

Brief Report

Prevalence of Pathogenic *Leptospira* Spp. in Non-Volant Small Mammals of Hutan Lipur Sekayu, Terengganu, Malaysia

Nur Juliani Shafie^{1*†}, Najma Syahmin Abdul Halim¹, Mohamed Nor Zalipah¹, Shukor Md-Nor², Adedayo Michael Awoniyi^{3,4†} and Federico Costa^{3,4,5,6,7*}

¹Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

²Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

³Institute of Biology, Federal University of Bahia, Salvador, Brazil

⁴Institute of Collective Health, Federal University of Bahia, Salvador, Brazil

⁵Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Bahia, Brazil

⁶Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT06511, USA

⁷Lancaster Medical School, Lancaster University, Lancaster, LA1 4YW, UK

* Correspondence: to: NJS | nur.shafie@umt.edu.my & FC | fcosta2001@gmail.com

† These authors contributed equally.

Abstract: Leptospirosis is an important zoonotic disease that is transmitted worldwide through infected small mammals such as rodents. In Malaysia, there is paucity of information on the animal reservoirs that are responsible for leptospirosis transmission, with only few studies focusing on leptospirosis risk in recreational areas. Therefore, in this study we characterized the species composition and the prevalence of pathogenic *Leptospira* spp. in non-volant small mammals of Hutan Lipur Sekayu, Terengganu. We performed ten trapping sessions totaling 3,000 trapping efforts between September 2019 and October 2020. Kidney samples from captured individuals were extracted for the PCR detection of pathogenic *Leptospira* spp. Overall, we captured 45 individuals from 8 species (1.56% successful trapping effort), with 9 individuals testing positive for pathogenic *Leptospira*, that is 20% (n = 9/45) prevalence rate. *Rattus tiomanicus* (n = 22) was the most dominant captured species and was found to harbour the highest positive individual with pathogenic *Leptospira* (44.4%, n = 4/9). Despite the low successful trapping effort in this study, the result shows that the non-volant small mammals of Hutan Lipur Sekayu are capable of maintaining and transmitting pathogenic *Leptospira*, thus making this recreational area a potential infestation ground for leptospirosis.

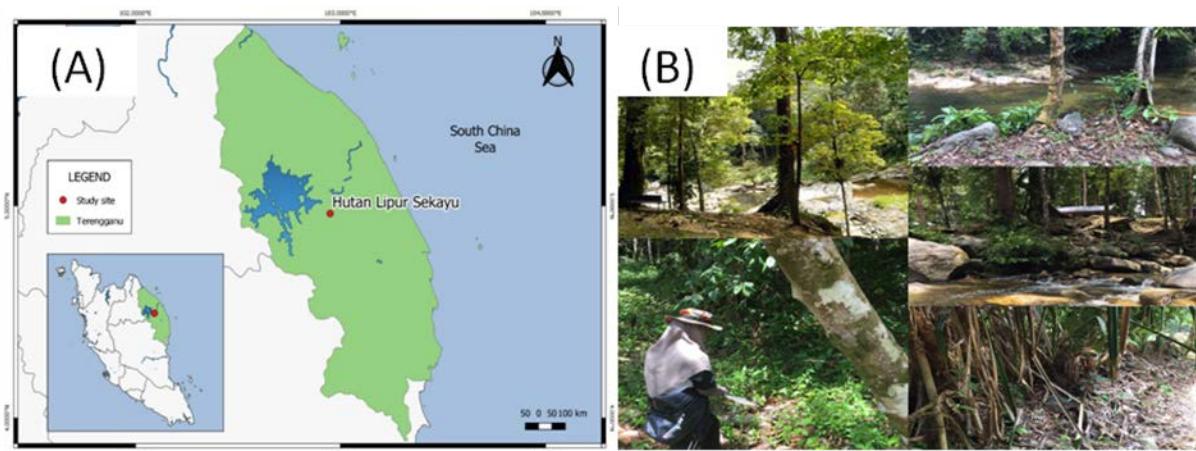
Keywords: Animal reservoirs; Leptospirosis; recreational area; rodents; Malaysia

Introduction

The Southeast Asian rainforests are the earth's oldest, with countless biodiversity [1], and the majority of rainforests in this region are considered biodiversity hotspots [2]. Malaysia as one of the world's twelve most biologically diverse countries [3] supports extensive diversity of fauna. Its mammalian diversity is noteworthy with approximately 440 species, out of which about 15% are endemic [4]. Also, there are approximately 185 species of non-volant small mammals in Southeast Asia from different families, with about 62 of those endemic in the region [5].

However, some species of small mammals are of concern to public health as they are carriers of zoonotic diseases for example; rats are reservoirs for the bacteria (*Leptospira*) that cause disease (leptospirosis) [6, 7]. Rodents are considered the main host of leptospires bacteria and the major source of human infections [8, 9]. Pathogenic *Leptospira* spp. is the causative agent of leptospirosis [10]. This pathogenic *Leptospira* is comprised

of eighteen identified species, out of which only the *Icterohaemorrhagiae* complex causes the most severe disease [11, 12, 13].


Leptospirosis outbreaks are common in the tropical region since this area provides favorable conditions such as high levels of rainfall and flooding that are necessary for leptospires survival [14]. Usually, exposure to pathogenic *Leptospira* depends on the contact between humans and infected animals or contaminated environments or surfaces [15]. On the other hand, leptospirosis is commonly associated with individuals that have frequent contact with contaminated surfaces, a process that could be easily activated during leisure activities in an infected recreational area [6].

In the past, studies on the prevalence of pathogenic *Leptospira* in small mammals of Malaysia have been limited to the urban areas [16, 17] suburban areas [18, 19] and oil palm plantations [18], with few or none directly reporting the prevalence of pathogenic *Leptospira* in recreational areas, thereby limiting our understanding of the disease transmission potential in these areas. Only one study has reported the presence of pathogenic *Leptospira* spp. in water samples obtained from selected recreational areas of Terengganu [20], however, there is lack of information on the species composition of non-volant small mammals and the prevalence of pathogenic *Leptospira* spp. in these species in Terengganu. Therefore, this study examines the species composition of non-volant small mammal species in a recreational forest located in Kuala Berang, Hulu Terengganu, Malaysia, and the prevalence of pathogenic *Leptospira* in these small mammals in an attempt to guide potential future interventions.

Methods

Study area

The study was carried out in Hutan Lipur Sekayu ($04^{\circ} 57.85' S$ $102^{\circ} 56.71' E$), a recreational forest located in Kuala Berang, Hulu Terengganu, Malaysia (Fig 1), with an estimated population of 89,000 inhabitants of low to moderate standard of living [21]. The recreational area has a total landmass of about 30 hectares, and boasts facilities like waterfall, rest areas, public toilets, camping sites, playgrounds and food stalls for the visitors.

Figure 1. Map of Hutan Lipur Sekayu, Terengganu, Malaysia. (A) Location of the study site in Peninsular Malaysia, Terengganu state; (B) Location of the trapping sites.

Animal trapping and sampling collection

Animal trapping was performed using wire-mesh live traps (25 cm x 15 cm x 12 cm) which were set up randomly along the forest trails/streams with an approximately 10m distance between traps. There were 20 trapping points with 5 live traps set at each point for three consecutive nights, making a total of 300 trapping efforts per trapping session. Overall, a total of 10 trapping sessions were conducted between September 2019 and October 2020. Ripe banana baited traps were set at dusk and checked at dawn each day.

Baits were replaced each day to maintain freshness. The captured animals were kept in an individual cloth bag and transported to the field station, with their weight and sex recorded. A Field Guide to the Mammals of South-East Asia [22] was used for the identification process.

All captured animals were humanely euthanized using diethyl ether and processed for kidney removal. The kidney from individual animal was placed in a sterile specimen container and stored in a Panasonic Ultra-Low Freezer at -86°C until further investigation. All animal procedures were carried out according to the protocol previously described by Mills et al. [23].

Ethical statement

This study was conducted in accordance with the Malaysian laws regarding ethics in research. The Ethics Review Committee Board of the Universiti Malaysia Terengganu gave the approval and permission to conduct research on small mammals with Project Number: UMT/JKEPHT/2019/30.

DNA extraction

DNA extraction procedure was performed on kidney samples according to the technical manual for genomic DNA purification/ Extraction Kit (QIAamp DNA DNeasy Blood and Tissue Kit, Qiagen, California, USA). Briefly, kidney samples were rinsed with a sterile phosphate-buffered saline solution to reduce possible bacterial contaminants. A small piece of kidney tissue was cut (25 mg) and placed into a 1.5ml micro-centrifuge tube containing 180 μ l Buffer ATL and 20 μ l proteinase K to break the cell membrane and release DNA into the solution. Then, the tube was incubated at 56°C until samples were completely lysed.

A 200 μ l Buffer AL was added and the samples incubated at 56°C for 10 minutes. A volume of 200 μ l ethanol (96-100%) was added to enhance the binding of DNA to silica. The precipitated DNA was filtered through DNeasy mini spin column by centrifugation for 1 minute at 8,000rpm. The flow-through was discarded and the filtered DNA placed in a new spin column with 500 μ l AW1 and AW2 buffer. The flow through and collection tube were removed after 3 minutes of centrifuge at 14,000rpm. DNA was eluted in a new 2ml micro-centrifuge tube with 100 μ l Buffer AE. The quality and the quantity of the DNA were recorded using NanodropTM.

*PCR detection of pathogenic *Leptospira* spp.*

The DNA of *Leptospira* used in PCR analysis was standardized to 20ng/ μ l using the manufacturer's guidelines as contained in the Qiagen kit. LipL32 primer set was used to detect the presence of pathogenic *Leptospira* spp. DNA with a forward sequence of LipL32 -45F 5' -AAG CAT TAC CGC TTG TGG TG -3' and reverse sequence of LipL32 - 286R 5' -GAA CTC CCA TTT CAG CGA TT -3' [24]. The positive and negative controls were included in each PCR run. DNA of pathogenic *Leptospira*, *L. interrogans* serovar Copenhageni was used as the positive control whereas distilled water was used as the negative control. Amplification of the DNA was conducted in a total volume of 25 μ l consisting of 12.5 μ l ready to use Mastermix, 1 μ l forward and 1 μ l reverse primer and 0.5 μ l probes at a concentration of 10 μ M, and diluted to a final volume of distilled water and 5 μ l DNA templates. These protocols of amplification were enhanced according to Eppendorf real-time PCR system and consisted of 2- minute denaturation at 94°C followed by 35 cycles of amplification at 94°C for 3s, 58°C for 15s, 72°C for 1 minute and final extension at 72°C for 10 minutes. Afterward, the reaction was stopped at 4°C. The results of the data were analyzed using the software provided by real-time PCR system (Eppendorf realplex 2.2). Gel electrophoresis in a 1.0% TAE agarose gel stained was run to analyze the amplification of products, with results deemed only valid if the positive and negative controls produced the expected results. Samples were interpreted as positive for pathogenic *Leptospira* spp. if a band corresponding to 242 base-pair (bp) was obtained or otherwise interpreted as negative. 16S rRNA sequencing was performed for

positive samples to identify *Leptospira* species [25]. Primers Lep1 and Lep2 which related to 16S rRNA gene has forward sequence of 5'-GGA ACT GAG ACA CGG TCC AT -3' and reverse sequence of 5'- GCC TCA GCG TCA GTT TTA GG -3'. PCR was performed using primers to amplify 412 base-pair (bp) fragment correspond to 16S rRNA genes. The PCR protocol designed for both LipL32 and 16S rRNA genes were same.

Data analysis

We used descriptive analysis to report species diversity and abundance, and analyzed the association between *Leptospira* positive individuals and species, age and sex using Fisher exact test for small samples. All analyses were performed in R 4.0.0 version [26].

Results

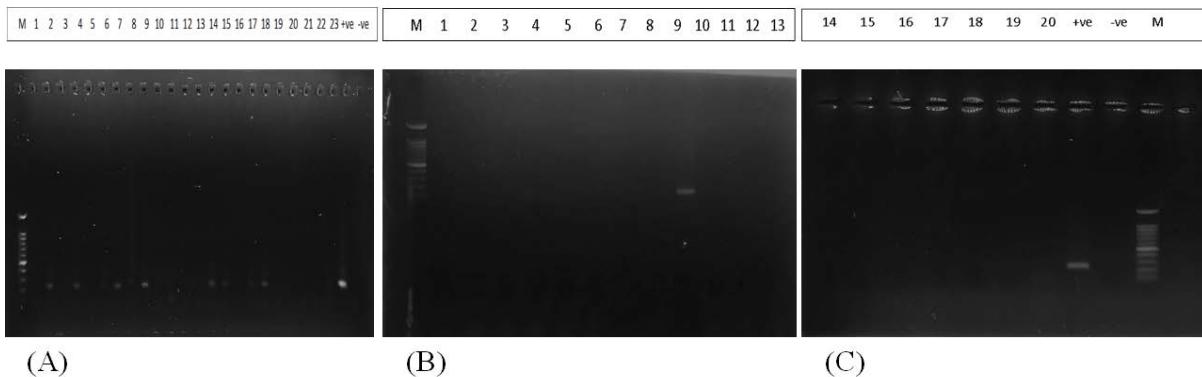

We had total trapping effort of 3,000 over ten trapping sessions. Out of this, 121 traps were either lost or damaged, thus leaving us with a total of 2,879 effective trapping efforts. Overall, we captured 45 individuals (1.56% trapping success) from 8 species, comprising of 30 (66.7%) rats, 10 (22.2%) tree shrews, and 5 (11.1%) squirrels (Table 1). The captured non-volant small mammals belonged to two orders (Scandentia and Rodentia) and three families (Tupaiidae, Muridae and Sciuridae). The majority (67%) of the captured individuals were from the family Muridae followed by Tupaiidae, (22%), and then Sciuridae (11%).

Table 1. Number of captured non-volant small mammal species and positive individuals in Hutan Lipur Sekayu recreational area.

Order & Family	Scientific name	Common name	Total individuals captured	Total positive individuals (%)
Scandentia Tupaiidae	<i>Tupaia glis</i>	Common Treeshrew	10	2 (20)
Rodentia Muridae	<i>Rattus tiomanicus</i>	Malaysian Wood Rat	22	4 (18.2)
	<i>Rattus rattus</i>	Black Rat	1	0 (0)
	<i>Maxomys rajah</i>	Rajah Spiny Rat	4	1 (25)
	<i>Maxomys whiteheadi</i>	Whitehead's Spiny Rat	1	1 (100)
	<i>Sundamys muelleri</i>	Muller's Giant Sunda Rat	2	1 (50)
Rodentia Sciuridae	<i>Collasciurus notatus</i>	Plaintain Squirrel	4	0 (0)
	<i>Sundasciurus tenuis</i>	Slender Squirrel	1	0 (0)
	Total		45	9 (20)

Out of the 45 captured individuals, 9 (20%) from four species of rodents and one species of tree shrew tested positive for pathogenic *Leptospira* (Table 1). *R. tiomanicus* (n = 22) was the most dominant captured species, followed by *T. glis* (n = 10). Also, we observed a non-significant association in the gender of the nine positive individuals (Supplementary material 1). In the same vein, the Fisher exact test showed no significant difference between the eight adults and one juvenile that tested positive for pathogenic *Leptospira*.

As shown in (Fig 2), all nine isolates amplified by LipL32 primers were confirmed as *Leptospira interrogans* with results from gene sequencing also identifying all isolates as *Leptospira interrogans*.

Figure 2. Results from PCR. (A) Agarose gel electrophoresis showing PCR products amplified by LipL32 primer; Lane M: DNA size marker, 100 bp DNA ladder; Lane 1-23: Sample of cultured kidneys; Lane -ve: Negative control; Lane +ve: Positive control (*L. interrogans* serovar Copenhageni), (B & C) Agarose gel electrophoresis showing PCR products amplified by LipL32 primer; Lane M: DNA size marker, 100 bp DNA ladder; Lane 1-20: Sample of cultured kidneys (Second batch); Lane -ve: Negative control; Lane +ve: Positive control (*L. interrogans* serovar Copenhageni).

Discussion

Our findings of family Muridae being the most abundant in the study area is not surprising, considering they are the most abundant family of rodents, with more than 560 species representing 126 genera [27]. Their abundant status in the study area might also be because the majority of the species are forest and habitat generalists that will typically exploit any habitat type and thrive in a wide range of conditions [28]. Moreover, most of the habitat generalist species from this family feed on large groups of leaves, seeds, fruits and roots that are usually available in the study area, thus enhancing their survival rate in the study area [29]. Apart from the family Muridae, family Tupaiidae (treeshrew) and Sciuridae (squirrel) were also recorded in this study. Both of these families shared the same characteristics; diurnal species with their main diet including insects and a wide variety of fruits and seeds [22], while they can also be found in a wide range of forest types such as plantations, cultivated areas and gardens.

The most dominant species recorded in this study is in line with the previous study by Rahim et al. [30], probably due to these species being habitat generalists, nocturnal species capable of inhabiting forested/agricultural areas that are capable of spending time on trees and similarly exploring the ground [22]. They hide under fallen trees/branches in low woody vegetation, these attributes altogether probably contribute to their high capture rate.

The prevalence of pathogenic *Leptospira* in the five species is similar to the result of a previous study conducted in a recreational area by Yusof et al. [31] who found *Leptospira* in all species reported in the study except for *M. rajah*. This shows that the non-volant small mammals of Hutan Lipur Sekayu have the potential to maintain the pathogenic *Leptospira* transmission cycle in the study area. Also, the 20% (n = 9/45) prevalence rate of pathogenic *Leptospira* reported here is comparatively similar to that reported from a previous study (19.4%, n = 18/93) also from non-volant small mammals in recreational areas of Selangor, Malaysia [31]. Even though we could not statistically make inference from our result owing to the low sample size, but the result shows that the study area serves as a potential infestation ground for leptospirosis. According to the Ministry of Health Malaysia [32], recreational areas are categorised as one of the most important hotspots for leptospirosis outbreaks after settlement areas. The somewhat poor garbage disposal by visitors at the centre could indirectly attract rats, which in turn shed the pathogenic bacteria into the water/soil that could later infect visitors visiting the park [33].

In conclusion, although our sample size limits the generalizability of our study, the result nevertheless illustrates that the non-volant small mammals could maintain and transmit patho-

genic *Leptospira* to tourists in the study area. Therefore, appropriate waste management should be implemented in the study area in order to avoid possible rat propagation and the subsequent rat-human interaction. Likewise, public awareness programmes should be conducted to increase tourists' knowledge about leptospirosis to avoid future outbreaks in recreational areas.

Acknowledgments: The authors are grateful to the Forestry Department of Peninsular Malaysia and the Forestry Department of Terengganu for granting the permission to conduct this study.

Disclosure statement: No conflict of interest was declared by the authors

Funding: This study received financial support from the Ministry of Higher Education, Malaysia, through the UKM-UMT collaboration research grant (Vot 53183; 53269), Universiti Kebangsaan Malaysia Grant (ST-2015-014) as well as the UMT Talent and Publication Enhancement Research Grant (TAPE-RG 55279, 2020).

Notes on contributors: *Nur Juliani Shafie* (PhD) is a senior lecturer at Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia. She is interested in the ecology of small mammal in urban, suburban and recreational forests, and rodent-borne diseases such as the distribution of leptospirosis cases, and its social and environmental determinants. *Najma Syahmin Abdul Halim* (MSc) is currently doing her MSc degree in Ecology at Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia, where she is studying the diversity of small mammals and leptospirosis in a recreational area. *Mohamed Nor Zalipah* (PhD) is a senior lecturer at the Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia. Her research interests include animal ecology, particularly bats and rodents as pollinators and seed dispersal agents in lowland forest ecosystem. *Shukor Md-Nor* (Prof) is a Professor, wildlife ecologist, taxonomist and veterinarian working closely with the Department of Wildlife and National Parks Peninsular Malaysia and local authority to manage local wildlife species, wildlife-human conflicts and zoonotic diseases especially from urban wildlife species such as macaques, rodents, and birds. *Adedayo Michael Awoniyi* (PhD) is a disease ecologist with a keen interest in the control of zoonotic disease through rodent proliferation management, especially in the urban slums of developing and least developing countries. *Federico Costa* (Prof) is an eco-epidemiologist with several years of experience leading research groups on leptospirosis related studies. He consults for WHO, Leptospirosis Burden Epidemiology Review Group (LERG) & Zoonosis Control Center (CCZ), Municipal Secretary of Health, Salvador, Brazil and serves as a Professor at the Institute of Collective Health, Federal University of Bahia, Salvador, Brazil.

Data availability statement: All data and code used in this study is available in Zenodo under the Creative Common 4.0 license, accessible through <https://doi.org/10.5281/zenodo.5156867>

References

1. Gentry AH. Tropical forest biodiversity: Distributional patterns and their conservational significance. *Oikos*. 1992; 63:19-28.
2. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. *Nature*. 2000; 403(6772): 853.
3. Nazir Khan NK, Mohd Yunus Z. Sustainable Forest Management in Peninsular Malaysia. In: Chua LSL, Kirton LG, Saw LG, editors. *Status of Biological Diversity in Malaysia and Threat Assessment of Plant Species in Malaysia*. Malaysia: Forest Research Institute Malaysia (FRIM); 2007. pp. 229-241.
4. Department of Wildlife and National Parks (DWNP), Peninsular Malaysia. *Red List of Mammals for Peninsular Malaysia: Red List Mammalia Semenanjung Malaysia*. 1st ed. Kuala Lumpur: Department of Wildlife and National Parks (DWNP), Peninsular Malaysia; 2009.
5. Francis C, Barrett P. *Guide to the mammals of Southeast Asia*. 1st ed. United States: Princeton University Press; 2008.
6. Costa F, Porter FH, Rodrigues G, Farias H, de Faria MT, Wunder EA, et al. Infections by *Leptospira interrogans*, Seoul virus, and *Bartonella* spp. among Norway rats (*Rattus norvegicus*) from the urban slum environment in Brazil. *Vector Borne Zoonotic Dis*. 2014; 14: 33-40.
7. Battersby S. Rodents as carriers of diseases. In: Buckle AP, Smith RH, editors. *Rodent pests and their control*. United Kingdom: CABI International; 2015. pp. 81-101.
8. Cosson JF, Picardeau M, Mielcarek M, Tatard C, Chaval Y, Suputtamongkol Y, et al. Epidemiology of *Leptospira* transmitted by rodents in Southeast Asia. *PLoS Negl Trop Dis*. 2014; 8(6): e2902.
9. Loan HK, Van Cuong N, Takhampunya R, Kiet BT, Campbell J, Them L, et al. How important are rats as vectors of leptospirosis in the Mekong Delta of Vietnam? *Vector Borne and Zoonotic Dis*. 2015; 15:56-64
10. Levett PN. *Leptospirosis*. *Clin Microbiol Rev*. 2001; 14(2): 296-326.

11. Adler B. *Leptospira* and Leptospirosis. Curr Top Microbiol Immunol. 2015; 387: 1–293.
12. Costa F, Wunder EA, de Oliveira D, Bisht V, Rodrigues G, Reis MG, et al. Patterns in *Leptospira* shedding in Norway rats (*Rattus norvegicus*) from Brazilian slum communities at high risk of disease transmission. PLoS Negl Trop Dis. 2015; 9(6): 1–14.
13. Casanovas-Massana A, Hamond C, Santos LA, de Oliveira D, Hacker KP, Balassiano I, Costa F, Medeiros MA, Reis MG, Ko AI, Wunder EA. *Leptospira yasudae* sp. nov. and *Leptospira stimsonii* sp. nov., two new species of the pathogenic group isolated from environmental sources. Int J Syst Evol Microbiol. 2020;70(3):1450-1456. doi: 10.1099/ijsem.0.003480. PMID: 31184568.
14. Haake DA, Levett PN. Leptospirosis in humans. *Leptospira* and leptospirosis. 2015; 65–97.
15. Felzemburgh RD, Ribeiro GS, Costa F, Reis RB, Hagan JE, Melendez AX, et al. Prospective study of leptospirosis transmission in an urban slum community: role of poor environment in repeated exposures to the *Leptospira* agent. PLoS Negl Trop Dis. 2014; 8(5): p.e2927.
16. Benacer D, Zain SNM, Amran F, Galloway RL, Thong KL. Isolation and molecular characterization of *Leptospira interrogans* and *Leptospira borgpetersenii* isolates from the urban rat populations of Kuala Lumpur, Malaysia. Am J Trop Med Hyg. 2013; 88(4): 704–709.
17. Blasdell KR, Morand S, Perera D, Firth C. Association of rodent-borne *Leptospira* spp. with urban environments in Malaysian Borneo. PLoS Negl Trop Dis. 2019; 13(2): e0007141.
18. Mohamed-Hassan, SN, Bahaman AR, Mutalib AR, Khairani-Bejo S. Prevalence of pathogenic leptospires in rats from selected locations in Peninsular Malaysia. Res J Anim Sci. 2012; 6(1): 12–25.
19. Suut L, Mazlan A, Arif MT, Katip T, Nor Aliza AR, Haironi Y. Serovar diversity of *Leptospira* sp. infecting wild rodents in Sarawak, Malaysia. Trop Biomed. 2018; 35(1): 252–258.
20. Ismail S, Wahab NZA, Badya N, Rahman NIA, Yeo CC, Latif AZA, et al. A study on the presence of pathogenic *Leptospira* spp. in environmental water samples obtained from selected recreational areas in Terengganu, Malaysia. Res J Pharm Technol. 2014; 7(10): 1153–1157.
21. The Source of Malaysia's Official Statistics. 2020 Sept 4 [cited 18 January 2021]. In: Department of Statistic Malaysia Official Portal – DOSM [Internet]. Malaysia: Department of Statistic Malaysia. [about 2 screens]. Available from: <https://www.dosm.gov.my/v1/index.php>.
22. Francis CM. Identification key for mammal species. In: Krystyna M, editor. A Field Guide to the Mammals of South-East Asia. London: New Holland Publishers; 2008. pp. 392.
23. Mills JN, Childs JE, Ksiazek TG, Peters CJ, Velleca WM. Methods for Trapping and Sampling Small Mammals for Virologic Testing. Services USDoHaH Ed. Atlanta, GA: U.S Dept. of Health & Human Service, Public Health Service, Centres for Disease Control and Prevention; 1995.
24. Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR. Detection of pathogenic *Leptospira* spp. through Taq-Man polymerase chain reaction targeting the lipL32 gene. Diagn Microbiol Infect Dis. 2009; 64:247–255.
25. Backstedt BT, Buyuktanir O, Lindow J, Wunder EA Jr, Reis MG, Usmani-Brown S, Ledizet M, Ko A, Pal U. Efficient detection of pathogenic leptospires using 16S Ribosomal RNA. PLoS One. 2015;10(6):e0128913. doi: 10.1371/journal.pone.0128913. PMID: 26091292; PMCID: PMC4474562.
26. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 4.0.5 [software]. 2021 March 31[cited 2021 May 15]. Available from: <https://www.R-project.org>
27. Aghová T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. Fossils know it best: using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). Mol Phylogenet Evol. 2018; 128: 98–111.
28. Munian K, Azman SM, Ruzman NA, Fauzi NFM, Zakaria AN. Diversity and composition of volant and non-volant small mammals in northern Selangor State Park and adjacent forest of Peninsular Malaysia. Biodivers Data J. 2020; 8.
29. Wells K, Bagchi R. Eat in or take away – seed predation and removal by rats (Muridae) during a fruiting event in a diptero-carp rainforest. Raffles Bull Zool. 2005; 53(2): 281–286.
30. Rahim NAA, Ahmad NII, Zakaria AA, Pesiu E, Salam MR, Mamat MA, et al. Brief survey of non-volant small mammals on Pulau Perhentian Besar, Terengganu, Malaysia. J Sustain Sci Manag. 2016; 19–25.
31. Yusof MA, Mohd-Taib FS, Ishak SN, Md-Nor S, Md-Sah SA, Mohamed NZ, et al. Microhabitat factors influenced the prevalence of pathogenic *Leptospira* spp. in small mammal host. EcoHealth. 2019; 16(2): 260–274.
32. Wahab ZA editors. Epidemiology and Current Situation of Leptospirosis in Malaysia. Proceedings of the Local Authority Environmental Health Conference; 2015 Sep 8–9; WP Labuan. Malaysia: Ministry of Health Malaysia; 2015.
33. Ganoza CA, Matthias MA, Collins-Richards D, Brouwer KC, Cunningham CB, Segura ER, et al. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic *Leptospira*. PLoS Med. 2006; 3 (8): 1329–1340.