^2} - F_1(u, \sigma),$$

we have

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial u} = \mathbf{0}$$

and

$$F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}) = H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}}).$$

Moreover, from the variation in of J^* in \tilde{Q} , we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} + \frac{\partial F_2^*(\hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \mathbf{0},$$

where

$$\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{Q})}{\partial \tilde{Q}_{ij}}$$

$$= \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{Q})}{\partial \tilde{Q}_{ij}}$$

$$+ \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{Q})}{\partial u} \frac{\partial \hat{u}}{\partial \tilde{Q}_{ij}}$$

$$= \hat{u}_{i,j}.$$
(7)

From such last two equations we get

$$(u_0)_{i,j} = \frac{\partial F_2^*(\hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial \tilde{Q}_{ij}} = \hat{u}_{i,j},$$

so that from the concerning boundary conditions,

$$u_0 = \hat{u}$$
.

On the other hand, from the variation of J^* in Q we have

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial Q_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial Q_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} - \overline{\hat{\sigma}_{im}^K} \hat{Q}_{mj} = 0,$$

and therefore

$$\hat{Q}_{ij} = \hat{\sigma}_{im}(u_0)_{m,j} + K\delta_{ij}(u_0)_{i,j}.$$

Finally, from the variation of J^* in σ we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{\hat{Q}})}{\partial \sigma_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial \sigma_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} + \frac{1}{2}(u_0)_{m,i}(u_0)_{m,j} - \overline{H}_{ijkl}\hat{\sigma}_{kl} = 0.$$

Thus, since $\{H_{ijkl}\}$ is symmetric, we get

$$\hat{\sigma}_{ij} = H_{ijkl} e_{kl}(u_0).$$

From these last results and from

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})}{\partial u} = \mathbf{0}$$

we obtain

$$\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im}(u_0)_{m,j})_{,j} + f_i = 0, \ \forall i \in \{1, 2, 3\},\$$

so that

$$\delta J(u_0) = \mathbf{0}.$$

Finally, from such last results and the Legendre transform properties, we have

$$F_{1}^{*}(\hat{\sigma}, \hat{Q}, \hat{\tilde{Q}})$$

$$= -\langle (u_{0})_{i,j}, \hat{\sigma}_{ij} \rangle_{L^{2}} - \langle (u_{0})_{i,j}, \hat{Q}_{ij} \rangle_{L^{2}} + \langle (u_{0})_{i,j}, \hat{\tilde{Q}}_{ij} \rangle_{L^{2}} - F_{1}(u_{0}, \hat{\sigma}),$$

$$F_{2}^{*}(\hat{\tilde{Q}}) = \langle (u_{0})_{i,j}, \hat{\tilde{Q}}_{ij} \rangle_{L^{2}} - F_{2}(u_{0}),$$
(8)

and

$$G^*(\hat{\sigma}, \hat{Q}) = \langle (u_0)_{i,j}, \hat{\sigma}_{ij} \rangle_{L^2} + \langle (u_0)_{i,j}, \hat{Q}_{ij} \rangle_{L^2} - G(u_0).$$

From these results, we obtain

$$J^{*}(\hat{\sigma}, \hat{Q}, \hat{\hat{Q}}) = -F_{1}^{*}(\hat{\sigma}, \hat{Q}, \hat{\hat{Q}}) + F_{2}^{*}(\hat{\hat{Q}}) - G^{*}(\hat{\sigma}, \hat{Q})$$

$$= F_{1}(u_{0}, \hat{\sigma}) - F_{2}(u_{0}) + G(u_{0})$$

$$= J(u_{0}).$$
(9)

Joining the pieces, we have got

$$J(u_{0}) = \min_{u \in V} \left\{ J(u) + \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im} u_{m,j})_{,j} + f_{i})^{2} dx \right\}$$

$$= \inf_{\tilde{Q} \in Y^{*}} \left\{ \sup_{(\sigma,Q) \in B^{*} \times D^{*}} J^{*}(\sigma,Q,\tilde{Q}) \right\}$$

$$= J^{*}(\hat{\sigma},\hat{Q},\hat{Q}). \tag{10}$$

The proof is complete.

Remark 2.2. A similar result is valid if we would define

$$B^* = \{ \sigma \in Y^* : \|\sigma_{ij}\|_{\infty} \le K/8, \ \forall i, j \in \{1, 2, 3\} \ and \ \{\sigma_{ij}\} > \varepsilon I_d \}.$$

This case refers to a positive definite tensor $\{\sigma_{ij}\}$ and the previous case to a negative definite one.

3 One more duality principle and concerning convex dual formulation also suitable for a local optimization of the primal formulation

In this section we develop a duality principle suitable for a global optimization of the primal variational formulation.

We start with the following remark.

Remark 3.1. Denoting $Y_1 = Y_1^* = L^2(\Omega; \mathbb{R}^3)$, consider the functionals $F_1 : V \times Y_1 \to \mathbb{R}$ and $F_2 : V \to \mathbb{R}$, where

$$F_{1}(u, v_{3}^{*}) = -\sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} u_{i,i}^{2} dx + \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (K_{2}(v_{3}^{*})_{i}u_{i} - K_{2})^{2} dx + \sum_{i=1}^{3} \frac{K_{2}}{2} \int_{\Omega} (u_{i})^{2} dx,$$

$$(11)$$

$$F_2(u) = \sum_{i=1}^3 \frac{K_2}{2} \int_{\Omega} (u_i)^2 dx.$$

Define $F_1^*: [Y_1^*]^2 \to \mathbb{R}$ and $F_2^*: Y_1^* \to \mathbb{R}$ where denoting

$$u_{i,i} = L_i(u_i),$$

$$F_1^*(v_2^*, v_3^*) = \sup_{u \in V} \{ \langle u_i, (v_2^*)_i \rangle_{L^2} - F_1(u, v_3^*) \}$$

$$= \sum_{i=1}^3 \left(-\frac{1}{2} \int_{\Omega} \frac{(v_2^*)_i^2 + K_1 K_2^2 (-K_2 + K L_i^2 + 2(v_2^*)_i (v_3^*)_i)}{K_2 - K L_i^2 + K_1 K_2^2 (v_3^*)_i^2} dx \right), \qquad (12)$$

and

$$F_2^*(v_2^*) = \sup_{u \in V} \{ \langle u_i, (v_2^*)_i \rangle_{L^2} - F_2(u) \}$$

$$= \sum_{i=1}^3 \frac{1}{2K_2} \int_{\Omega} (v_2^*)_i^2 dx.$$
(13)

Define also

$$C^* = \{v_3^* \in Y_1^* : \|(v_3^*)_i\|_{\infty} \le K/8, \text{ and } (v_3^*)_i < -\varepsilon \text{ in } \Omega, \forall i \in \{1, 2, 3\}\},\$$

for some small parameter $\varepsilon > 0$ and

$$E^* = \{v_2^* \in Y_1^* : \|(v_2^*)_i\|_{\infty} \le K_2, \ \forall i \in \{1, 2, 3\}\}.$$

Assume $K = 2K_2$ and $K_1 \gg K_2 \gg \max\{1, 1/\epsilon^2\}$. Under such hypotheses, defining

$$F_3^*(v_2^*, v_3^*) = -F_1^*(v_2^*, v_3^*) + F_2^*(v_2^*),$$

we have that F_3^* is convex in v_2^* and concave in v_3^* on $E^* \times C^*$.

At this point we start again to describe the primal and dual variational formulations.

Let $\Omega \subset \mathbb{R}^3$ be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted by $\partial\Omega$.

For the primal formulation, consider a functional $J: V \to \mathbb{R}$ where

$$J(u) = \frac{1}{2} \int_{\Omega} H_{ijkl} e_{ij}(u) e_{kl}(u) dx - \langle u_i, f_i \rangle_{L^2}.$$
(14)

Here $\{H_{ijkl}\}$ is a fourth order symmetric positive definite tensor and

$$\{e_{ij}(u)\} = \left\{\frac{1}{2}(u_{i,j} + u_{j,i}) + \frac{1}{2}(u_{m,i}u_{m,j})\right\},\,$$

where

$$u = (u_1, u_2, u_3) \in V = W_0^{1,4}(\Omega; \mathbb{R}^3)$$

denotes the field of displacements resulting from the action of the external forces $f = (f_1, f_2, f_2) \in L^2(\Omega; \mathbb{R}^3)$ on the elastic solid comprised by $\Omega \subset \mathbb{R}^3$.

Moreover, denoting $Y=Y^*=L^2(\Omega;\mathbb{R}^{3\times 3})$ and $Y_1=Y_1^*=L^2(\Omega;\mathbb{R}^3)$, the stress tensor $\sigma\in Y^*$ is defined by

$$\{\sigma_{ij}(u)\} = \{H_{ijkl}e_{kl}(u)\}.$$

At this point we define the functionals $F_1: V \times Y_1 \to \mathbb{R}$, $F_2: V \to \mathbb{R}$ and $G: V \to \mathbb{R}$ by

$$F_{1}(u, v_{3}^{*}) = -\sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} (u_{i,i})^{2} dx$$

$$+ \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (K_{2}(v_{3}^{*})_{i}u_{i} - K_{2})^{2} dx$$

$$+ \sum_{i=1}^{3} \frac{K_{2}}{2} \int_{\Omega} u_{i}^{2} dx - \langle u_{i}, f_{i} \rangle_{L^{2}},$$

$$(15)$$

for appropriate positive real constants, K, K_1, K_2 to be specified,

$$F_2(u) = \sum_{i=1}^3 \frac{K_2}{2} \int_{\Omega} u_i^2 \, dx,$$

and

$$G(u) = \frac{1}{2} \int_{\Omega} H_{ijkl} e_{ij}(u) e_{kl}(u) \ dx + \sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} (u_{i,i})^{2} \ dx.$$

Here, it is worth highlighting that

$$F_1(u, v_3^*) - F_2(u) + G(u) = J(u) + \sum_{i=1}^3 \frac{K_1}{2} \int_{\Omega} (K_2(v_3^*)_i u_i - K_2)^2 dx, \forall u \in V, \ \sigma \in Y^*.$$

Furthermore, we define the functionals $F_1^*: [Y^*]^2 \times Y_1^* \to \mathbb{R}$, $F_2^*: Y_1^* \to \mathbb{R}$ and $G^*: [Y^*]^2 \to \mathbb{R}$ by

$$F_1^*(\sigma, Q, \tilde{Q}) = \sup_{u \in V} \{ -\langle u_{i,j}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,j}, Q_{ij} \rangle_{L^2} + \langle u_i, (v_2^*)_i \rangle_{L^2} - F_1(u, v_3^*) \},$$

$$F_2^*(v_2^*) = \sup_{v_2 \in Y} \{ \langle u_i, (v_2^*)_i \rangle_{L^2} - F_2(u) \}$$

$$= \sum_{i=1}^3 \frac{1}{2K_2} \int_{\Omega} (v_2^*)_i \, dx, \qquad (16)$$

and

$$G^*(\sigma, Q) = \sup_{(v_1, v_2) \in Y \times Y} \{ \langle (v_1)_{ij}, \sigma_{ij} \rangle_{L^2} + \langle (v_2)_{ij}, Q_{ij} \rangle_{L^2} - \hat{G}(v_1, v_2) \},$$

where

$$\hat{G}(v_1, v_2) = \frac{1}{2} \int_{\Omega} H_{ijkl} \left((v_1)_{ij} + \frac{1}{2} (v_2)_{mi} (v_2)_{mj} \right) \left((v_1)_{kl} + \frac{1}{2} (v_2)_{mk} (v_2)_{ml} \right) dx
+ \sum_{i=1}^{3} \frac{K}{2} \int_{\Omega} ((v_2)_{ii})^2 dx,$$
(17)

so that

$$G^*(\sigma, Q) = \frac{1}{2} \int_{\Omega} (\overline{\sigma_{ij}^K}) Q_{mi} Q_{mj} \ dx + \frac{1}{2} \int_{\Omega} \overline{H}_{ijkl} \sigma_{ij} \sigma_{kl} \ dx,$$

if $\sigma \in B^*$ where

$$B^* = \{ \sigma \in Y^* : \|\sigma_{ij}\|_{\infty} \le K/8, \ \forall i, j \in \{1, 2, 3\} \}.$$

Here

$$\{\sigma_{ij}^{K}\} = \begin{bmatrix} \sigma_{11} + K & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} + K & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} + K \end{bmatrix}$$

$$\overline{\sigma_{ij}^{K}} = \{\sigma_{ij}^{K}\}^{-1},$$
(18)

and

$$\{\overline{H}_{ijkl}\} = \{H_{ijkl}\}^{-1}$$

in an appropriate tensor sense.

At this point we define

$$J_1^*(\sigma, Q, v_2^*, v_3^*) = -F_1^*(\sigma, Q, v_2^*, v_3^*) + F_2^*(v_2^*) - G^*(\sigma, Q).$$

Specifically for

$$K_2 \gg K_1 \gg K \gg \max\{1/\varepsilon^2, 1, ||H_{ijkl}||\},$$

we define

$$D^* = \{ Q \in Y^* : ||Q_{ij}||_{\infty} \le (3/2)K, \ \forall i, j \in \{1, 2, 3\} \}.$$

From the last theorem, we may obtain J_1^* is concave in (σ, Q) and convex in (v_2^*, v_3^*) on $B^* \times D^* \times E^* \times C^*$.

Theorem 3.2. Considering the statements and definitions of the previous sections, suppose $(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*) \in B^* \times D^* \times E^* \times C^*$ is such that

$$\delta J_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*) = \mathbf{0}.$$

Assume $u_0 \in V$ such that

$$(u_0)_i = \frac{\partial F_2^*(\hat{v}_2^*)}{\partial (v_2^*)_i}$$

is also such that

$$(u_0)_i \neq 0$$
, a.e. in Ω , $\forall i \in \{1, 2, 3\}$.

Under such hypotheses, we have

$$K_2(\hat{v}_3^*)_i(u_0)_i - K_2 = \mathbf{0}, \ \forall i \in \{1, 2, 3\},\$$

and

$$J(u_0) = \min_{u \in V} \left\{ J(u) + \sum_{i=1}^{3} \frac{K_1}{2} \int_{\Omega} (K_2(\hat{v}_3)_i u_i - K_2)^2 dx \right\}$$

$$= \inf_{v_2^* \in E^*} \left\{ \sup_{(\sigma, Q, v_3^*) \in B^* \times D^* \times C^*} J_1^*(\sigma, Q, v_2^*, v_3^*) \right\}$$

$$= J_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*). \tag{19}$$

Proof. Observe that there exists $\hat{u} \in V$ such that, defining

$$H(u, \sigma, Q, v_2^*, v_3^*) = -\langle u_{i,j}, \sigma_{ij} \rangle_{L^2} - \langle u_{i,j}, Q_{ij} \rangle_{L^2} + \langle u_i, (v_2^*)_i \rangle_{L^2} - F_1(u, v_3^*),$$

we have

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial u} = \mathbf{0}$$

and

$$F_1^*(\hat{\sigma},\hat{Q},\hat{v}_2^*,\hat{v}_3^*) = H(\hat{u},\hat{\sigma},\hat{Q},\hat{v}_2^*,\hat{v}_3^*).$$

Moreover, from the variation in of J_1^* in \tilde{Q} , we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial (v_2^*)_i} + \frac{\partial F_2^*(\hat{v}_2^*)}{\partial (v_2^*)_i} = \mathbf{0},$$

where

$$\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial (v_2^*)_i}$$

$$= \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial (v_2^*)_i}$$

$$+ \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial u_j} \frac{\partial \hat{u}_j}{\partial (\hat{v}_2^*)_i}$$

$$= \hat{u}_i. \tag{20}$$

From such last two equations we get

$$(u_0)_i = \frac{\partial F_2^*(\hat{v}_2^*)}{\partial (v_2^*)_i} = \frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial (v_2^*)_i} = \hat{u}_i,$$

so that from the concerning boundary conditions,

$$u_0 = \hat{u}$$

On the other hand, similarly from the variation of J_1^* in Q we have

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial Q_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial Q_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} = -\frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial Q_{ij}} = \mathbf{0},$$

and thus

$$(u_0)_{i,j} - \overline{\hat{\sigma}_{im}^K} \hat{Q}_{mj} = 0,$$

and therefore

$$\hat{Q}_{ij} = \hat{\sigma}_{im}(u_0)_{m,j} + K\delta_{ij}(u_0)_{i,j}.$$

Finally, from the variation of J_1^* in σ we obtain

$$-\frac{\partial F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial \sigma_{ij}} - \frac{\partial G^*(\hat{\sigma}, \hat{Q})}{\partial \sigma_{ij}} = \mathbf{0},$$

so that

$$(u_0)_{i,j} + \frac{1}{2}(u_0)_{m,i}(u_0)_{m,j} - \overline{H}_{ijkl}\hat{\sigma}_{kl} = 0.$$

Thus, since $\{H_{ijkl}\}$ is symmetric, we get

$$\hat{\sigma}_{ii} = H_{iikl}e_{kl}(u_0).$$

Also from the variation of J_1^* in v_3^* , we have

$$K_1(K_2(\hat{v}_3^*)_i(u_0)_i - K_2)K_2(u_0)_i + \frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial u_i} \frac{\partial \hat{u}_j}{\partial (v_3^*)_i} = \mathbf{0},$$

so that, since

$$(u_0)_i \neq 0$$
, a.e. in Ω ,

we get

$$K_2(\hat{v}_3^*)_i(u_0)_i - K_2 = \mathbf{0}.$$

From these last results and from

$$\frac{\partial H(\hat{u}, \hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*)}{\partial u_i} = \mathbf{0}$$

we obtain

$$\hat{\sigma}_{ij,j} + (\hat{\sigma}_{im}(u_0)_{m,j})_{,j} + f_i = 0, \ \forall i \in \{1, 2, 3\},\$$

so that

$$\delta J(u_0) = \mathbf{0}.$$

Finally, from such last results and the Legendre transform properties, we have

$$F_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*) = -\langle (u_0)_{i,j}, \hat{\sigma}_{ij} \rangle_{L^2} - \langle (u_0)_{i,j}, \hat{Q}_{ij} \rangle_{L^2} + \langle (u_0)_i, (\hat{v}_2^*)_i \rangle_{L^2} - F_1(u_0, \hat{v}_3^*),$$

$$F_2^*(\hat{v}_2^*) = \langle (u_0)_i, (\hat{v}_2^*)_i \rangle_{L^2} - F_2(u_0),$$
(21)

and

$$G^*(\hat{\sigma}, \hat{Q}) = \langle (u_0)_{i,j}, \hat{\sigma}_{ij} \rangle_{L^2} + \langle (u_0)_{i,j}, \hat{Q}_{ij} \rangle_{L^2} - G(u_0).$$

From these results, we obtain

$$J^{*}(\hat{\sigma}, \hat{Q}, \hat{v}_{2}^{*}, \hat{v}_{3}^{*}) = -F_{1}^{*}(\hat{\sigma}, \hat{Q}, \hat{v}_{2}^{*}, \hat{v}_{3}^{*}) + F_{2}^{*}(\hat{v}_{2}^{*}) - G^{*}(\hat{\sigma}, \hat{Q})$$

$$= F_{1}(u_{0}, \hat{v}_{3}^{*}) - F_{2}(u_{0}) + G(u_{0})$$

$$= J(u_{0}). \tag{22}$$

Finally, observe that

$$J_1^*(\hat{\sigma}, \hat{Q}, v_2^*, \hat{v}_3^*) \leq \langle u_i, (v_2^*)_i \rangle_{L^2} + F_1(u, \hat{v}_3^*) + F_2^*(v_2^*) + G(u), \ \forall u \in V, v_2^* E^*.$$
(23)

In particular

$$J_{1}^{*}(\hat{\sigma}, \hat{Q}, \hat{v}_{2}^{*}, \hat{v}_{3}^{*}) = \inf_{v_{2}^{*} \in E^{*}} \left\{ \sup_{(\sigma, Q, v_{3}^{*}) \in B^{*} \times D^{*} \times C^{*}} J_{1}^{*}(\sigma, Q, v_{2}^{*}, v_{3}^{*}) \right\}$$

$$\leq \inf_{v_{2}^{*} \in E^{*}} \left\{ \langle u_{i}, (v_{2}^{*})_{i} \rangle_{L^{2}} + F_{1}(u, \hat{v}_{3}^{*}) + F_{2}^{*}(v_{2}^{*}) + G(u) \right\}$$

$$= J(u) + \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (K_{2}(\hat{v}_{3})_{i}u_{i} - K_{2})^{2} dx, \ \forall u \in V.$$

$$(24)$$

Summarizing, we have got

$$J_{1}^{*}(\hat{\sigma}, \hat{Q}, \hat{v}_{2}^{*}, \hat{v}_{3}^{*}) = \inf_{v_{2}^{*} \in E^{*}} \left\{ \sup_{(\sigma, Q, v_{3}^{*}) \in B^{*} \times D^{*} \times C^{*}} J_{1}^{*}(\sigma, Q, v_{2}^{*}, v_{3}^{*}) \right\}$$

$$\leq J(u) + \sum_{i=1}^{3} \frac{K_{1}}{2} \int_{\Omega} (K_{2}(\hat{v}_{3})_{i}u_{i} - K_{2})^{2} dx, \ \forall u \in V.$$
(25)

Joining the pieces, we have got

$$J(u_0) = \min_{u \in V} \left\{ J(u) + \sum_{i=1}^{3} \frac{K_1}{2} \int_{\Omega} (K_2(\hat{v}_3)_i u_i - K_2)^2 dx \right\}$$

$$= \inf_{v_2^* \in E^*} \left\{ \sup_{(\sigma, Q, v_3^*) \in B^* \times D^* \times C^*} J_1^*(\sigma, Q, v_2^*, v_3^*) \right\}$$

$$= J_1^*(\hat{\sigma}, \hat{Q}, \hat{v}_2^*, \hat{v}_3^*). \tag{26}$$

The proof is complete.

Remark 3.3. Indeed in such a infinite dimensional space context perhaps it is necessary to replace

$$F_2(u) = \sum_{i=1}^{3} \frac{K_2}{2} \int_{\Omega} (u_i)^2 dx$$

by

$$\tilde{F}_2(u) = \sum_{i=1}^3 \frac{K_2}{2} \int_{\Omega} (u_{i,i})^2 dx.$$

In fact this is very simple to be done with a few changes in the results obtained.

4 Conclusion

In this article we have developed a convex dual variational formulation suitable for nonconvex variational primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and engineering.

We also emphasize the duality principle here presented is applied to a model in non-linear elasticity. In a future research, we intend to extend such results for other related models of plates and shells.

References

- [1] R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier, New York, 2003).
- [2] W.R. Bielski, A. Galka, J.J. Telega, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells. I. Simple case of moderate rotations around a tangent to the middle surface. Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 38, No. 7-9, 1988.
- [3] W.R. Bielski and J.J. Telega, A Contribution to Contact Problems for a Class of Solids and Structures, Arch. Mech., 37, 4-5, pp. 303-320, Warszawa 1985.
- [4] F.S. Botelho, Functional Analysis, Calculus of Variations and Numerical Methods in Physics and Engineering, CRC Taylor and Francis, Florida, 2020.
- [5] F.S. Botelho, Variational Convex Analysis, Ph.D. thesis, Virginia Tech, Blacksburg, VA -USA, (2009).
- [6] F. Botelho, *Topics on Functional Analysis, Calculus of Variations and Duality*, Academic Publications, Sofia, (2011).
- [7] F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzerland, 2014.
- [8] P.Ciarlet, Mathematical Elasticity, Vol. I Three Dimensional Elasticity, North Holland Elsivier (1988).

- [9] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, (1970).
- [10] J.J. Telega, On the complementary energy principle in non-linear elasticity. Part I: Von Karman plates and three dimensional solids, C.R. Acad. Sci. Paris, Serie II, 308, 1193-1198; Part II: Linear elastic solid and non-convex boundary condition. Minimax approach, ibid, pp. 1313-1317 (1989)
- [11] A.Galka and J.J.Telega Duality and the complementary energy principle for a class of geometrically non-linear structures. Part I. Five parameter shell model; Part II. Anomalous dual variational priciples for compressed elastic beams, Arch. Mech. 47 (1995) 677-698, 699-724.
- [12] J.F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rat. Mech. Anal., **71**, No. 1 (1979), 41-61.