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Abstract

This article develops dual variational formulations for a large class of models in variational
optimization. The results are established through basic tools of functional analysis, convex
analysis and duality theory. The main duality principle is developed as an application to a
Ginzburg-Landau type system in superconductivity in the absence of a magnetic field. In the
first part final sections, we develop new general dual convex variational formulations, more
specifically, dual formulations with a large region of convexity around the critical points which
are suitable for the non-convex optimization for a large class of models in physics and engineer-
ing. Finally, in the last section we present some numerical results concerning the generalized
method of lines applied to a Ginzburg-Landau type equation.
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1 Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.
The main duality principle is applied to the Ginzburg-Landau system in superconductivity in

an absence of a magnetic field.
Such results are based on the works of J.J. Telega and W.R. Bielski [2, 3, 13, 14] and on a

D.C. optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [9, 5, 6, 7, 12]. Finally, similar
models on the superconductivity physics may be found in [4, 11].

Remark 1.1. It is worth highlighting, we may generically denote
/ [(—V? + K1) ¥ v* da
Q
stmply by
*\2
/ _ W
o —YVi+ K
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where 1z denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Also, V? denotes the Laplace operator and for real constants Ko > 0 and Ki > 0, the
notation Ko > K1 means that Ko > 0 is much larger than K1 > 0.

Finally, we adopt the standard Finstein convention of summing up repeated indices, unless
otherwise indicated.

At this point we start to describe the primal and dual variational formulations.

Let  C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.

For the primal formulation we consider the functional J : U — R where

J(u) = 7/ Vu-Vu dx
2 Jo
45 [ =92 do— (u e )
2 Ja
Here we assume o > 0,8 > 0,7 >0, U = Wol’z(Q), f € L?(92). Moreover we denote
Y =Y* = L}(Q).
Define also G1 : U — R by

Gi(u) = ;/QVU -Vu dz,

Gy:UXxY = Rby

K
Gg(u,v)zj/g(UQ—ﬁij)QdmjL2/Qu2dx,

and F': U — R by

K
F(u) = 2/Qu2 dx,

where K > 7.
It is worth highlighting that in such a case

J(u) = Gi(u) + G2(u,0) — F(u) — (u, f)rz, Yu € U.

Furthermore, define the following specific polar functionals specified, namely, G3 : [Y*]? — R

by
Gi(ui +27) = sup{{u.oi + 7)1z — Ga(u)}
= 5 L= o+ 00+ o )
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G3: [Y*)2 > R by

Gi(va,v9) = sup  {{u,v3) 2 + (v,05) 2 — Ga(u, v)}
(u,0)EUXY

Lo

- 2/§22v3+K
1

—i—/(vS)Q d:v+6/v§ dx, (3)
2 QO QO

if v5 € B* where
B*={vgeY" : 205+ K > K/2in Q},

and finally, F* : Y* — R by
FX(z") = sup{(u,2") 2 — F(u)}
uelU

— o [ (4)

= 3k /g z T.
Define also

A* = {v* = (v}, v5,08) € Y ]? x B* : vi+v) — f=0, in Q},
J* [Y*]* - R by
T, 2) = G} + 27) — G35, ) + F* (")

and Jj : [Y*|* x U — R by

Ji(", 25 u) = JH(0%, 25) + (u, 01 + v = f)e

2 The main duality principle, a convex dual formu-
lation and the concerning proximal primal functional

Our main result is summarized by the following theorem.

Theorem 2.1. Considering the definitions and statements in the last section, suppose also
(0%, 2%, ug) € [Y*]? x B* x Y* x U is such that

ST (6%, 2%, ug) = 0.

Under such hypotheses, we have

and

J(ug) = inf {J(u)+§/ﬁ|u—uo|2 daz}

uelU
= T2

= sup {J7(v",2%)}. (5)
v*EA*
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Proof. Since
SJ7 (0%, 2% up) =0

from the variation in v} we obtain

A% 5%
—% Fup=0in Q,
so that
o + 2* = —yV3ug.

From the variation in v we obtain

/IA}*
2 .
-2 — 4+ upg=0, in Q.
205 + K 0 ’
From the variation in vj we also obtain
A%\ 2 Sk
(03) Yo

@5 +k7 o P70

and therefore,

From the variation in u we get
0] + 05— f =0, in Q
and thus
0" e AN
Finally, from the variation in z*, we obtain

(07 +2%) 2 .
_W—i_f :0, m Q

so that

that is,
%* = Kug in Q.

From such results and ©* € A* we get
0 = oj+05—f
—yV2ug — 2% + 2(v§)ug + Kug — f
= —yV3ug + 2a(ud — Buo — f, (6)

so that
(SJ(U()) =0.

Also from this and from the Legendre transform proprieties we have

4
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Gr(07 + 27) = (uo, 07 + 2%) 2 — G (wo),
G5(03,09) = (uo, B3) 2 + (0, v5) 2 — G2(u0, 0),
F*(2*) = (uo, %) 12 — F(uo)

and thus we obtain

JH(0%,2%) = —Gi(o] + £7) — G3(03,05) + F*(27)

—(ug, 9} 4 03) + G1(ug) + Ga(ug, 0) — F(up)

—(uo, f) 2 + G1(ug) + Ga2(ug, 0) — F(ug)

= J(up). (7)

Summarizing, we have got

On the other hand

J*(0*,27)

—G1 (0] + 2%) — G5(03,05) + F*(2%)
—(u, 07 + 2%) 2 — (u, 03) 2 — (0,v5) 2 + G1(u) + Ga(u, 0) + F*(2%)
—(u, firz + G1(u) + G2(u,0) — (u, 2*) 12 + F*(2)
= —(u, Y2+ Gi(u) + G2(u,0) — F(u) + F(u) — (u, 2*) 2 + F*(2*)
(u

)+ /u dr — (u, 2%y 2 + F*(2%)
Q
= J(u)—kE/u2d:v—K<u,uo>Lz+E/u%da:
2 Jo 2 Jo

K
— )+ 3/ u— wo? dz, Yu € U, )
Q

IN

Finally by a simple computation we may obtain the Hessian

82J* * %
8(,0*)2
in [Y*]2 x B* x Y*, so that we may infer that J* is concave in v* in [Y*]? x B* x Y*.
Therefore, from this, (8) and (9), we have

— _ 2
J(ug) = JIellfJ{ /|u uo| da?}

— J*(A* /\*
= sup {J( 2} (10)
v*EA*
The proof is complete. O
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3 A primal dual variational formulation

In this section we develop a more general primal dual variational formulation suitable for a

large class of models in non-convex optimization.
Consider again U = W01’2(Q) and let G : U — R and F : U — R be three times Fréchet

differentiable functionals. Let J : U — R be defined by
J(u) = G(u) — F(u), Yu € U.

Assume ug € U is such that
0J(ug) =0

and
(52J(U,O) > 0.

Denoting v* = (v}, v3), define J* : U x Y* x Y* — R by

T (%) = 5o — G ()3 + Sl — F/ ()3 + 3 ot — w33 (1)

2

Denoting Lj(u,v*) = v — G'(u) and Li(u,v*) = v3 — F'(u), define also
1

1
Cc* = {(u,v*) ceUxY"xY" ¢ ||L7(u,v])]|oo < I and [|L5(u, v])]|co < K}’

for an appropriate K > 0 to be specified.
Observe that in C* the Hessian of J* is given by

G"(u)?+ F"(u)?+0O(1/K) —G"(u) —F"(u)

{62T (u, ™)} =< —G"(u) 2 -1 3, (12)
—F"(u) -1 2
Observe also that 92+ i}
der{ S
Ovyovs
and
det {027 (u,v")} = (G"(u) — F"(w))? + O(1/K) = (81 (w))? + O(1/K).
Define now
o7 = G'(uo),
ﬁ; = F/(’LLO),
so that
0] — 05 = 0.
From this we may infer that (ug, 07, 05) € C* and
J*(ug, ") =0= min J"(u,v").

(u,v*)eC™*

Moreover, for K > 0 sufficiently big, J* is convex in a neighborhood of (ug, 0*)
Therefore, in the last lines, we have proven the following theorem.
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Theorem 3.1. Under the statements and definitions of the last lines, there exist ro > 0 and
r1 > 0 such that
J(ug) = min J(u
( 0) u€ By (uo) ( )

and (ug,v3,03) € C* is such that

J*(ug, 0%) =0 = i J*(u, v*).
(uo, 07) e (u,v")

Moreover, J* is convex in
A%
Brl (UO, v )

4  One more duality principle and a concerning pri-
mal dual variational formulation

In this section we establish a new duality principle and a related primal dual formulation.
The results are based on the approach of Toland, [15].

4.1 Introduction

Let  C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary
denoted by 0f2.

Let J : V — R be a functional such that
J(u) =G(u) — F(u),Yu €V,

where V = W[}’Q(Q).
Suppose G, F' are both three times Fréchet differentiable convex functionals such that

82G(u)
oz 0
and 82F( )
U
02 >0
Yu e V.

Assume also there exists a; € R such that

= inf :
“ =

Moreover, suppose that if {u, } C V is such that

[unlly — o0

then
J(up) = +00, as n — oo.
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At this point we define J** : V' — R by

J*(uw) = sup {(u,v*) + a},
(v, 0)eH*

where
H* ={(v",a) e V' xR : (v,v")y +a < F(v), Yo € V}.

Observe that (0,a1) € H*, so that

kk > — : f .
J(u) > aq inf J(u)

On the other hand, clearly we have
JH(u) < J(u), Yu eV,

so that we have got
= inf = inf J**(u).
o= Jgf ) = g 7

Let ue V.
Since J is strongly continuous, there exist § > 0 and A > 0 such that,

ap < J™(v) < J(v) < A, Vv € Bs(u).

From this, considering that J** is convex on V, we may infer that J** is continuous at u,

Yu e V.
Hence J** is strongly lower semi-continuous on V', and since J** is convex we may infer that

J** is weakly lower semi-continuous on V.
Let {un} C V be a sequence such that

1
ang(un)<a1+E, Vn € N.

Hence
o = lim J(un) ey ) i, J (u)

Suppose there exists a subsequence {uy, } of {u,} such that

|t |lv — o0, as k — oo.

From the hypothesis we have

J(tp,) = 400, as k — oo,

which contradicts
a1 € R.

Therefore there exists K > 0 such that

lunlly < K, Yu € V.
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Since V is reflexive, from this and the Katutani Theorem, there exists a subsequence {uy, }
of {u,} and ug € V such that
Uy, — U, weakly in V.
Consequently, from this and considering that J** is weakly lower semi-continuous, we have

got
aj = liminf J* (uy, ) > J*(uo),
k—o0

so that

J (uo)zgél‘r/lj (u).

Define G*, F* : V* — R by

G*(v*) = sup{{u,v*)y — G(u)},

ueVv

and
F*(v*) = sup{ (u, ")y — F(u)}.
ueV
Defining also J* : V' — R by
JT (W) = F*(v") = G*(v"),

from the results in [15], we may obtain

inf J(u) = inf J*(v"),

ueV v*eV*
so that
J*(ug) = ;g‘f/J (u)
BT = T "

Suppose now there exists 4 € V such that

J(u) = 1}25 J(u).

From the standard necessary conditions, we have

dJ(u) =0,
so that
0G (1) B or'(a) 0
ou ou
Define now
o OF(@)
7 du
From these last two equations we obtain
. _ 0G(a)
vy = S
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From such results and the Legendre transform properties, we have

. OF*(v5)
“= ov* "’
_ 0G"(v5)
v= ov* "’
so that OF* () 9G™(uf)
* (0 k v v ~ ~
0J*(vy) = 81}*0 - 81}*0 =u—1u=0,
G*(vg) = (@, vg)v — G(u)
and
F*(vg) = (4, v5)v — F(a)
so that

;g{/J(u) = J(u)
= G(a) - F(a)

A2f. ()
= F05) - G (0})
= JHw). (14)

4.2 The main duality principle and a related primal dual vari-
ational formulation

Considering these last statements and results, we may prove the following theorem.

Theorem 4.1. Let Q C R? be an open, bounded, connected set with a regular (Lipschitzian)
boundary denoted by Of2.
Let J :V — R be a functional such that

J(u) =G(u) — F(u),Yu eV,

where V = W&’Q(Q).
Suppose G, F are both three times Fréchet differentiable functionals such that there exists
K > 0 such that

82G(u)
K
2 + K >0
and 82F( )
U
K
92 + K >0
YueV.

Assume also there exists ug € V and a1 € R such that

= inf = .
aq ing(u) J(ug)

10
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Assume K3 > 0 is such that
HUOHOO < Kg.

Define 3
V={ueV : |ul|lew < K3}

Assume K1 > 0 is such that if u € V then

d0i:10.20944/preprints202210.0091.v3

max {[|F" () oo, G (u) oo | F (w)loo, 1F" (w)lloos IG” (1)l |G™ (W) [loc } < K.

Suppose also
K> max{Kl, Kg}.

Define Frg,Gg : V — R by

and

Yu e V.
Define also Gy, Fre : V¥ — R by

Gic(w?) = sup{{u, o)y = Grc(u)},

and

Fr(v*) = 31615{<u7v*>v — Fg(u)}.

Observe that since ug € V is such that

J(up) = inf J(u),

ueV
we have
5.](’11,0) =0.
Let € > 0 be a small constant.
Define
oF
vy = —I(;(LUO) e V*.

Under such hypotheses, defining J;{ : V x V* = R by

Ji(u,0) = Fr(") - Gk (%)
2

1 ||0G(v") 1

2 ov* 9 2

1 ]|0G%(v*)  OFL(v*)|?
2 ot vt 5

11

OF (v*)

ov*

2

2

(15)
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we have
o) = inf
J(up) 1 V.)(u)

— 3 f J* , *
(u,v*)lIelVXV* 1(U v )

= Ji(uo,vp)- (16)
Proof. Observe that from the hypotheses and the results and statements of the last subsection

Tuo) = inf J(w) = inf Ti(v") = Tie(s5),
where
Ji(v*) = Fie(v*) = G (v"), Yo" € V™.
Moreover we have
I (u,v*) > T (0*),Yu e V, v* € V*.
Also from hypotheses and the last subsection results,

_ OFg(s) _ 9G(v3)

0
Ov* ov*

so that clearly we have
Ji (uo, vp) = Ji (vg)-
From these last results, we may infer that
J = inf J
(uo) inf J(u)

b T )

= Jk(vw)

inf J7 *
(u,v*)lgVXV* 1(U,U)

= Ji (ug,vp). (17)
The proof is complete.
Remark 4.2. At this point we highlight that Ji has a large region of convexity around the

optimal point (ug,vg), for K > 0 sufficiently large and corresponding € > 0 sufficiently small.
Indeed, observe that for v* € V*,

G (v") = sup{(u,v*)y — Gk (u)} = (4,v")v — Gk ()

ueV
where 4 € V is such that 9 (d
o= 20 _ 1@y + K,
Taking the variation in v* in this last equation, we obtain
ou ou
1=aG" K—
() ov* + ov*’

12
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so that

From this we get

0% B 1 ") o1
3(0*)2 - (G"(u) + K)2 v+
1

ORI

- ofk)

On the other hand, from the implicit function theorem

oG (v) . s -
g = u+ [o* — GK(U>]6U* = u,
so that

and

Similarly, we may obtain

and
Denoting
and

we have

0% J¢ (uo, vj) 1 2 2
— D00 — A- B+ - (24% +2B* - 24B
o) +- (247 + )

O J5 (uo, v) 2
Ou? e’
and oI ( )
J1 (w0, vg 1
—— > = ——(A+ B).
d(v*)ou 5( +5)

From this we get

13
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. % 02T (ug, vt) 02T (ug, v 02T (ug, v 2
det(62T* (v§, up)) = (91((@*0)2 0) 18(ug 0) [ 8(11)(*)%0)}

_ B2

_ 2A B +2(A QB)
€ €
1

- o(3)

> 0 (19)

about the optimal point (ug, v().

5 A convex dual variational formulation

In this section, again for  C R? an open, bounded, connected set with a regular (Lips-
chitzian) boundary 99, v > 0, @ > 0, 8 > 0 and f € L?(2), we denote F; : V x Y — R,
Fr:V—->Rand G:V xY — R by

Fi(u,vg) = /Vu Vudw—/u dx
2 Ke [ o
+— (—yV2u + 2v3u — f) dx+7 u® dz, (20)
Q Q

Fy(u) = IEZ/QU dz + (u, f)re,

and K
G(u,v):a/(u25+v)2 dx+/u2da:.
2 Ja 2 Jo

We define also
Ji(u,vy) = Fi(u,vy) — Fa(u) + G(u,0),

J(u)zy/Vu~V7,Lala:—i-Oé/(uZ—ﬁ)2 dx — (u, f)re,
2 Ja 2 Ja
and Fy : [Y*]3 =R, Fj : Y* - R, and G* : [Y*]? = R, by

FY (3, 0] v5)

= sup{(u, vy +v3)r2 — Fi(u,v5)}
ueV

1/ (v} + v5 + K1 (= V2 + 208) f)°
V2 — K + Ky + K1 (—yV?2 + 20()?)

M / £ da (21)
F(5) = sup{(u.5)e = Fa(w)
1 *\ 2
- = /Q (v3)? de, (22)

14
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and
G'(vi;vg) = sup {(u,v7)r2 — (v,v5) 2 — G(u,v)}
(u,0)EV XY
_ 1 (’1)1)2 1 / *\ 2
= / 21)0—1—de+ 70 Q(vO) dx
+ﬂ/ vy dx (23)

if v € B* where
B*={;eY* : ||[vjlloo < K/2 and —~V? + 2v} < —cly},

for some small real parameter € > 0 and where I; denotes a concerning identity operator.
Finally, we also define J; : [Y*]? x B* — R,

Ji (03,01, v9) = —F7 (v3,v1,v9) + F5 (v3) — G (1, vy)-

Assuming
Ky > K1 > K > max{1/(¢?),1,7,a}

by directly computing 62J5 (v3, v}, v3) we may obtain that for such specified real constants, J;
in convex in v3 and it is concave in (v}, vg) on Y* x Y* x B*.
Considering such statements and definitions, we may prove the following theorem.

Theorem 5.1. Let (03,07,05) € Y* x Y* x B* be such that
and ug € V be such that

0F + 05 + K1 (—yV2 +203) f
Ky — K —yV2 + K1 (—yV?2 +20§)%"

ug =
Under such hypotheses, we have
5J(UQ) = 0,
so that

J(ug) = inf {J(u) + 5 /Q(—’)/VQU + 205u — f)? dx}

ueV 2

= inf sup Ji (v3,v7,v)
vyEY* (v} 7vo)eY*xB*
= (91,5, 24

Proof. Observe that 6.J7 (03, 07, 05) = 0 so that, since J; is convex in v5 and concave in (v}, vg)
on Y* X Y* x B*, we obtain

Ak Ak Ak : k[ Kk * *
Ji (93,07, 0) = mf* sup J7 (03,01, 05) ¢ -
V€Y | (v7,05)€Y* x B

15
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Now we are going to show that

5J('LLO) =0.
From o e
9.J7 (03,07, 05) -0
ovs ’
we have .
)
and thus
05 = Kouy.
From o e
9.J1 (03, 07, g) -0
ovy ’
we obtain 5t
0] —
—ug — =0
T K
and thus

’ﬁik = —217811,0 — Kug + f.

Finally, denoting
D = —V?ug + 205uo — f,

from nx ax A
9J5 (03,97, 95)
S 00—,
v
we have .
—2Dug+ud — 0 — g =0,
«
so that

oy = a(ul — B — 2Duyg). (25)
Observe now that
0F + 0% + K (—y V24200 f = (Ko — K — AV + K1 (—yV? + 208)%)ug
so that
Koug — 20gug — Kug + f
= Koug — Kug — vV2ug + K1 (—yV? + 205) (—yV?ug + 205ug — f). (26)

The solution for this last system of equations (25) and (26) is obtained through the relations

05 = a(u% - p)

and
—yV2uy 4 205ug — f = D =0,
so that
6. (ug) = —yV>ug + 2c(ug — B)ug — f =0

16
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and

K
5 {J(uo) s / (-7 V2uq + 265up — f)? dw} —0,
Q

and hence, from the concerning convexity in v on V,

K
J(up) = min {J(u) + = / (—yV2u + 20%u — f)? d:c} :
ueV 2 Q

Moreover, from the Legendre transform properties
Ff(@§7 f)T?@S) - <u07@; + @DLQ - Fl(u()?@S)?
F3(93) = (uo, 03) 12 — Fa(uo),

G*(01,09) = —(uo, 07) 2 — (0,95) L2 — G(uo,0),

so that
= Fi(uo, 0y) — F2(uo) + G(uo,0)
= J(UO) (27)

Joining the pieces, we have got

K
J(ug) = inf {J(u) + 1/(—7V2u+ 205u — f)? da:}

ueV 2 Q
= inf sup J7 (03, 07, v

vy EY™” {(u;,vg)ey*xB* 103 0)}
R R (28)

The proof is complete.
O

Remark 5.2. We could have also defined
B ={v; € Y" : |[vflloo < K/2 and —V?* + 20§ > ely},
for some small real parameter € > 0. In this case, —yV? + 2u 1s positive definite, whereas in

the previous case, —yV? + 2v( is negative definite.

6 A final convex dual variational formulation appli-
cable to a related model in phase transition

In this section, again let  C R3 be an open, bounded, connected set with a regular (Lips-
chitzian) boundary denoted by 0.
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For the primal formulation, consider a functional J : V' — R (which is related to some
models in phase transition of solids) where

1
J(u) = Z/QHijkl(vui‘VUj)(vuk'Vul) dx

1

—5 / CZJVUZ . VUj d.%' — <ui, fi>L2- (29)
Q

Here {H;jii} is a fourth order positive definite constant tensor and {Cj;} is a second order

positive definite constant tensor.

Moreover, V = Wol’4(Q;R3), f € L%(Q;R3) and we denote Y = Y* = L?(Q; R?).

For fixed h = (hi, ha, h3) € L*(Q;R?) and v > 0, define the functionals F; : V x Y — R,
F: VR G :VxY—->Rand Gy:V — R, by

3 3
K K
Fi(u,vg) = J(u)+ 71 E (—yV2u; + 2(v3)su; — hi)* dx + 72 E /Q(Uz)2 dz, (30)
i=1

i=1
K B
Fy(u) = ?2 z:/(u,)2 dx
=178
3

3
K K
G1(u,vy) = 71 Z(—7V2ui + 2(vd)iui — hi)?* dx + 72 Z /Q(ul)2 dz,
i=1 i=1

and 5
K2 2
Galu) = 2;/(2(%) dz,
We define also Fj : [Y*? 5 R, F} :Y* - R, and G5 : [Y*]? > R, G5 : Y* - R, by

Fi (01,05, v3) = sup{{ui, (v1)i + (v3)i) 22 — Fi(u, v5)}

ueV
Fy(v7) = Sug{(uz', (v1)i) 2 — Fa(u)}
ue
and
G1(v3,v5,v3) = sgg{m (v3)i — (v3)i) L2 — G1(u,vg)}
G5(v3) = sup {(ui, (v3)i) g2 — Ga(u)}
ue
Define also
Di={v €Y" : |[vie < (3/2) Ko,
Dy ={v; €Y" : ||Jv3]l0c < (3/2) K2},
B*={v5 €Y : [[5lloc < K1/8 and — 'yV2 +2(vg)i < —elg, Vi€ {1,2,3}}.
and

By ={vz € Y" : [luglloc < K1/8}.
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Furthermore, we define J; : D} x D5 x B* x B — R, by
Ji(vz, 01,00, v3) = —Fy (01,09, v3) + F5 (v7) — G (v2, v, v3) + Ga(v3).
Assuming
K3 > K1 > max{||flloe, lhlloy, 1/e%}

by directly computing 625 (v3, v}, v§, v5) we may obtain that for such specified real constants,
J{ in convex in (vi,v3) and it is concave in (vg, v3) on D} x D3 x B* x Bf.

6.1 The main duality principle and a concerning convex dual
formulation

Considering the statements and definitions presented in the previous section, we may prove
the following theorem.

Theorem 6.1. Let (03, 07,05,05) € D x D3 x B* x B} be such that
dJ7 (03,07,05,03) =0
and ug = {(up)i} € V be such that A

where we also assume (ug); # 0, a.e. in .
Under such hypotheses, we have
(5J(U()) = 0,
—yV2(ug)i + 2(63)i(uo); — hi = 0, Vi € {1,2,3}

and

ueVv

3
J(ug) = inf {J(u) + % Z / (—’YVQW + 2(04)iu; — hi)Q dx}
i=1 79

. * * * * *
= inf { sup Ji (”2771177)07'03)}

(V7 w3)eDTX D3 | (vg,v3)EB* x B}
K ak Ak oAk Ak
= Jl(v2?vlvv()vv3)' (31)
Proof. Observe that 6Jf (05,07, 05, v5) = 0 so that, since Jf is convex in (v}, v;) and concave
in (vg,v3) on D} x D3 x B* x By, from the Min-Max theorem, we obtain

k(A% Ak Ak : k(% ok ok %
‘]1 (02’1}1’1}0) = " *lnf* sup ‘]1 (’1)2,’01,’[)0,1)3) .
(v3,07)EDT X D2 | (vg,03)EB* X B}

Now we are going to show that
0J (U(]) =0.

From .
9J7 (03,07, 05, 03)
O(v1);

=0,
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and OFs (07)
2\U;
= (U i
A(vy)i (o)
we have OF (6%, 67, o)
1 V1,9, V3
— " + (’UJ())l =0
o(v)i
and

Observe now that denoting
H(UT’ U87v§77u) = <ui7 (Ul): + (7);)1‘>L2 - Fl(“ﬂ%)?

there exists @ € V such that
OH (i3, 07, 05, )

=0,
odu;
and
FY (07, 05, 03) = H(07, 95,03, 1),
so that
OFy (01,05,03)  OH(d7, 05,93, 4)
A(v7)i o(v7);
| OH(01, 85,03.4) 01,
3u]' 8(vf)z
= az (32)

Summarizing, we have got

Similarly denoting
Hi (v, 09, v3,u) = (ui, (v3)i — (v3)i) 2 — Fa(u, vp),

there exists 41 € V such that
6H1(’05, @8, ’U;, ul)

=0
8ui ’
and
G1(93, 03, 05) = Ha (03,03, 05, 1),
so that
0Gi(03,03,05) _ OH(03,05,03,4)
A(v3); A(v3)i
OH (03,05, 03,4) 0,
Ou; 0(v3);
= (G1)s- (33)
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Summarizing, we have got

Similarly, we may obtain

and X Ak Nk ANk
aGl(UQaUOaUB) _
o(v3)i

From this and the variation of Ji in v3, we get

OFy (07, 05,03) | 9Gi(03,%5,03)

=0.
O(v3)s A(v3)s
so that
U; — (ﬂl)z = 0.
Summarizing,
U = (U1); = (uo);-
From such results, we may obtain
(v2); = Kaug
and from this, from 9] = Kaug, and
OFy (07, 05, 03) | OG1(03,%5, 03)
" + =0

d(v3); A(v3)i

we get

Also, denoting
Ai(u]', QA}S) = —ny2uj + Q(ﬁg)zu] — h;,

from
aJi (03,97, 0, 03)
A(vg)i

=0,
we get

Ai((u0)is (95):)2(u0)i + Ai((uo)i, (95)i)2(uo)i = 0,
so that, since (ug); # 0, a.e. in £, we get
A;((uo)i, (95)i) = 0.

Summarizing,

— V2 (ug)i + 2(63)i(uo); — hy = 0, Vi € {1,2,3}.
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Finally, from

8ui N O,
we get
A~k Ak 0J(u Ak Ak
@)+ (@)~ 22 (2 o (5§)0) (V20 + 2058)i(uo)s — he) — Ea(uo)i = 0
so that 0.7 (uo)
up) .
Fu =0 vie {1,2.3)

that is,

Furthermore, also from such last results and the Legendre transform properties, we have
Fy (07,9, 03) = (uo, 07 + 03) 12 — F1(uo, p),
F3(07) = (uo, 07) 2 — Fa(uo),
G1(03, 0, 03) = —(uo, 03 — 03) 2 + (0, 05) 12 — G1(uo, 0p),
G5(03) = —(uo, D2) 12 — G1(uo),
so that

J7 (03, 07, 05, 03)
= —Fy (07,05, 03) + F5(07) — G1(93, 05) + G5(93)
= Fi(uo, ) — Fa(uo) + G1(uo, 95) — Ga(uo)
— J(uo). (34)

Joining the pieces, from the concerning convexity in u;, we have got

3
J(up) = inf {J(u) + % > / (=Y V2 + 2(88)iui — hy)? dx}
i=1 75

ucV
= . *inf* . sSup JT(U;UL’U(})‘(vvg)
(v1,03)€DTX D3 | (vf,v5)EB* x B}
K ak ok ¥
= ‘]1 (7)271}171)0)' (35)

The proof is complete.

Remark 6.2. We could have also defined
B*={vyeY* i ||20f]lc < K1/8 and —~V? +2(vg); > ely, Vi € {1,2,3}},

for a small parameter 0 < ¢ < 1. This corresponds to —yV? + 2(vy); be positive definite,
whereas the previous case corresponds to —yV? + 2(vy): be negative definite.

Finally, a word of caution. Indeed the global optimal minimum point for the primal formula-
tion may not be attained. Fven so, in such a case, considering the Ekeland variational principle,
the equations defining the critical points for both the primal and dual formulations may be still
approrimately satisfied.
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7 A related numerical computation through the gen-
eralized method of lines

We start by recalling that the generalized method of lines was originally introduced in the
book entitled ” Topics on Functional Analysis, Calculus of Variations and Duality” [7], published
in 2011.

Indeed, the present results are extensions and applications of previous ones which have been
published since 2011, in books and articles such as [7, 8,9, 5]. About the Sobolev spaces involved
we would mention [1]. Concerning the applications, related models in physics are addressed in
[4, 11].

We also emphasize that, in such a method, the domain of the partial differential equation
in question is discretized in lines (or more generally, in curves) and the concerning solution is
written on these lines as functions of boundary conditions and the domain boundary shape.

In fact, in its previous format, this method consists of an application of a kind of a partial
finite differences procedure combined with the Banach fixed point theorem to obtain the relation
between two adjacent lines (or curves).

In the present article, we propose an improvement concerning the way we truncate the series
solution obtained through an application of the Banach fixed point theorem to find the relation
between two adjacent lines. The results obtained are very good even as a typical parameter
€ > 0 is very small.

In the next lines and sections we develop in details such a numerical procedure.

7.1 About a concerning improvement for the generalized method
of lines

Let Q C R? where
Q={(r0)cR?: 1<r<2 0<60<2r}
Consider the problem of solving the partial differential equation

—5(%+%@+%%> +oud —Bu=f inQ,
0)7 on 891, (36)
u = uy(6), on 0.
Here
Q={(r0) cR* : 1<r<2 0<60<2n},
o0 = {(1,0) e R* : 0< 0 < 2rx},
00 = {(2,0) e R? : 0 <0 <2},

e>0,a>0,86>0,and f =1, on (.
In a partial finite differences scheme, such a system stands for

2 tn d +%aa2

e (Un+1 — 2Up + Up—1 + 1wy —up—q 1 82“71,

> +Oéu?1_/8un:fm
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Vn € {1,---,N — 1}, with the boundary conditions
ug = 0,

and
uN = 0.

Here N is the number of lines and d = 1/N.
In particular, for n = 1 we have

Uy — 2u1 +u 1 (w1 —u 1 0%u
(2 21 0_|_ (uq 0)_1_72 21
d t1 d t1 00

) + au} — Bur = fi,

so that

+u + +1( )d+182“1d2+( T+ f)d2 /3.0
up = | ug +uy +ug+ —(up — u — —au uy — f1)— .
1 2 1 0 i 1 0 2 962 1 1 DA )
We solve this last equation through the Banach fixed point theorem, obtaining u; as a
function of us.
Indeed, we may set

u? = U9
and
1 1 0%uk
u’f“ = <U2 + u’f + up + E(u’f —up) d+ % (%?21 d?
d2
H=alud)? + pul - 1)) /30 (37)
vk € N.
Thus, we may obtain
u; = lim u]f = Hj(ug,up).
k—o00
Similarly, for n = 2, we have
1 162
Uy = <U3 + ug + Hi(uz,uo) + —(ug — Hi(ug, u0)) d+ — u22d2
t1 ty 00
d2
+(—au3 + Buy — f2)8> /3.0, (38)

We solve this last equation through the Banach fixed point theorem, obtaining us as a
function of usg and wug.
Indeed, we may set

ug = us
and
k1 k k Loy k 1 0%uf
Us = | us +ug + Hi(ug,uo) + —(ug — Hi(us,up)) d+ 5 —5d
to t5 00
d2
H-alu)? + g - 7)) f30. (39)
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Vk € N.
Thus, we may obtain

up = lim uf = Ho(us, ug).
k—ro0

Now reasoning inductively, having
Up—1 = Hn—l(una UO);
we may get

Up = | Upp1 +up+ Hy1(u u)—l—l(u —Hp 1 (u u))d+182un
n = n+1 n n—1{Un, UQ t n n—1\{Un, U0 t% 802

d2
2
o + g — 1)) /30, (40

We solve this last equation through the Banach fixed point theorem, obtaining u, as a
function of u,11 and wyg.
Indeed, we may set

u?l = Un+1
and
1 1 0%uk
E+1 k k k k n 52
Uy, = (un+1 + u, + Hn_l(un,uo) + a(un — Hn_l(un,uo)) d+ % 902 d
d2
H-alud) + gul - 1T ) 30, (a1)
Vk € N.

Thus, we may obtain

. k —
up = lim uy = Hp(upy1, uo).
k—o00

We have obtained wu,, = Hy(up+1,u0), Vn € {1,--- N —1}.
In particular, uy = us(6), so that we may obtain

UN_1 = HN_l(uN,uo) = HN_l(O) = FN_l(uN,uo) = FN_l(Uf((g),uQ(@)).

Similarly,

un—2 = Hy_a(un—1,u0) = Hv_2(Hn—1(un,u0)) = Fn—2(un,uo) = Fy_1(us(0),uo(h)),

an so on, up to obtaining
ur = Hi(ug) = Fi(un,uo) = Fi(us(6),uo(0)).

The problem is then approximately solved.
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7.2 Software in Mathematica for solving such an equation
We recall that the equation to be solved is a Ginzburg-Landau type one, where
2 2 .
—e (1 ) ot - pu=j, ma

u =0, on 082y, (42)
u=ugs(f), on 0%s.

Here
Q={(r0) cR?: 1<r<2 0<6<2n},

o0 ={(1,0) e R* : 0<0<2r},
00 ={(2,0) e R? : 0<0<2r},

e>0, a>0,8>0,and f =1, on . In a partial finite differences scheme, such a system
stands for

Up+1 — 2Up + Up—1 1 up — Up_q 1 0%u, 3 B
_5< Pz +a d +% 962 +aun—6un—fn,

Vn e {l,---,N — 1}, with the boundary conditions
Uug = 0,

and
un = uglz].
Here N is the number of lines and d = 1/N.

At this point we present the concerning software for an approximate solution.
Such a software is for N = 10 (10 lines) and ug[z] = 0..

>k >k sk ok sk sk sk sk sk sk sk skosk sk skosk sk sk ok ok skosk ok kokokokokokoskokoskokok sk ok ok

1. mg =10; (N =10 lines)
2. d=1/m§;
3. e1=0.1; (¢ = 0.1)
4. A=1.0;
5. B=1.0;
6. Forli=1,i <m8,i++, f[i] =1.0]; (f=1, on Q)
7. a=0.0;
8. For[i=1,i <m8,i+ +,
Clear[b, ul;
t[i] =1+ix*d,

] = uli + 1]fa];
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9. Forlk =1,k <30,k + +, (we have fixed the number of iterations)
2= <u[z’ + 1][2] + bla] + a + 7y (bla] — a) +d
+ﬁD[b[m], {2,2}] * d? + (A * b[z]® + B u[z] + f[i]) * g) /3.0;

2=
Series|z, {uli + 1][z], 0,3}, {u[i + 1]'[z], 0,1}, {u[i + 1]"[z], 0,1},
{uli +1)"[x], 0,0}, {uli + 1]™[x], 0,0}};
z = Normal[z],
z = Expand|z];
blz-] = 2J;
10. aq[i] = z;
11. Clearlb];
12. wfi+ 1][z_] = bz];
13. a = aq[i] |;
14. blz_] = uylz];
15. For[i=1,i < m8,i + +,
A1 = al[m8 - ’i];
Ay = Series[Ar, {ug[z], 0,3}, {u}[z], 0,1}, {u}[x], 0,1}, {u[z], 0,0}, {u}"[2], 0, 0}];
A1 = Normal[A1];
Ay = Expand[A;];
u[m8 — i][x_] = Ax;
blz_] = Ai;
Printlu[m8/2][x]];
Sk KRR KRS KRR R AR K

The numerical expressions for the solutions of the concerning N = 10 lines are given by

ul]f] = 0.47352 4 0.00691uy[z] — 0.00459u¢[z]* + 0.00265u¢[z]* -+ 0.00039(u’f)[z]
—0.00058u[x] (uf) [z] + 0.00050u ¢[x]* (u'f)[x] — 0.000181213uy[2] (uf)[z] (43)

u2][z] = 0.76763 + 0.01301uy[x] — 0.00863us[z]* -+ 0.00497us[z]* + 0.00068(u’f)[z]
—0.00103u[x] (u}f) [z] + 0.00088u[x]* (uf)[z] — 0.00034us[x]* (u}f)[x] (44)
ufB]lz] = 0.91329 + 0.02034us[x] — 0.01342uy[2]* + 0.00768us[x]* + 0.00095(u’f) ]
—0.00144u s [2](uf) [2] + 0.00122u[x]*(uf) [2] — 0.00051uy[z]* (uf)[z] (45)
ud][z] = 0.97125 + 0.03623uy[x] — 0.02328u[z]* + 0.01289us[z]* + 0.00147331(u})[x]
—0.00223u [z](uf) [2] + 0.00182u f[x]* (uf)[z] — 0.00074us[z]* (u})[x] (46)
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ul5]l] = 1.01736 + 0.09242u[z] — 0.05110us[z]* + 0.02387uy[x] + 0.00211(uf)[x]
—0.00378u[x](u}f)[x] + 0.00292u s [x]* (uf) 2] — 0.00132us[z]*(u})[x] (47)

ul6][z] = 1.02549 +0.21039uy[x] — 0.09374uy[z]* + 0.03422uy[x]® + 0.00147(uf) 2]
—0.00634u[z](u}f)[2] + 0.00467u s [x]* (uf)[x] — 0.00200us[z]* (u})[x] (48)

ul7)[z] = 0.93854 4 0.36459uy[x] — 0.14232us[z]* + 0.04058us[z]* + 0.00259(u’f) 2]

—0.00747373us[z](u}) [x] 4 0.0047969u s [a:]2(u;ﬁ)[a:] —0.00194u ¢ [5[)]3(’[1,/;)[5[,‘] (49)

ul8][z] = 0.74649 4 0.57201uy[z] — 0.17293us[z]* + 0.02791us[z]* + 0.00353(u’f) [z]
—0.00658u[x] (u}f) 2] + 0.00407us[x]* (uf) [2] — 0.00172us[x]* (u}f)[x] (50)

ul9][z] = 0.43257 4 0.81004uy[z] — 0.13080us[x]* + 0.00042us[z]* + 0.00294(u’f)[z]
—0.00398u[2](uf) [] + 0.00222u[x]*(uf) [z] — 0.00066u[z]*(u'})[x] (51)

8 Conclusion

In the first part of this article we develop duality principles for non-convex variational op-
timization. In the final concerning sections we propose dual convex formulations suitable for
a large class of models in physics and engineering. In the last article section, we present an
advance concerning the computation of a solution for a partial differential equation through
the generalized method of lines. In particular, in its previous versions, we used to truncate the
series in d? however, we have realized the results are much better by taking line solutions in
series for us[x] and its derivatives, as it is indicated in the present software.

This is a little difference concerning the previous procedure, but with a great result improve-
ment as the parameter € > 0 is small.

Indeed, with a sufficiently large N (number of lines), we may obtain very good results even
as € > 0 is very small.
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