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Abstract

This article develops dual variational formulations for a large class of models in variational
optimization. The results are established through basic tools of functional analysis, convex
analysis and duality theory. The main duality principle is developed as an application to a
Ginzburg-Landau type system in superconductivity in the absence of a magnetic field. In the first
sections, we develop new general dual convex variational formulations, more specifically, dual
formulations with a large region of convexity around the critical points which are suitable for the
non-convex optimization for a large class of models in physics and engineering. Finally, in the last
section we present some numerical results concerning the generalized method of lines applied to a
Ginzburg-Landau type equation.
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1 Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity in
an absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a
D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote
/ [(—V? + K1) ¥ v* da
Q
stmply by
*\2
/ _ W
o —YVi+ K
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where 1z denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Also, V? denotes the Laplace operator and for real constants Ko > 0 and Ki > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

Finally, we adopt the standard Finstein convention of summing up repeated indices, unless
otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.2 (Topological dual spaces). Let U be a Banach space. We shall define its dual
topological space, as the set of all linear continuous functionals defined on U. We suppose such
a dual space of U, may be represented by another Banach space U*, through a bilinear form
(,9v : UxU* = R (here we are referring to standard representations of dual spaces of Sobolev
and Lebesque spaces). Thus, given f : U — R linear and continuous, we assume the existence
of a unique u* € U* such that

f(u) = (u,u")y,Vu € U. (1)
The norm of f , denoted by || f||v=, is defined as

[ fllo= = sup{[{w, u)u] : [[ullv <1} = [[u*][u- (2)
uelU

At this point we start to describe the primal and dual variational formulations.

Let  C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.

Firstly we emphasize that, for the Banach space Y = Y* = L?(2), we have

(v, 0 )2 = / vv* dx, Yu,v* € L*(Q).
Q
For the primal formulation we consider the functional J : U — R where
7
J(u) = / Vu - Vu dz
2 Jo
+5 [ =9 do— (u e Q
2 Ja
Here we assume o > 0,8 > 0,7 >0, U = W01’2(Q), f € L*(Q). Moreover we denote
Y =Y* = L}(Q).
Define also G; : U — R by
7
G1(u) = / Vu - Vu dz,
2 Ja

Go:U XY —Rby

GQ(u,v):Z/Q(UZ—B—FU)de—i-IQ{/Qqux,
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and F': U — R by

K
F(u) = —/ u? dz,
2 Ja
where K > 7.

It is worth highlighting that in such a case
J(u) = G1(u) + Ga(u,0) — F(u) — (u, f) 2, Vu € U.

Furthermore, define the following specific polar functionals specified, namely, G3 : [Y*]?> — R

by
Gi(v +27) = 21618{<U»UT+Z*>L2 — Gi(u)}
= %A[(—WVQ)_l(vI+Z*)](vT+Z*) dz, (4)

G3:[Y*)2 - R by

Gy(va,v9) = sup {{u,v3) 2 + (v,05) 2 — Ga(u, v)}
(u,0)EUXY

_ 1 (02)2
N /2v0+Kda:
—i——/vo dx+[3/vodx (5)

if v5 € B* where
B*={vgeY" : 205+ K > K/2in Q},

and finally, F*: Y* — R by

Fr (") = 31615{<u,Z*>L2—F(u)}

_ % /Q ()2 da. (6)

A* = {v* = (v}, v5,08) € [Y*> x B* : vf+0v— f=0, in Q},
J* [V = R by

Define also

JH (0", 27) = =Gi(og + 27) = Ga(vg, vp) + F7(27)
and J; : [Y*]* x U — R by

JT(* 25 u) = T (v, 2F) + (u, 0] vy — f)pe.
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2 The main duality principle, a convex dual formu-
lation and the concerning proximal primal functional

Our main result is summarized by the following theorem.

Theorem 2.1. Considering the definitions and statements in the last section, suppose also
(0%, 2%, ug) € [Y*]? x B* x Y* x U s such that

dJ7 (0%, 2% up) = 0.
Under such hypotheses, we have
6‘](’“0) =0,
0" e A*

and

J(up) = 525{‘](”) + ]2(/Q|u — up|? da:}
sup {J*(v", )} (7)

v*EA*

Proof. Since
O0J7 (0%, 2% up) =0

from the variation in v} we obtain

(6 + 27

_W + ug = 0in Q,
so that
oF 4+ 2* = —yV3uq
From the variation in v we obtain
05 .
—e—— tugp =0, in Q.
205+ K 0
From the variation in v; we also obtain
@* 2 @*

(205 +K)? «

and therefore,

From the variation in u we get
0] +05 — f=0, in Q

and thus
" e A*.
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Finally, from the variation in z*, we obtain

(0F +2%) 5 .
_W-i_? :0, 1mn Q

so that

Q>

*

_ Z _o
UO+K ,

that is
’ 2" = Kug in Q.

From such results and 0* € A* we get

0 = 07 4+05—f
= —7V2u0 — 2" 4+ 2(vg)uo + Kug — f
= V2 + 20(ud — Bug — f, (8)
so that
dJ(up) = 0.

Also from this and from the Legendre transform proprieties we have

G*(’Ul + z ) <UO,@I + 2*>L2 - Gl(uo),
G5(3,05) = (uo, 93) 2 + (0,v5) L2 — G2(uo, 0),
F*(2%) = (uo, 2%) 2 — F(uo)

and thus we obtain

JH0*,2%) = —Gi(0} + ) — G3(03,95) + F*(2%)

—(uo, 07 + 03) + G1(uo) + G2(uo,0) — F(uo)

—(uo, )2 + G1(uo) + Ga2(uo,0) — F(uo)

= J(up). (9)

Summarizing, we have got

On the other hand
T E) = —Gi +2) - Gy, 08) + ()

—(u, 07 + 2%) 2 — (u, 05) 2 — (0,v5) 2 + G1(u) + Ga(u, 0) + F*(2%)

—(u, fire + G1(u) + Go(u,0) — (u, 2*) 12 + F*(2)

—(u, f)re + G1(u) + G2(u,0) — F(u) + F(u) — (u, 2*) 2 + F*(£")

(u

)+ K/u dr — (u, %)y 2 + F*(2%)
Q
K
= J(u)-l—g/u2dx—K<u,uo>L2+—/ugd$
2 Jo 2 Jo

K
_ J(u)—ir?/ lu — wol? dar, Vu € U. (11)
Q

| VAN

J
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Finally by a simple computation we may obtain the Hessian
62J* * %
8(,0*)2

in [Y*]? x B* x Y*, so that we may infer that J* is concave in v* in [Y*]? x B* x Y*.
Therefore, from this, (10) and (11), we have

K
J(up) = Jlellf}{(](u)-i- 2/§2\u—u0\2 dx}

= sup {J*(v*,2")}. (12)
v*EA*

The proof is complete. O

3 A primal dual variational formulation

In this section we develop a more general primal dual variational formulation suitable for a
large class of models in non-convex optimization.

Consider again U = W01’2(Q) and let G : U — R and F : U — R be three times Fréchet
differentiable functionals. Let J : U — R be defined by

J(u) =G(u) — F(u), Vu e U.

Assume ug € U is such that
0J(ug) =0

and
(52J(UO) > 0.

Denoting v* = (v}, v3), define J*: U x Y* x Y* = R by
* * 1 * / 2 1 * / 2 1 * *112
S (u,07) = Sllor = G()lz + Sllvz = F (w2 + Sllvt — w3l (13)
Denoting Lj(u,v*) = v — G'(u) and L3(u,v*) = v — F'(u), define also
0" = {(w ) €U x ¥ Y ¢ Liu )l < ¢ and 130D < g

for an appropriate K > 0 to be specified.
Observe that in C* the Hessian of J* is given by

G"(w)? + F"(u)? + O/K) —G"(u) —F"(u)

{62J*(U,U*)} — _G//(u) 2 -1 ) (14>
—F"(u) -1 2
Observe also that 2 14 N
o { 2T
ovjov;

6
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e det{6*J*(u,v*)} = (G"(u) — F"(u))* + O(1/K) = (6*J(u))* + O(1/K).
Define now
7 = G'(uo),
03 = F'(uo),
so that

A~k

From this we may infer that (ug, 07, 05) € C* and

J* 7A* :O: . J* , * .
Lo 79 =0= e, 70w

Moreover, for K > 0 sufficiently big, J* is convex in a neighborhood of (ug,0*).
Therefore, in the last lines, we have proven the following theorem.

Theorem 3.1. Under the statements and definitions of the last lines, there exist ro > 0 and

r1 > 0 such that
J(up) = min J(u)

u€ By (uo)

and (up,v7,05) € C* is such that

J* , A~k — 0 — . J* ) * .
(UO Y ) (u,v*)gléri[Y*]Q (U v )

Moreover, J* is convex in
Ak
Brl (UO, v )

4  One more duality principle and a concerning pri-
mal dual variational formulation

In this section we establish a new duality principle and a related primal dual formulation.
The results are based on the approach of Toland, [15].

4.1 Introduction

Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.
Let J : V — R be a functional such that

J(u) = G(u) — F(u),Yu € V,

where V = Wol’Q(Q).
Suppose G, F' are both three times Fréchet differentiable convex functionals such that

0?G (u)
0wz >0

7
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and

0?F (u)
——— >0
Ou?
Yu e V.
Assume also there exists a; € R such that
ap = inf J(u).

ueV

Moreover, suppose that if {u,} C V is such that

[unlly — o0

then
J(up) = +00, as n — oo.

At this point we define J** : V' — R by

Fow= sup {{u0?) +al,
(v, 0)eH*

where
H ={(v"a) e V' xR : (v,v")y +a < F(v), Vv e V}.

Observe that (0,a1) € H*, so that

o > aq = inf .
J(u) > aq inf J(u)

On the other hand, clearly we have

J*(u) < J(u), Vu eV,

so that we have got

= inf J(u) = inf J*(u).
o1 = ) = fof 7 (

Let ue V.
Since J is strongly continuous, there exist § > 0 and A > 0 such that,

a; < J7(v) < J(v) < A, Vv € Bs(u).

From this, considering that J** is convex on V, we may infer that J** is continuous at w,
Yu e V.

Hence J** is strongly lower semi-continuous on V', and since J** is convex we may infer that
J** is weakly lower semi-continuous on V.

Let {u,} C V be a sequence such that

1
ang(un)<a1+E, Vn € N.

Hence
a1 = lim J(uy) = inf J(u) = inf J**(u).

n—00 ueV ueV
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Suppose there exists a subsequence {uy, } of {u,} such that
|ty |l — o0, as k — oo.
From the hypothesis we have
J(tp,) = 400, as k — oo,

which contradicts
a1 € R.

Therefore there exists K > 0 such that
lunllv < K, Yu e V.

Since V is reflexive, from this and the Katutani Theorem, there exists a subsequence {uy, }
of {u,} and up € V such that
— ug, weakly in V.

Uy,

Consequently, from this and considering that J** is weakly lower semi-continuous, we have
got
ap = liminf J** (uy, ) > J**(up),
k—o00

so that

J (uo)zlurél‘r/lJ (u).

Define G*, F* : V* — R by
G*(v%) = sup{(u,v" )y — G(u)},
ueV

and
F*(v*) = sup{(u,v*)y — F(u)}.
ueV
Defining also J* : V' — R by
J*(v*) = F*(v") = G*(v7),

from the results in [15], we may obtain

inf J(u) = inf J*(v"),

uev vrEV
so that
k% — 'f kk
J** (ug) ;I€1VJ (u)
= inf = inf J*(v*). 1
A )

Suppose now there exists 4 € V such that

J(a) = ;Iel‘f/ J(u).

9
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From the standard necessary conditions, we have

dJ(u) =0,
so that
0G (1) B oF'(a) 0
ou ou
Define now
. OF(d)
7 du
From these last two equations we obtain
. _ 0G(1)
Vg = 8u .
From such results and the Legendre transform properties, we have
. OF(vg)
YT T
. 0G"(vg)
b=
so that OF* () 9G*(ut)
(kY Yo o Yo =
0J* (vy) = 5yr e u— 0 =0,
G*(vg) = (@, v5)v — G(4a)
and
F*(vg) = (@, v5)v — F(@)
so that

11I€1‘f/J(u) = J(u)
= G(u) — F(a)

A2f. T ()
= F5) - G (1})
= Jw)). (16)

4.2 The main duality principle and a related primal dual vari-
ational formulation

Considering these last statements and results, we may prove the following theorem.

10
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Theorem 4.1. Let Q C R? be an open, bounded, connected set with a regular (Lipschitzian)
boundary denoted by OS).
Let J:V — R be a functional such that

J(u) = G(u) — F(u),Yu €V,

where V = W&’Q(Q).
Suppose G, F are both three times Fréchet differentiable functionals such that there exists
K > 0 such that

0?G(u)
K
92 + K >0
and o (W)
F(u
W+K>0
Yu e V.

Assume also there exists ug € V and a1 € R such that

= inf = .
ay ;Iele(u) J (up)

Assume K3 > 0 is such that
lluolleo < K.

Define )
V={ueV : ||ul|eo < Ks}.

Assume K > 0 is such that if u € V then
max { || (u)lloc, |G (u)llo, [ F” (W) lloos [1F" () lloo, IG” (u)lloo, G™ (u)lo } < K.

Suppose also
K> max{Kl, Kg}

Define Frg,Gg : V — R by

2
and
Gk (u) = G(u) + 5/ u? de,
2 Ja
Yu e V.

Define also Gy, Fre : V¥ = R by

G (V") = sup{(u,v")y — Gk (v)},

ueVv

and

Fie(@") = sup{{u, o)y = Fic ()}

11
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Observe that since ug € V is such that

J(up) = uuél‘f/ J(u),

we have
(SJ(U(]) =0.
Let € > 0 be a small constant.
Define
OF
vy = —I(;iuo) e V*.

Under such hypotheses, defining J; : V x V* = R by

Ji(w,0") = Fr() = G (")

2 2

1 ||0G (v¥) 1 ||0Fj(v*)
_ - 7 + - PR S A,
2e ov* 5 2 ov* 9
2| Ov* o ||y’
we have
J(ug) = 51615 J(u)
= inf Jy *
(u,v*)lgVXV* ! (U, v )
= J{(uo,vp). (18)

Proof. Observe that from the hypotheses and the results and statements of the last subsection
— : f — : f * * — * *
J(uo) = inf J(u) = inf Ji(v") = Ji(vp),

where

J (") = Fie(v") — G (v*),Yo* € V*.

Moreover we have

I (u,v*) > T (0*),Yu e V, v* € V*.

Also from hypotheses and the last subsection results,
_ OFg(vg) _ 9Gk(vp)

O =
Ov* ov* 7

so that clearly we have
Ji (uo, vp) = Ji (vg)-
From these last results, we may infer that
J(ug) = Jrel\f/ J(u)
— : f * *
S )
= Jx(vp)

= if St
(u,v*)H€1V><V* 1(U7,U)

= Ji(uo,vp). (19)

12
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The proof is complete.

O

Remark 4.2. At this point we highlight that Ji has a large region of convexity around the

optimal point (ug,v(), for K > 0 sufficiently large and corresponding € > 0 sufficiently small.
Indeed, observe that for v* € V*,

G (v*) = Sug{<u7’v*>v - Gg(u)} = (4,v")y — Gk (1)
ue
where 4 € V' is such that

*_aGK(ﬂ)_ !~ ~
vt =G'(a) + Ka.

Taking the variation in v* in this last equation, we obtain

o1 o1
_ v
l=¢ (u)ﬁv* BT
so that
gn _ 1 _ (L
o G'(u)+ K K)’
From this we get
0% 1 o Ol
8(1}*)2 - _(G”(u) + K)QG (u)%
— _; 1"
= TG rp W
1
On the other hand, from the implicit function theorem
0Gy(v*) . ;o O
T—U"‘[’U GK(U)]av* = u,
so that
PCi) _0i (1
o(v*)2  Ovr K
and

P3G (v¥)
8(,0*)3

Similarly, we may obtain

(
W”@)

and
).

a(v*)3 =
Denoting
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and )
o PGLp)
8(,1)*)2 )
we have
82Jf(u0 v5) 1 2 2
— UV A_B+=-(24 2B —2AB
8(1}*)2 + e ( + )’
82J{‘(u0,v(’j) B 2
Ou? e’
and

82Jf(u0’ US)

d(v*)ou - _é(A +B).

From this we get

det (62T (v, up))

WEWWWWEWMW_[WﬁWwﬁr

(v*)? ou? O(v*)ou
_ B2
L ,AmB 4D
£ £
1
- o(3)
> 0 (21)

about the optimal point (ug, v().

5 A convex dual variational formulation

In this section, again for  C R? an open, bounded, connected set with a regular (Lips-
chitzian) boundary 9Q, v > 0, a > 0, 8 > 0 and f € L%*(Q), we denote Fy : V x Y — R,
Fo:V—>Rand G:V xY = R by

K
Fi(u,vy) = g/QVu-Vuda:—Q/Quzdx

K K
+1/(7V2u+2v6uf)2 d:v+2/u2 dx, (22)
2 Ja 2 Ja
K
FQ('LL) = 22/ u? dx + (u,f)L2,
Q

and %
G(u,v)—a/(uz—ﬂ—l—v)2 dx+/u2da:.
2 Ja 2 Jo

We define also
Ji(u,v5) = Fi(u,v) — Fa(u) + G(u,0),

J(u):;/QVqudx—i-g/ﬂ(UQ—ﬁ)de—(u,ﬁLz,

14
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and Fy : [Y*]3 > R, F} : Y* - R, and G* : [Y*]? = R, by
Fi (5, v5)

= sup{(u, vy +v3)r2 — Fi(u,v5)}
ueV

B 1/ (v} + 03 + K1 (= V2 +203) f)* -
2 Jq (—9V2 — K + Ko + K1 (—7V2 + 20})?)
Sy (23)
2 Ja
Fy(vz) = sup{(u,v3)r2 — Fa(u)}
ueV
_ 1 *\ 2
- 5 i e (24)
and
G*(v1,v5) = sup {(u,vf)pe — (v,v5) 2 — G(u,v)}
(u,0)EV XY
_ 1 (’UT)2 1 *\ 2
= 2/512113—1—de+20£ Q(UO) dx
+,6’/v8 dx (25)
Q

if v5 € B* where
B*={v;eY* : ||[villoo < K/2 and —~V? + 2v} < —cly},

for some small real parameter € > 0 and where I; denotes a concerning identity operator.
Finally, we also define J; : [Y*]? x B* — R,

JT(”;WLUS) = _Fl*(U;:UfaUS) + F;(”;) - G*(UTWS)'

Assuming
Ky > K1 > K > max{1/(¢?),1,7,a}

by directly computing §2.J5 (v3, v}, v]) we may obtain that for such specified real constants, J;
in convex in v3 and it is concave in (v}, vg) on Y* x Y* x B*.
Considering such statements and definitions, we may prove the following theorem.

Theorem 5.1. Let (03,07,05) € Y* x Y* x B* be such that
6.J7 (03,07, 05) = 0
and ug € V be such that

OF 4+ 05 + K1 (—yV2 + 208) f

T Ky — K — V2 + Ky (—AV2 + 2072

15
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Under such hypotheses, we have

so that

J(up) = inf {J(u) + %/(—”yV?u—F?@Su—f)? d:c}
Q

ueV

- inf{ sup Jf(v;,vr,v@}
(vi

v EY U3)EY * X B
. X [ Ak Ak Ak
- Jl (v27v17v0)' (26)
Proof. Observe that 6.J7 (03, 0, 05) = 0 so that, since J; is convex in v; and concave in (v}, vg)
on Y* X Y* x B*, we obtain
Ji(03,07,09) = inf sup Jy(vz, 01, 05) ¢ -
vyEY* (vi,vg)EY * X B*

Now we are going to show that

dJ(ug) = 0.
From e n e
9J7 (03, 07, 05) -0
ovs ’
we have .
)
and thus
ﬁ; = Kg’u,().
Hom k (Ak ANk ANk
8Jl (v27vlvv0) -0
vt ’
we obtain o f
1)1 -
e =0,
T+ K
and thus

Finally, denoting
D = —yV?uq + 205uo — f,

from o
dJi (03, 07, 95)
R )
v
we have .
)
—2Dug+ud — 2 - 3=0,
«
so that

o5 = a(ul — B — 2Duyg). (27)
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Observe now that
07 + 05 + K1 (—yV? +208) f = (Ko — K — V2 + K1 (—vV? + 205)?)ug
so that
Koug — 209ug — Kug + f
= Koug — Kug — yV?ug + K1(—yV? 4 208) (—yV?ug + 205uo — f). (28)
The solution for this last system of equations (27) and (28) is obtained through the relations

0 = a(u — §)

and
—V2ug + 205ug — f = D =0,
so that
6J(ug) = —yV3ug + 2oz(u3 —Blug—f=0
and

K S
) {J(uo) + 71 / (—=yV?uq + 205uo — f)? dfﬂ} =0,
Q
and hence, from the concerning convexity in u on V/,
K
J(up) = min {J(u) + = / (—yV2u + 20%u — f)? daz} :
ueV 2 QO
Moreover, from the Legendre transform properties
Fy(03,07,9) = (uo, 03 + 07) 12 — F1(uo, p),
Fy(03) = (uo, 03) 12 — Fa(uo),

G*(@Tﬂ%) = _<u07@T>L2 - <O768>L2 - G(UQ,O),

so that
Ji(03,07,95) = —F{ (03,01, 00) + F5 (03) — G* (o7, %)
= Fl(u(),@S) — FQ(UO) + G(UQ, 0)
= J(up). (29)
Joining the pieces, we have got
J(ug) = 525 {J(u) + I;/Q(7V2u+ 205u — f)? daz}
= inf { sup J{‘(vé‘,v{,vg)}
V€Y | (vF )€Y * x B*
S CRR) (30)

The proof is complete.

Remark 5.2. We could have also defined
B ={ug € Y* : ||tilloe < K/2 and —~V?+ 208 > ely},
for some small real parameter ¢ > 0. In this case, —yV? + 2v} is positive definite, whereas in

the previous case, —yV? + 2v( is negative definite.
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6 One more duality principle and a concerning con-
vex dual variational formulation

In this section we establish one more duality principle and related convex dual formulation.
Let Q C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 09.

For the primal formulation, consider a functional J : V' — R where

J(u) = ;/QVU-Vudx

a 2_ 2 T — (u 2.
+5 [ =p2 o . (31)

Here v >0, a >0, 3> 0 and f € L?(Q) N L>®(R).
For a fixed small parameter € > 0 we assume either

f(z) >0, ae. in Q,

or
f(x) <0, ae. in Q.
Moreover, V = W01’2(Q) and we denote Y = Y* = L%(Q),
At ={ueV : uf>0, ae. in Q},
Vo={ueV : |ul|o < K5},
and

Vi=AT N,

for an appropriate constant K5 > 0.
Define also the functionals F} : V XY - R, F5:V -Rand G:V xY — R by

K
Fi(u,v3) = V/Vu-Vudx—Q/UQda:
Q Q

2
K K
+1/(v§(K3—|—u)—K4)2 dfn—{—z/uQ dx, (32)
2 Ja 2 Ja
Fy(u) = KQ/ u? dx
2 Ja

and i
G(u,v):a/(u2—5+v)2 da:+/u2 dx — (u, f)re2,
2 Ja 2 Jo

for appropriate positive constants K, K1, Ko, K3, K4, K5 to be specified.
Moreover, define Fy : [Y*]3 = R, Fj : Y* = R, and G* : [Y*]> = R, by

F (u3, 05, v3)
= sup{(u, vy +v3)r2 — Fi(u,v3)}
ueV
_ 1/ (v} +v3 — Ki(K3(v3)* — Kqv3))?
Q

— dx
—’YVQ — K+ Kl(’Ué()Z + K5

2

K
_1 / (viKs — Ky)? da,
2 Ja

18


https://doi.org/10.20944/preprints202210.0091.v6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202210.0091.v6

Fy(v3) = igp«u ;U5 2 — Fo(u)}

1 2
= — . 33
i, | 03 do (3)
and
G*(v1,v5)

= sup {<u7 _UDLQ + <U7 US>L2 - G(“? U>}
(u,0)EV XY

_ ;/ (2%+K +/ dx+ﬁ/9v8dm (34)

B*={vg€Y" : 205l < K/8}.

if v € B* where

Furthermore, we define
D ={v; €Y" : |vifle < (3/2)K}
and J; : Y* x D* x B* x C* — R, by
Ji (v3, 01,05, 03) = —Fy (v3, 01, v3) + Fy (v3) — G™ (07, vp)-
where
Cr = (v} €Y ¢ [|vjlloe < 8Ku/Ks}.

Moreover, assuming K3 = K 3f, for a real constant Kg > 0 and
Ki>Ky,>»> K> f{35 > Ky > Ks > maX{la ||f||oo,05,53'7}

by directly computing §2.J5 (v3, v}, vy, v5) we may obtain that for such specified real constants,
J{ in convex in v3 and it is concave in (v}, v§, vs) on Y* x D* x B* x C*.
Indeed, denoting
p1 =] +v3 — K1 (K3(05)? — Kqv3)
o=V’ — K + Ko + K1(v3)?,
_7

9

¥
with may obtain

0 Ji (v3, v}, v, v5)
0(v3)?

= —K12(2K3v3 — K4)2/g0 — 4u(2K3v5 — K4)K12v§/<p
— 4 K3 (v3)? ) + 2uK3K) +u?Ky + K1 K2,

0%J3 (v3, vy, vg, v5)
0(v7)?

— —1/p — 1/(205 + K)

and )
* * * * *
0°J; (v3, v¥, ug, v3)

= K{(2K3v% — K. 2K vk .
av; 9ot 1(2K3v5 — Ky) /o + 2K v3u/¢

19


https://doi.org/10.20944/preprints202210.0091.v6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202210.0091.v6

Consequently, since Kse > K4 > K5 and recalling that in Vi, u/f > 0 a.e. in Q, we have

82JT(U572T72U67U§) -0 (2K12K4%u)/(f%—3f)) <0,
O(v3) ¥

and

2 Tk [k ok ok ok 2 Tk [k ok ok % 2 TRk 0k ok % 2
9 Jl (U27U17U07U3)8 Jl (’U27U17U0?U3) _ <8 Jl (UQ?UIaU07U3)>

d(v3)? 9(vy)? dug dvy
_ (2K KGu)/(K3f))
= O( ;(I?—F%)S) > >0, (35)

in a.e. in . From such results, we may easily obtain that J} in convex in v; and it is concave
in (vf,v5,v5) on Y* x D* x B* x C*.

6.1 The main duality principle and a related convex dual for-
mulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 6.1. Let (03,07,05,05) € Y* x D* x B* x C* be such that
575 (65,54, 86,03) = O

and ug € V1 be such that

o = OF5 ()
oy
Under such hypotheses, we have
dJ(ug) =0,
03(K3 +ug) — K4 =0,
and
J . Kl ~ % 2
(up) = inf < J(u)+ — [ (03(K3+u) — K4)* dx
ueVy 2 Q
= inf sup Ji (v3, 01,05, v3)
V3 €Y | (vt 0g,03)ED* X B* X C*
= J{ (93,07, 03). (36)

A~

Proof. Observe that §J;(05,07,05,05) = 0 so that, since J; is convex in vj and concave in
(v}, v5,v3) on Y* x D* x B* x C*, from the Min-Max theorem, we obtain

% ak Ak Ak A% . ¥k ok k%
Ji(03,07,05,03) = inf { sup Jl(vQ,vl,vo,vg)}.

V€Y | (07 ug,03)ED* X B* X C*
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Now we are going to show that

5J('LLO) =0.

From v e e
aJi (03,97, 05, 03)

ovs

=0,

and
OF3(93)
oy
we have
8F1*(’[}27 {)Tv @g)

ov;

+uy =20

and
fl; = KQUO.

Observe now that
sup  {(u,v] +v3)r2 — Fi(u,v3)}.

Ak Ak A
FI(UZavlav.?;)
(u,0)EV XY

Denoting
H(v3,v],v3,u) = (u,v] +v3)r2 — Fi(u,v3),
there exists 4 € V such that e e
O0H (v3,0%,05,1) _ 0
ou ’
and
Ff(vz7ﬁT7@3) H(@;,ﬁf,@;,ﬁ),
so that
aF’l (U;,’LA)T,TA}?)) _ aH(ﬁ;,@T,ﬁ;,ﬂ)
ov; - ov;
+8H(’U;,f)>{,f)3, ) ou
ou ov;
= q. (37)
Summarizing, we have got
OF (05,07, 0 R
wp = 1 (05,07, 03) —
ovs
Furthermore,
aF’l (U5’6T7@3) _ aH(f);,@T,{)g,ﬂ)
vy N ovy}
OH (i3, 7,03, @) Di
ou ovy
= q
(38)
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From this and the variation of J{ in v}, we obtain

OF(5,01,55) | 9GM(%,45) _
vt vt ’
so that ot f
0} —
—ug— L1 —
T+ K

Hence
0] = —(205 + K)ug + f.

Thus, from these last results and from the variation of J in v3, we have

OFY (03,07, 03 o

el SN B A= 24 ( 821)* i, 05) = K (05(K3 4+ ug) — K4)(K3 +up) = 0.

3

Hence, since |ug| < K5 < | K3/, a.e. in £, we have got
@;(Kg +ug) — K4 =0.
Moreover, from the variation of Ji in v, we obtain

E3
Yo 2

- _|_ uo — /B — 0’
«
so that
vy = a(u% - p)
Also from
OH (03,97, 03, 4)
=0,
ou
so that
—’01< - 7V2UO — KUO — ’0; + KQU() = 0,
that is
@1‘ = —nyQuo + Kuyg.
Thus,
oF = —yV3uy — Kug = — (205 + K)uo,
so that

— Vg 4 205ug — f = 0.
Vg + 2a(uf — B)ug — f = 0.

From this, we may infer that
(5J(u0) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
Fy (03,07, 03) = (uo, 07 + 3) 12 — Fi(uo, 3),
Fy(03) = (uo, 03) 12 — Fa(uo),
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G* (01, 95) = (uo, —01)r2 + (0,05) L2 — G(uo, 0),
so that
Ji (03,07, g, 03)
= —F{(d3,01,03) + F3(d3) — G*(97, Bg)
F1 (U(), ’D;) — FQ(’U()) + G(UO, 0)
= J(uo). (39)

Finally, observe that

JT(U;UTW{;’U;) < _<U7U§>L2 + Fl(u7v§) + F;(v;) + G(“’v 0)7
YVueV, vy eY* v] € D v5 € B, vi € C*.
Thus, we may obtain

inf J* *7 A>i<7 A*) A%
v;HelY* 1 (v3, 07, 05, 03)

inf {=(u,v3)r2 + Fi(u, 05) + F5 (v3) + G(u, 0)}
Vs *

= Fl(u, @;) — Fg(u) + G(’U,,O)
— J(u)+ % /Q (03(Ks + u) — K1)? de, Yu € Vi, (40)

IA

From this, we obtain
k (Aak Ak Ak Ak
J7 (03,97, 05, 03)

: Kk ok ko k
= inf { sSup Jl (UQa U1, V0, U3)}

V3 €Y | (vt vg,05)ED* X B* X C*
: Ky [ 2

< inf < J(u)+ — | (03(K3+u) — Ky4)*dx ¢ . (41)
ueVy 2 Q

Joining the pieces, from a concerning convexity in u, we have got
dJ(ug) =0,

03(K3 4+ up) — K4 =0,

and
J _ . Kl Ak 2
(wg) = inf §J(u)+ — [ (05(K3 +u) — K4)* da
ueVy 2 Ja
= inf sup J1 (v3, 07, v5,03)
’L);GY* (v’l“’va‘yug)eD*XB*XC*
G ) (42)

The proof is complete.

23


https://doi.org/10.20944/preprints202210.0091.v6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202210.0091.v6

7 A related numerical computation through the gen-
eralized method of lines

We start by recalling that the generalized method of lines was originally introduced in the
book entitled ” Topics on Functional Analysis, Calculus of Variations and Duality” [7], published
in 2011.

Indeed, the present results are extensions and applications of previous ones which have been
published since 2011, in books and articles such as [7, 8,9, 5]. About the Sobolev spaces involved
we would mention [1]. Concerning the applications, related models in physics are addressed in
[4, 11].

We also emphasize that, in such a method, the domain of the partial differential equation
in question is discretized in lines (or more generally, in curves) and the concerning solution is
written on these lines as functions of boundary conditions and the domain boundary shape.

In fact, in its previous format, this method consists of an application of a kind of a partial
finite differences procedure combined with the Banach fixed point theorem to obtain the relation
between two adjacent lines (or curves).

In the present article, we propose an improvement concerning the way we truncate the series
solution obtained through an application of the Banach fixed point theorem to find the relation
between two adjacent lines. The results obtained are very good even as a typical parameter
€ > 0 is very small.

In the next lines and sections we develop in details such a numerical procedure.

7.1 About a concerning improvement for the generalized method
of lines

Let Q C R? where
Q={(r0)cR?: 1<r<2 0<60<2r}
Consider the problem of solving the partial differential equation

—5(%+%@+%%> +oud —Bu=f inQ,
0)7 on 891, (43)
u = uy(6), on 0.
Here
Q={(r0) cR* : 1<r<2 0<60<2n},
o0 = {(1,0) e R* : 0< 0 < 2rx},
00 = {(2,0) e R? : 0 <0 <2},

e>0,a>0,86>0,and f =1, on (.
In a partial finite differences scheme, such a system stands for

2 tn d +%aa2

e (Un+1 — 2Up + Up—1 + 1wy —up—q 1 82“71,

> +Oéu?1_/8un:fm
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Vn € {1,---,N — 1}, with the boundary conditions
ug = 0,

and
uN = 0.

Here N is the number of lines and d = 1/N.
In particular, for n = 1 we have

Uy — 2u1 +u 1 (w1 —u 1 0%u
(2 21 0_|_ (uq 0)_1_72 21
d t1 d t1 00

) + au} — Bur = fi,

so that

+u + +1( )d+182“1d2+( T+ f)d2 /3.0
up = | ug +uy +ug+ —(up — u — —au uy — f1)— .
1 2 1 0 i 1 0 2 962 1 1 DA )
We solve this last equation through the Banach fixed point theorem, obtaining u; as a
function of us.
Indeed, we may set

u? = U9
and
1 1 0%uk
u’f“ = <U2 + u’f + up + E(u’f —up) d+ % (%?21 d?
d2
H=alud)? + pul - 1)) /30 (44)
vk € N.
Thus, we may obtain
up = lim u¥ = Hy(ug, uo).
k—o00
Similarly, for n = 2, we have
1 162
uy = | ug+uz + Hi(uz,uo) + —(ug — Hi(ug,uo)) d+ — u22d2
t1 ty 00
d2
—i—(—au% + Bug — f2)8> /3.0, (45)

We solve this last equation through the Banach fixed point theorem, obtaining us as a
function of usg and wug.
Indeed, we may set

ug = us
and
k1 k k Lok K 1 &%uf
Us = | us +ug + Hi(ug,uo) + —(ug — Hi(us,up)) d+ 5 —5d
to t5 00
d2
H-alu)? + g - 7)) f30. (46)
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Vk € N.
Thus, we may obtain

up = lim uf = Ho(us, ug).
k—ro0

Now reasoning inductively, having
Up—1 = Hn—l(una UO);
we may get

Up = | Upp1 +up+ Hy1(u u)—l—l(u —Hp 1 (u u))d+182un
n = n+1 n n—1{Un, UQ t n n—1\{Un, U0 t% 802

d2
2
o + g — 1)) /30, (@7

We solve this last equation through the Banach fixed point theorem, obtaining u, as a
function of u,11 and wyg.
Indeed, we may set

u?l = Un+1
and
1 1 0%uk
E+1 k k k k n 52
Uy, = (un+1 + u, + Hn_l(un,uo) + a(un — Hn_l(un,uo)) d+ % 902 d
d2
H-alud) + gul - 1T ) 30, (49)
Vk € N.

Thus, we may obtain

. k —
up = lim uy = Hp(upy1, uo).
k—o00

We have obtained wu,, = Hy(up+1,u0), Vn € {1,--- N —1}.
In particular, uy = us(6), so that we may obtain

UN_1 = HN_l(uN,uo) = HN_l(O) = FN_l(uN,uo) = FN_l(Uf((g),uQ(@)).

Similarly,

un—2 = Hy_a(un—1,u0) = Hv_2(Hn—1(un,u0)) = Fn—2(un,uo) = Fy_1(us(0),uo(h)),

an so on, up to obtaining
ur = Hi(ug) = Fi(un,uo) = Fi(us(6),uo(0)).

The problem is then approximately solved.
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7.2 Software in Mathematica for solving such an equation
We recall that the equation to be solved is a Ginzburg-Landau type one, where
2 2 .
—e (1 ) ot - pu=j, ma

u =0, on 082y, (49)
u=ugs(f), on 0%s.

Here
Q={(r0) cR?: 1<r<2 0<6<2n},

o0 ={(1,0) e R* : 0<0<2r},
00 ={(2,0) e R? : 0<0<2r},

e>0, a>0,8>0,and f =1, on . In a partial finite differences scheme, such a system
stands for

. (un+1 — Uy + Up_1 N Tup—up1 | 1 0%uy,

1 35 _ 5
2 P y +t% 502 > + au, — Buy, = fn,

Vn e {l,---,N — 1}, with the boundary conditions
Uug = 0,

and
un = uglz].

Here N is the number of lines and d = 1/N.
At this point we present the concerning software for an approximate solution.
Such a software is for N = 10 (10 lines) and ug[z] = 0..

>k >k sk ok sk sk sk sk sk sk sk skosk sk skosk sk sk ok ok skosk ok kokokokokokoskokoskokok sk ok ok

1. mg =10; (N =10 lines)

2. d=1/m§;
3. e1=0.1; (¢ = 0.1)
4. A=1.0;
5. B=1.0;
6. Forli=1,i <m8,i++, f[i] =1.0]; (f=1, on Q)
7. a=0.0;
8. For[i=1,i <m8,i+ +,
Clear[b, ul;
t[i] =1+ix*d,

] = uli + 1]fa];

27


https://doi.org/10.20944/preprints202210.0091.v6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202210.0091.v6

9. Forlk =1,k <30,k + +, (we have fixed the number of iterations)
2= <u[z’ + 1][2] + bla] + a + 7y (bla] — a) +d
+ﬁD[b[m], {2,2}] * d? + (A * b[z]® + B u[z] + f[i]) * g) /3.0;

2=
Series|z, {uli + 1][z], 0,3}, {u[i + 1]'[z], 0,1}, {u[i + 1]"[z], 0,1},
{uli +1)"[x], 0,0}, {uli + 1]™[x], 0,0}};
z = Normal[z],
z = Expand|z];
blz-] = 2J;
10. aq[i] = z;
11. Clearlb];
12. wfi+ 1][z_] = bz];
13. a = aq[i] |;
14. blz_] = uylz];
15. For[i=1,i < m8,i + +,
A1 = al[m8 - ’i];
Ay = Series[Ar, {ug[z], 0,3}, {u}[z], 0,1}, {u}[x], 0,1}, {u[z], 0,0}, {u}"[2], 0, 0}];
A1 = Normal[A1];
Ay = Expand[A;];
u[m8 — i][x_] = Ax;
blz_] = Ai;
Printlu[m8/2][x]];
Sk KRR KRS KRR R AR K

The numerical expressions for the solutions of the concerning N = 10 lines are given by

ul]f] = 0.47352 4 0.00691uy[z] — 0.00459u¢[z]* + 0.00265u¢[z]* -+ 0.00039(u’f)[z]
—0.00058u[x] (uf) [z] + 0.00050u ¢[x]* (u'f)[x] — 0.000181213uy[2] (uf)[z] (50)

u2][z] = 0.76763 + 0.01301uy[x] — 0.00863us[z]* -+ 0.00497us[z]* + 0.00068(u’f)[z]
—0.00103u[x] (u}f) [z] + 0.00088u[x]* (uf)[z] — 0.00034us[x]* (u}f)[x] (51)
ufB]lz] = 0.91329 + 0.02034us[x] — 0.01342uy[2]* + 0.00768us[x]* + 0.00095(u’f) ]
—0.00144u s [2](uf) [2] + 0.00122u[x]*(uf) [2] — 0.00051uy[z]* (uf)[z] (52)
ud][z] = 0.97125 + 0.03623uy[x] — 0.02328u[z]* + 0.01289us[z]* + 0.00147331(u})[x]
—0.00223u [z](uf) [2] + 0.00182u f[x]* (uf)[z] — 0.00074us[z]* (u})[x] (53)
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ul5]l] = 1.01736 + 0.09242u[z] — 0.05110us[z]* + 0.02387uy[z] + 0.00211(uf)[x]
—0.00378u[x](u}f)[2] + 0.00292u s [x]* (uf)[x] — 0.00132us[z]*(u}f)[x] (54)

ul6][z] = 1.02549 +0.21039uy[x] — 0.09374uy[z]* + 0.03422uy[x]® + 0.00147(uf)[x]
—0.00634u[z](u}f)[2] + 0.00467us[x]* (uf)[z] — 0.00200us[z]* (u})[x] (55)

ul7][z] = 0.93854 4 0.36459uy[x] — 0.14232us[z]* + 0.04058u[z]* + 0.00259(u’f) 2]

—0.00747373u (2] (u})[x] + 0.0047969u []* (uf)[x] — 0.00194uy[x]® (uf)[2] (56)

uf8][z] = 0.74649 + 0.57201uy[x] — 0.17293us[z]* + 0.02791us[z]* + 0.00353(u’f)[z]
—0.00658u[x] (u}f) 2] + 0.00407us[x]* (uf) [z] — 0.00172us[z]* (u}f)[x] (57)

ul9][z] = 0.43257 4 0.81004uy[z] — 0.13080us[x]* + 0.00042us[z]* + 0.00294(u’f)[z]
—0.00398u[2](uf) [2] + 0.00222u[x]*(uf) [2] — 0.00066u[z]*(u})[x] (58)

7.3 Some plots concerning the numerical results

In this section we present the lines 2,4, 6, 8 related to results obtained in the last section.

Indeed, we present such mentioned lines, in a first step, for the previous results obtained
through the generalized of lines and, in a second step, through a numerical method which is
combination of the Newton’s one and the generalized method of lines. In a third step, we also
present the graphs by considering the expression of the lines as those also obtained through the
generalized method of lines, up to the numerical coefficients for each function term, which are
obtained by the numerical optimization of the functional J, below specified. We consider the
case in which ug(x) = 0 and uy(z) = sin(x).

For the procedure mentioned above as the third step, recalling that N = 10 lines, considering
that ut(z) = —us(x), we may approximately assume the following general line expressions:

un(z) = a(l,n) + a(2,n)us(x) + a(3,n)us(x)® + a(4,n)us(x)*, ¥n € {1,--- N — 1}.

Defining
W, = —e; (un-f-l(x) - QUSZ(x) + un—l(x)) _ % (un(x) _dun—l(x)) _ %ug(x)_i_un(w)?: —un(l‘) —1,
and
N-1 Lor
Jatimh) = 3 JAUARE


https://doi.org/10.20944/preprints202210.0091.v6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202210.0091.v6

0.775

0.77

0.765

0 50 100 150 200 250 300

Figure 1: Line 2, solution ug(x) through the general method of lines

we obtain {a(j,n)} by numerically minimizing J.

Hence, we have obtained the following lines for these cases. For such graphs, we have
considered 300 nodes in x, with 27/300 as units in x € [0, 27].

For the Lines 2, 4, 6, 8, through the generalized method of lines, please see figures 1, 4, 7,
10.

For the Lines 2, 4, 6, 8, through a combination of the Newton’s and the generalized method
of lines, please see figures 2, 5, 8, 11.

Finally, for the Line 2, 4, 6, 8 obtained through the minimization of the functional J, please
see figures 3, 6, 9, 12.

8 Conclusion

In the first part of this article we develop duality principles for non-convex variational op-
timization. In the final concerning sections we propose dual convex formulations suitable for
a large class of models in physics and engineering. In the last article section, we present an
advance concerning the computation of a solution for a partial differential equation through
the generalized method of lines. In particular, in its previous versions, we used to truncate the
series in d? however, we have realized the results are much better by taking line solutions in
series for us[x] and its derivatives, as it is indicated in the present software.

This is a little difference concerning the previous procedure, but with a great result improve-
ment as the parameter € > 0 is small.

Indeed, with a sufficiently large N (number of lines), we may obtain very good qualitative
results even as € > 0 is very small.
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0 50 100 150 200 250 300

Figure 2: Line 2, solution ug(x) through the Newton’s Method

0 50 100 150 200 250 300

Figure 3: Line 2, solution us(x) through the minimization of functional J
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Figure 4: Line 4, solution u4(z) through the general method of lines

0 50 100 150 200 250 300

Figure 5: Line 4, solution u4(x) through the Newton’s Method
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Figure 6: Line 4, solution u4(x) through the minimization of functional J

0 50 100 150 200 250 300

Figure 7: Line 6, solution ug(x) through the general method of lines
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Figure 8: Line 6, solution ug(x) through the Newton’s Method
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Figure 9: Line
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ug(x) through the minimization
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Figure 10: Line 8, solution ug(x) through the general method of lines

1.4

0 50 100 150 200 250 300

Figure 11: Line 8, solution ug(z) through the Newton’s Method
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Figure 12: Line 8, solution ug(z) through the minimization of functional .J
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