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Article
Dual Variational Formulations for a Large Class of

Non-Convex Models in the Calculus of Variations

Fabio Silva Botelho *

Department of Mathematics, Federal University of Santa Catarina, Florianépolis - SC,
Brazil; fabio.botelho@ufsc.br

Abstract: This article develops dual variational formulations for a large class of models in variational
optimization. The results are established through basic tools of functional analysis, convex analysis
and duality theory. The main duality principle is developed as an application to a Ginzburg-Landau
type system in superconductivity in the absence of a magnetic field. In the first sections, we develop
new general dual convex variational formulations, more specifically, dual formulations with a large
region of convexity around the critical points which are suitable for the non-convex optimization
for a large class of models in physics and engineering. Finally, in the last section we present some
numerical results concerning the generalized method of lines applied to a Ginzburg-Landau type
equation.

1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity in an
absence of a magnetic field.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,13,14] and on a D.C.
optimization approach developed in Toland [15].

About the other references, details on the Sobolev spaces involved are found in [1]. Related
results on convex analysis and duality theory are addressed in [5-7,9,12]. Finally, similar models on
the superconductivity physics may be found in [4,11].

Remark 1. It is worth highlighting, we may generically denote
/Q[(—’yvz + KIz) " 1o*|o* dx

simply by
*\2
[
a—YV-+K

where I; denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently clear.

Also, V? denotes the Laplace operator and for real constants Ky > 0 and Ky > 0, the notation Ky >> K;
means that Ky > 0 is much larger than Ky > 0.

Finally, we adopt the standard Einstein convention of summing up repeated indices, unless otherwise
indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological space, as
the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be represented
by another Banach space U*, through a bilinear form (-, )y : U x U* — R (here we are referring to standard
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representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and continuous,
we assume the existence of a unique u* € U* such that

fu) = (u,u*)y,Vu € U. ©)
The norm of f , denoted by || f ||+, is defined as

[ fllur = sup{|(w, u*)ul : [Jullu <1} = [[u*|u- )
uel

At this point we start to describe the primal and dual variational formulations.

Let QO C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.

Firstly we emphasize that, for the Banach space Y = Y* = L?(Q), we have

(0,0 )2 = /Qv v* dx, Yo,0* € L*(Q).
For the primal formulation we consider the functional ] : U — R where

J(u) = %/()Vu-Vudx
+5 0= B dx = (u, ). @)
Here we assumea >0, > 0,7 >0, U = W&’Z(Q), f € L?(Q). Moreover we denote
Y =Y* =L2(Q).
Define also G; : U — R by

Gi(u) = %/QVM-VM dax,

Gy:UXxY — Rby

Gz(u,v):%/(uz—ﬁ+v)2dx+§/0u2dx,

Q
and F: U — Rby

where K > 7.
It is worth highlighting that in such a case

J(u) = G1(u) + Ga(u,0) = F(u) = (u, f)12, Yu € U.
Furthermore, define the following specific polar functionals specified, namely, G} : [Y*]2 — R by

Gi(vi +2°) = sup{(u,01+2")12 — Gi(u)}
uel

= %/Q[(—'yVZ)fl(UT_'_Z*)](UT+Z*) dx, @
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G;:[Y*]> > Rby
Gy(v3,09) = sup  {(u,03)p2 + (0, v5)12 — Ga(u,0)}
(uv)eUxy
1 (%)
2 0 2v5+K
1
5= [ @) dx+ [ o dx, 5)
if v; € B* where
B* ={v5€Y" : 205+ K> K/2in Q}.
At this point, we give more details about this calculation.
Observe that
Gy(v,v5) = sup  {(w,03)p2 4+ (v,00) 12 — Ga(u,0)}
(uv)eUxy
= sup {(u v3) 2 + (0, 00) 12 / u? — B+v)? dx—/uzdx}. (6)
(u,v)eUxY 2 Q
Defining w = u? — B + v, we have v = w — u? + B, so that
G3 (v3,0p)
K
= sup {(u v3) 2+ (0, 00) 12 — / u? —Bp+0v)?d /uzdx}
(up)eUxY 2 2 QO
= sup {(u,v§>L2+< w—u*+ B, vy, / / uzdx}
(ww)elxy 2 Q
= (,03) 2 + (@ — @+ B,05), 2/ (@)? /Qﬂzdx, @)

where (i, @) are solution of equations (optimality conditions for such a quadratic optimization
problem)

and

and therefore

and

Replacing such results into (7) we obtain

17 ()
2 Ja 205 + K

1
+ﬂ /0(03)2 dx—l—ﬁ/ﬂva dx, (8)

G*(v1,09) =

if v € B*.

do0i:10.20944/preprints202210.0091.v10
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Finally, F* : Y* — R is defined by
F'(z") = sup{{u,z");2 — F(u)}
uel
_ 1 *\2
= R/ﬂ(z) dx. )

Define also
A* = {v* = (v],05,08) € Y] x B* : vf +05 — f =0, inQ},

J*: [Y*]* = Rby
J*(0%,2") = =Gy (01 +27) — Gy (v3,0p) + F*(z7)
and J; : [Y*]* x U — Rby
Ji(0%, 25 u) = J*(0%,27) + (u, 0] + 03 = f) 2.

2. The Main Duality Principle, a Convex Dual Formulation and the Concerning Proximal Primal
Functional

Our main result is summarized by the following theorem.

Theorem 1. Considering the definitions and statements in the last section, suppose also (0*,2*,ug) € [Y*]? x
B* x Y* x U is such that
OJ1 (0%,2",up) = 0.

Under such hypotheses, we have

and

= sup {J*(v",2%)}. (10)

Proof. Since

from the variation in v} we obtain

oF + 2* .
_(—1’)/V2)+u0 0in Q),
so that
0} + 2% = =9V

From the variation in v5 we obtain

sk

2 .
— =0, in Q.
2778 TK + up in
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From the variation in 05 we also obtain

and therefore,
. 2
0 = a(ug — ).

From the variation in u we get

and thus
* e A",

Finally, from the variation in z*, we obtain

O +2) 2,
———" 4+ —==0,inQ.
—7V2 K m
so that .
_ Z —,
ug + X
that is,
2* = Ku() in Q).

From such results and 9* € A* we get

0 = 07+05—f

—yV2ug — 2% +2(v})ug + Kug — f
(11)

—'szuo + th(u% —B)ug — f,

so that
6] (uo) = 0.
Also from this and from the Legendre transform proprieties we have
Gi (01 +27) = (uo, 01 +27) 2 — Gi(uo),

G3(83,%p) = (w0, 02) 1.

2+ (0,’06>L2 — G2(u0,0),
PH(2") = (0, 2")

2 — F(up)

and thus we obtain

—Gi (07 +2%) — G5 (05,9;) + F*(2")
—<u0, Z’)i‘ + ZA7§> + Gy (uo) + Gz(uo,O) — F(uo)

= —<u0,f>L2 + Gl(uo) + G2(u0,0) — P(uo)
= J(uo). (12)

Summarizing, we have got
(13)
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On the other hand
) = —Gilo]+2) — G3(03,05) + ' (2)
< w01+ 272 = (u03)12 = (0,09) 12 + Gi () + Ga(u,0) + F¥(27)
= —(u,f)r2+Gi(u) + Go(u,0) — (u,2%) 2 + F*(£")
= =W f)rz +Gi(u) + Ga(u,0) = F(u) + F(u) — (u,27) 12 + F*(27)
K
— )+ E/Quz dx — (u,2") 2 + F*(5%)
K K
= J(u)+ 5 /Quz dx — K(u, ug)2 + 5 /Qu% dx
= ](u)—kg/n|u—uo|2 dx, Yu € U. (14)
Finally by a simple computation we may obtain the Hessian
82]*(0*,2*)
{57} <0
in [Y*]2 x B* x Y*, so that we may infer that J* is concave in v* in [Y*]2 x B* x Y*.
Therefore, from this, (13) and (14), we have
J(ug) = 1r1f { / lu — ug|? dx}
= P
= sup {J*(v",2%)}. (15)

vFEA*
The proof is complete. [

3. A Primal Dual Variational Formulation

In this section we develop a more general primal dual variational formulation suitable for a large
class of models in non-convex optimization.

Consider again U = WS'Z(Q) and let G : U — Rand F : U — R be three times Fréchet
differentiable functionals. Let | : U — R be defined by

Assume ug € U is such that
0] (up) =0

and
8*J(ug) > 0.

Denoting v* = (v}, v5), define J* : U x Y* x Y* — Rby

1 1
J*(w,0%) = 5llof = G' ()3 + Sl = F(w)3+ 5 ||v1 vz (16)

b

Denoting L (1, v*) = v — G'(u) and L} (u,v*) = v5 — F'(u), define also

C* = {(u,v*) eUxY" " xY" : ||[LT(1,0]) ]| < % and || L5 (1, v]) oo <

Rl

for an appropriate K > 0 to be specified.
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Observe that in C* the Hessian of J* is given by
G"(u)>+ F"(u)>+O(1/K) —G"(u) —F'(u)
{6%]*(u,v*)} = —G"(u) 2 -1 7, (17)
—F"(u) -1 2

Observe also that

2 1% *
det{af(“fv)} _3

dvydv;
and
det{&*]* (u,0*)} = (G"(u) — F"(u))* + O(1/K) = (6°](u))* + O(1/K).
Define now
07 = G'(up),
05 = F'(up),
so that
0] — 05 =0.
From this we may infer that (ug, 9], 9;) € C* and
J* (19, 9*) =0= min J*(u,0").
(u,0*)eC*

Moreover, for K > 0 sufficiently big, J* is convex in a neighborhood of (ug, *).
Therefore, in the last lines, we have proven the following theorem.

Theorem 2. Under the statements and definitions of the last lines, there exist ro > 0 and r1 > 0 such that

J(uo) = ue%,fr(b@ J(u)

and (uo, 97,05) € C* is such that

*(ug,0%) = 0 = : *(u,v").
J" (10, ) (u,v*)réllllg[Y*]ZI (,07)

Moreover, [* is convex in
Br1 (uo , UA* ) .
4. One More Duality Principle and a Concerning Primal Dual Variational Formulation
In this section we establish a new duality principle and a related primal dual formulation.
The results are based on the approach of Toland, [15].
4.1. Introduction

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).
Let ] : V — R be a functional such that

where V = WS’Z(Q).
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Suppose G, F are both three times Fréchet differentiable convex functionals such that

0°G(u)
0
ur
and F ()
0°F(u
2 0
YueV.
Assume also there exists 1 € R such that
=
Moreover, suppose that if {u,} C V is such that
[un |y — oo
then
J(un) — 400, as n — oo.
At this point we define [** : V — R by
J7(u) = sup {(u,0%)+aj,
(v*,0)eH*
where

H*={(v*,a) e V* xR : (v,0")y +a < F(v), Yo € V}.

Observe that (0,41) € H*, so that

] (u) = a1 = inf J(u).

ueV

On the other hand, clearly we have
T (u) < J(u), VvueVv,

so that we have got
aq = inf J(u) = inf [**(u).

ueV ueV

Letu e V.
Since | is strongly continuous, there exist § > 0 and A > 0 such that,

ap < J7(0) < J(v) < A, Vo € Bs(u).

From this, considering that J** is convex on V, we may infer that J** is continuous at u, Vu € V.

Hence J** is strongly lower semi-continuous on V, and since [** is convex we may infer that J**
is weakly lower semi-continuous on V.

Let {u,} C V be a sequence such that

1
ay < J(up) <oc1+a, vn e N.

Hence

1 = lim J(un) = inf J(u) = inf J** ().
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Suppose there exists a subsequence {uy, } of {u,} such that
|tin,||v — o0, as k — oo.
From the hypothesis we have
J(uy,) = +o0, as k — oo,

which contradicts
a1 € R

Therefore there exists K > 0 such that
lunllv <K, Yu € V.

Since V is reflexive, from this and the Katutani Theorem, there exists a subsequence {uy, } of {u,}
and ug € V such that
Uy, — up, weakly in V.

Consequently, from this and considering that [** is weakly lower semi-continuous, we have got
ay = Hminf J** (uy, ) > J** (uo),
k—o0

so that

J* (u) = rurg‘r}l**(u)-

Define G*, F* : V* — R by

G"(v") = sup{(u, 0" )y — G(u)},

ueV

and
F*(v*) = sup{(u,v*)y — F(u)}.
uevVv
Defining also [* : V — R by
J*(v*) = F*(v") = G*(v"),

from the results in [15], we may obtain

inf J(u) = inf J*(o),

ueV vreV*

so that

] (o) = inf J*(u)

ueV
= infJ(u)=_inf J"(2"). (18)

Suppose now there exists ## € V such that

J(@) = inf J(u).

ueV

From the standard necessary conditions, we have
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so that
oG(#n) OJF(n) 0
ou ou
Define now
L OF(@)
07 " ou
From these last two equations we obtain
_ 9G(1)
W=,
From such results and the Legendre transform properties, we have
. OF*(vp)
YT o
. 0G*(vp)
ST
so that SF*(2h) 3G (ol)
* ok *US_ *US_"_"_
8] (vy) = e S A—10=0,
G*(vp) = (#,vp)v — G(#)
and
F(vg) = (#,05)v — F(1)
so that
inf _ .
inf J(u) J(@)
= G(a) —F(@)
— H f * *
inf J*(0%)
= F'(5) = G (vp)
= J"(9p)- (19)

4.2. The Main Duality Principle and a Related Primal Dual Variational Formulation

Considering these last statements and results, we may prove the following theorem.

Theorem 3. Let Q C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).
Let | : V — R be a functional such that

J(u) = G(u) — F(u),Vu €V,

where V = Wy (Q).
Suppose G, F are both three times Fréchet differentiable functionals such that there exists K > 0 such that

0°G(u)
ou?

+K>0

and
0°F(u)
ou?

+K>0
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YueV.
Assume also there exists ug € V and a1 € R such that
ay = inf J(u) = J(uo).
ueV
Assume Kz > 0 is such that
l[uolleo < K.
Define
V={ucV : |u|o <Kz}
Assume Ky > 0is such that if u € V then
max {[|F'(u) leo, [|G" (1) oo, [[F” (1) lleo, 1" (1) [loo, |G (1) leo, [[G"" (u)[|eo } < K.
Suppose also
K > max{Kj, Ks}.
Define Fg, G : V. — R by
K
Fx(u)=F = | u?
k(1) (u) + 5 /Qu dx,
and
G (u)—c(u)+5/ 2 dx
k(u) = 2 Jo ,
YueV.
Define also Gg, Fg : V* — R by
Gk (v") = sup{(u,0")y — Gx(u)},
uevV
and
Fi(v*) = sup{(u, v")v — Fx(u)}.
ueVv
Observe that since ug € V is such that
J(uo) = inf J(u),
ueV
we have
5](ug) = 0.
Let € > 0 be a small constant.
Define
* aFK(“O) *
Uy = ou e Vv
Under such hypotheses, defining ;' : V x V* — R by
Ji(u,0") = Fg(o") = Gg (o)
1|[9Gk() P, L|loRe) IP
2e ov* 5 2| ov* 2
1[|3Gk(") _ aFe) | 20
2¢ || ov* av* ||,

do0i:10.20944/preprints202210.0091.v10
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we have
J(uo) = ngf/](u)
— ) f * , *
(u,v*)lngV* Ji (u ¢ )
= Ji(up,vp). (21)

Proof. Observe that from the hypotheses and the results and statements of the last subsection
— 3 f — i f * * — * * ,
Juo) = inf J(u) = inf Ji(o") = i (v5)
where
Jx(0*) = Fg(v*) — Gg(v*),Vo* € V*.
Moreover we have
Ji(u,0%) > Jg(v*),Yu e V, v* € V*.

Also from hypotheses and the last subsection results,

_ 9Fg(05) _ Gk (v3)

o= 5 av*

so that clearly we have
Ji (1o, v5) = Jx(vp)-

From these last results, we may infer that

J(uo) = inf J(u)

ueV

_ inf T (o*
inf Jx(0")

= Jx(vp)

= inf “(u, 0"
(u,v*)HngV* i ( )

= J{(uo, vp). (22)

The proof is complete.
O

Remark 2. At this point we highlight that [} has a large region of convexity around the optimal point (ug, v(),
for K > 0 sufficiently large and corresponding € > 0 sufficiently small.
Indeed, observe that for v* € V*,

Gy (v") = Slelg{mv*)v — Gk (u)} = (8,0 )y — Gk(1)

where 1 € V is such that

YT T

Taking the variation in v* in this last equation, we obtain

— G'(#) + Ka.

ol ol
a0+ T K55

1=G"(u)

so that
ol 1 _ 0 1
ov*  G"(u)+K K)’
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From this we get
azﬁ _ _ 1 ///(u) ﬁ
a(v*)2  (G"(u) +K)? ov*
_ 1 "
- @kt ™
1
- () 23)
On the other hand, from the implicit function theorem
Gy (v*) . oy O
o = u+[v*— GK(M)]GU* =u,
so that
PCi(e) _ o _ (1
a(v*)2  9vr \K
and

3G (v*) 021 1
= == (9 .
a(v*)3 9(v*)2
Similarly, we may obtain
PR _ (1
d(v*)? K
and s
PR _ (1)
a(v*)3 K3
Denoting
L PR
a(v*)Z
and 5
5 PGL(p)
a(v*)Z ’

we have

%] (uo, 05) L oAz g2

S SATB, (242 + 282 —248),

0%J5 (up, v§) 2

ou? e

and 25 )
o7} (uo,v5) 1

o(v*)ou _E(A+B)'

From this we get
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2
02J5 (ug, ) 9°J; (uo, v3) 02J5 (ug, )
det(6°J* (v, ug)) = 5(0*)20 1au2 = al(v*)auO
_ _ 2
_ LA B+2(A 23)
£ &
1
- 0(@)
> 0 (24)

about the optimal point (ug, v().

5. A Convex Dual Variational Formulation

In this section, again for (3 C R3 an open, bounded, connected set with a regular (Lipschitzian)
boundary 9Q, v > 0,a > 0,8 > 0and f € L?(Q), wedenote F; : VXY — R,/ : V — Rand
G:VxY —=Rby

Fi(u,v5) = %/ Vu-Vudx—g/uzdx
o) o)
+& (—yV2u +205u — f)? dx+&/ u? dx (25)
2 Jo 0 2 Jo !
K
F2(u):72 Quz dx + (u, f)12,

and K
_X 2 _ 2 X 2
G(u,v)fz/ﬂ(u B+v) dx+2/0u dx.
We define also
J1(u,05) = Fi(u,v5) — Fa(u) + G(u,0),
7 . i 2_ B2 dx—
J(u) = Z/QVu Vudx+2/0(u B)dx — (u, f);2,
and Fj : [Y*]? = R, F; : Y* - R,and G* : [Y*]2 = R, by
K (03,91, 9)

= sup{(u,v] +03)2 — F1(u,vp)}
ueV

- 1/ (vi‘—l—v;—l—K](—'yVZ—i-ZvS)f)z
~ 2Ja (—yVZ =K+ Ky + Ky (=7 V2 +205)?)

Ky
— /Q 72 dx, (26)

E(v) = Slelg{<u,v§>Lz—Fz(u)}

1
- /Q (03)? dx, (27)

do0i:10.20944/preprints202210.0091.v10
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and
G'(v1,00) = sup {(w01)p2 — (v, 05)2 — G(u,0)}
(u,0)eVxyY
)2
- % 0 Zz(;gllK et % /0(06)2 o
B /Q of dx (28)

if v; € B* where
B* ={v{ € Y* : |vjllo <K/2and —yV? + 20} < —el,},

for some small real parameter ¢ > 0 and where I; denotes a concerning identity operator.
Finally, we also define J; : [Y*]? x B* = R,

Ji (03,91, 05) = —F (03,01, 09) + F5 (v3) — G* (01, vp)-

Assuming
Ko > Ky > K> max{1/(¢?),1,7,a}

by directly computing 6% (v5, 0%, ) we may obtain that for such specified real constants, J; in convex
in v} and it is concave in (v, v§) on Y* x Y* x B*.
Considering such statements and definitions, we may prove the following theorem.

Theorem 4. Let (03,07,05) € Y* x Y* x B* be such that
8]1(03,01,99) = 0
and ug € V be such that

_ 003+ Ky (=7V +205)f
Ky — K =9 V2 4+ Ky (=7 V2 +205)?

U
Under such hypotheses, we have
0] (ug) =0,
so that

J(up) = inf {](u) + %/ﬂ(—nyZu—FZﬁSu —f)? dx}

ueV

— it sup Ji(e3,0000)
0, €Y (0},08)€Y* X B*
k (oak Ak Ak
- ]1 ('02, Z)l, 'Uo). (29)
Proof. Observe that 4] (93,97,0;) = 0 so that, since J; is convex in v5 and concave in (v}, v}) on
Y* x Y* x B*, we obtain

Ji(92,91,%p) = inf, sup  J3(v3,01,75)
BEYT | (vr,08)€Y*xB*

Now we are going to show that
6] (up) = 0.
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From . nx
9J1 (93,91, %5) _
Jv;
we have .
&)
— 2 -,
ug + &
and thus
@; = Kzuo
From o nn
95 (93,07, 95) _
avT
we obtain
01— f
—Up — A% — Y
205 + K
and thus
0] = —20yuy — Kug + f.
Finally, denoting
D = —yV?ug +20%ug — f,
from e e
95 (93,07, 95) _
v;;
we have .
—2Du0+u%—z;—0—ﬁ:0,
so that
oy = a(ud — B — 2Duy). (30)
Observe now that
0 + 05 + Ky (—y V2 +205) f = (Ky — K — yV? + Ky (—y V2 +265)?)ug
so that
K2u0 — 2?301/10 — Ku() + f
= Koug — Kug — yV2ug + Ky (—yV? +208) (—yV2ug + 205ug — f). (31)

The solution for this last system of equations (30) and (31) is obtained through the relations

9 = a(uj — p)

and
—yV2uy +205ug — f =D =0,
so that
6] (ug) = —yV?u + 2a(uf — B)ug — f =0
and

) {](uo) + % /Q(—'yV2u0 + 20%uy — f)? dx} =0,
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and hence, from the concerning convexity in u on V,
J(uo) = min < J(u) + &/ (—yV2u 4 205u — f)? dx } .
uev 2 Jo
Moreover, from the Legendre transform properties
F{(93,01,90) = (uo, 93 +97)12 — Fi(uo, %),
Fy (93) = (uo,03) 12 — Fa(uo),
G* (87,05 = —{ut0,07) 12 — (0,03) 12 — Gluo,0),
so that
Ji (93,91, 85) = —H (93,91, 8) + F;(93) — G*(31, %)
= F(uo, %) — F2(uo) + G(uo,0)
= J(uo). (32)
Joining the pieces, we have got
J(ug) = inf < J(u)+ &/ (—yV2u +205u — f)* dx
0 ueV 2 Ja 0
= inf sup  Ji(v3,07,v5)
€Y | (03,05)€Y* xB*
= Ji(93,97,05). (33)

The proof is complete.
O

Remark 3. We could have also defined
B* = {0} € Y* : ||0}|lec < K/2and —yV? + 20} > ely},

for some small real parameter € > 0. In this case, —yN/* + 20}, is positive definite, whereas in the previous case,
—y V2 + 20 is negative definite.
6. Another Convex Dual Variational Formulation

In this section, again for Q C R® an open, bounded, connected set with a regular (Lipschitzian)
boundary 9Q), ¥ > 0, > 0, > 0and f € L’(Q), wedenote F; : VxY - R, F,: V - Rand

G:Y — Rby
Fi(u,05) = %/QVu-Vudva(uz,vS)Lz
Ky 1 o2 x 02 Kz 2
+3 Q( yVou+2v5u — f)° dx + 3 /Qu dx, (34)
K2 2
F = 5 d 7 7
(1) = 2 [ dxt (u, £
and
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We define also
J1(u,08) = Fi(u,v5) — Fa(u) — (u?,v) 12 + G(u?),
_ : O
J(u) = Z/QVM Vudx—i—z/o(u B)dx — (u, )2,
At={ueV :uf>0 ae inQ},
Vo={ueV : |ul|o <Kz},
%] :A+QV1,
and Fj : [Y*]2 >R, F : Y* > R,and G* : Y* - R, by
Fy (v3,vp)

= sup{(u,v3)r> — Fi(u,v5)}
ueV

_ 1/ (vﬁ—l—Kl(—'yVZ—l—Zz;S)f)z
2 Ja (—yV2+ 205 + Ko + Ky (=7 V2 + 205)?)

Ky 2

dx

F(vy) = sgg{w,v;m—a(u)}

1
- /Q (0% + f)? dx, (36)

and

G*(vg) = sup{(v,05)12 — G(v)}

veY
1 * *
= ﬂ/n(vo)2 dx—i—,B/QvO dx (37)

At this point we define
Bi ={vg € Y" : [loglleo < K/2},

By = {v € Y* : —yV?+ 20} + Ky (—V? +205)% > 0},

By ={vj € Y* : —1/a+ 4K [u(v3,v§)?] +100/K, < 0,Y05 € E;},

where

u(vs,0p) = 21,

g1 = (03 + Ki(=7V? + 205) f)
and
¢ = (—yV? 4205 + Ky (—yV? +205)% + Ka),
Finally, we also define
Ef={neY" : |n]e < (5/4)K2}.

E;={v;€Y" : fu; >0, ae. inQ},

E* = E{ NE;,
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B* = Bf N B},

and J{ : E* x B* = R, by

Ji(v3,v9) = —Fi (v3,05) + F5 (v3) = G™(vp).

Moreover, assume
Ky > Ky > K> K3 > max{1,vy,a}.

By directly computing 62]; (v3,v;) we may obtain that for such specified real constants, J; is
concave in vj on E* x B*.
Indeed, recalling that

= (—yV? + 205 + Ki(—yV? + 208)2 +K3),

@1 = (05 + K (—yV* +205)f),

and
ue o
¢

we obtain

i (v3,v5)

W —1/K2—1/q0>0,
in E* x B3 and

i (v3,95)

e 4u’Ky —1/a+ O(1/Kp) < 0,
0

in E* x B*.
Considering such statements and definitions, we may prove the following theorem.
Theorem 5. Let (03,0;) € E* x (B* N B;) be such that
0J1(02,85) = 0
and uy € Vy be such that

_ 05 + Ki (= V> +205)f
© Ky +205 — yV2 + Ky (—yV2 +205)%

Up

Under such hypotheses, we have
6] (uo) =0,

so that

o) = ing {10+ 5 [ (0P 2050 - R ax

~ inf { sup J; <v;i,vs>}

vy EE* v5eB
= J{(03,95). (38)

Proof. Observe that 6] (93,9;) = 0 so that, since J; concave in v§ on E* x B*, vj € B; and J] is
quadratic in v, we get
X [ Ak * X ko aAk : * L 3
sup J1(03,v) = J1(03,9) = inf Ji (v3,0p).
v} EB* ;€L
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Consequently, from this and the Min-Max Theorem, we obtain
Ji(02,89) = inf 3 sup Ji(vp,v5) o = sup § inf Ji(v3,05) -
vy €k v eB* v €B* 03 €E”
Now we are going to show that
6] (uo) = 0.
From e
91 (93,95) _
v} ’
we have
—up + ﬁ =0
ot g, =Y
and thus
?3; = Kzuo.
Finally, denoting
D = —yVZ2uy +205uy — f,
from e
9J1 (93, 95) _
v ’
we have .
(Y
—2Du0+u5—;0—ﬁ:o,
so that
05 = a(ud — B —2Duy). (39)
Observe now that
03 + Ki(—y V2 +205) f = (Ko — vV + 200 + Ki (=7 V? + 265 )ug
so that
Koug — 20gug — Kug + f
= Koug — Kug — yV2ug + Ky (—yV? +208) (—yV?ug + 205ug — f). (40)

The solution for this last equation is obtained through the relation
—yV2uy +205ug — f =D =0,

so that from this and (49), we get
9 = a(u§ — p).
Thus,
8] (ug) = —yV?uo + 2a(ug — B)ug — f =0

and

) {](uo) + % /Q(—'yV2u0 + 26%up — f)? dx} =0,

and hence, from the concerning convexity in # on V,

J(up) = E{rg‘r} {](u) + % /Q(—qu +20%u — f)? dx} :
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Moreover, from the Legendre transform properties
F{ (95,0) = (uo,93) 1> — Fi(u0,9p)
Fy(63) = (uo,93)12 — Fa(u0),
G*(95) = (u5, 95) 12 — G (up),
so that
Ji(02,%) = —F(03,9)+F(0;) - G* (%)
= Fi(uo,85) — Fa(uo) — (ug, 35) 12 + G(u)
= J(uo). (41)
Joining the pieces, we have got
Juo) = inf 470+ [ (—rVPu 205 — £
ucvy 2 Ja
= inf < sup Ji(v3,05)
U;GE* ’U*GB*
Ji(03,%)- (42)

The proof is complete.
O

7. A Third Duality Principle and Related Convex Dual Variational Formulation

In this section, we assume a finite dimensional version for the model in question, in a finite
differences or finite elements context, although the concerning spaces and operators have not been
relabeled.

Again, for Q C R? an open, bounded, connected set with a regular (Lipschitzian) boundary 90,
7¥<0,6<0,>0,Ky <0and f € LZ(Q),wedenoteFl VXY —=>R FE:V—+RandG:Y — Rby

Fi(u,v5) = %/{)Vu-Vudx%—(uz,vShz

K
K

> Q(—')/Vzu +205u + f)? dx + % /Quz dx, (43)

and

We define also
J(w,05) = Fy(u,05) — Fa(u) — (42, 05) 12 + G(u?),

_7 . 3 2 o2
—Z/QVu Vudx—i—z/Q(u B) dx + (u, f)12,
AT={ueV :uf<0, ae inQ},
VQZ{MEV: ||u||oo§K3},
Vi=A"NnWv,

do0i:10.20944/preprints202210.0091.v10
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and F} : [Y*]>? = R, Ef:Y* = R,and G* : Y* = R, by
F (v3,v)
= inf {(u,05) — R 05))

B 1/ (03 — Ky (—yV2 +203)f)°
2 Ja (—yV?+ 205+ Ky + Ky (—y V2 4 20)?)

dx

K3
— /Q 72 dx, (44)

F5) = inf{{uof)e - B(0)
1
- /Q (03 — f)? dx, (45)

and

G(e) = inf{(o00) - G(o)}

_ %/ﬂ(vé)z de+p [ o dx (46)

At this point we define
By ={vg €Y : lloglle < K/2},

By = {vy € Y* : —yV? + 20} + Ky (—yV? +20v5)% > 0},

By ={vi € Y* : —1/a+ 4K [u(v3,v5)?] +100/|Kz| > 0,Y0; € Ef},

where

u(v3,05) = L1,

p1 = (v5 + Ky (—yV? +205) f)
and
¢ = (—YV? + 205 + K1 (—yV2 + 205)2 + Ka),

By direct computation we may obtain

0*[u(v3,v5)?]

3(07 )2 > 0,Vv; € B*,Vv; € Ef
0

so that B3 is convex.
Finally, we also define

B ={vj e Y* : —[-yV?+20}] < —ely},
Ef ={0; €Y : [[o3]le0 < (5/4)[Kal},

E5={v;€Y" : fu; >0, ae. inQ},

E* = E{ NE;,
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And ] by
Ji(v3,00) = —F{(v3,v) + F; (v3) — G* ().
We assume K, < 0, and
|Kz| > Ky > K> K3 > max{|«|, |v], 8,1/}
Recalling that
¢ = (=7V? +205 + Ky (—7V? +209) + K2),
91 = (05 + Ki(=7V? +205) f),
and
e,
@
we obtain
3 (v3,v5)
———="=1/K, -1 0
(v3)? /a=1/g >0
in E* x By and
3 (v3,v5) 2
——=——" =4u“K; —1 1/|K3)).
8(03)2 u-Kq /‘X"‘O( /| 2|)
Also,
0%J5 (v3,v3) 0] (v3,v5) B 9%J; (v3,v3)
0(v3)? 9(vg)? 00300}
K?A3 + K1 A
_ o (13*14> , @)
—aKpg
where

Az = 8a(f* +4f (—yV? + 205 )u + 3[(—yV? + 205 )u)?

and
Ay = (—yV? +205)? — 12a[(—yV? + 203 u]u.

Observe that at a critical point A3 = 0 and A4 > 0 so that, for the dual formulation, we set the
restrictions Az > 0 and A4 > €lj.
Thus, we define
Bs ={vy € Y" : A3 > 0and Ay > el;},
and
B* =BiNB;NB;NB;NB:.
Observe also that
%] (v3,05) 9*J5 (03, 05) _ 9%J (03, 9)
0(v3)? 9(v)? 00300}
on B* x E*, so that J] is convex on E* x B*
Considering such statements and definitions, we may prove the following theorem.

>0,

Theorem 6. Let (03,0;) € E* x B* be such that

0J1(03,%5) = 0
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and uy € V; be such that
yo — 05 — Ky (—yV?% +205) f
Ky + 205 — yV2 + Ky (—yV2 4 205)%"
Under such hypotheses, we have
6](ug) =0,
so that
J(ug) = Sup{ (u) + = / U — ) dx}
ueVy
= inf s, 0
(v3,v5)€E* x B* ]1 ( 2 0)
= Ji(e39). (9)
Proof. Observe that ] (93,9;) = 0 so that, since J; convex on the convex set E* x B*, we have that
1(03,05) = inf 1 (v3,05).
J1(93,9) . S J1(v3,05)
Now we are going to show that
6] (up) = 0.
From o
O (93,%) _,
Jv;
we have .
—up + % 0
ot &, ,
and thus
ﬁz = K2u0.
Finally, denoting
D = —yV?ug + 20%uo — f,
from o
3J; (93,%5) _
Jv;;
we have
2B
—2Du0+u0—z—,8:0,
so that
0 = a(uj — B — 2Duy). (49)

Observe now that
05 + Ky (—yV2 +208) f = (Ko — yV2 + 208 + Ky (=7 V2 + 265)?)ug
so that

Kzu() — 2501/10 — KM() + f
= Koug — Kug — yV2ug + Ky (—yV? +208) (—yV2ug + 205ug — f). (50)
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The solution for this last equation is obtained through the relation
—yV2uy +205ug — f =D =0,

so that from this and (49), we get
05 = a(uj — B).
Thus,
8] (1) = —V2ug +2a(ug — P)ug — f =0

5{](“0) + 52 [ (=) dx} o,

and hence, from the concerning cocavity in u on V,

and

J0) = min {10+ 52 [ 02

uevp 2

Moreover, from the Legendre transform properties

F{ (03, 09) = (uo,03)12 — Fi(uo, 0p),

so that

Ji(05,05) = —F(03,9)+F(9;) — G (9
= Fi(uo, 04) — Fa(up) — (uf, 95
= J(uo). (51)

Finally, observe that

Y

J1 (02, 5) Fi(u,99) = (u,03)12 + F () — G* (%)
inf {W/Vu-Vudx—l-Kz/uzdx
vy | 2 Ja
(1,83 12+ B3 (03) + (%, 05) 12— 5 [ ()
_ £ 4

,B/Qvo x}
= z/ Vu-Vudx%—g/(uz—,B)zdx

L2+ /Ll dx

—(u, Kpug) 2 + > /Q ug dx

= J(u)+ % /Q(u —ug)? dx, (52)

Y

Yu € V; where we recall that K, < 0.

do0i:10.20944/preprints202210.0091.v10
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Joining the pieces, we have got
K2 2
J(uo) = sup (J(u)+ = | (u—up)” dx
ueVy
= i f y
(vg,vaﬁrelE*xB* ]1 <02 UO)
= Ji(93,9). (53)
The proof is complete.
O
8. Closely Related Primal-Dual Variational Formulations
Consider again the functional | : V — R where
J(u) = 1/ Vu~Vudx+ﬁ/ (u? — B)*dx — (u, f);2
2 0 2 0 7 L4s
where & > 0,9 > 0,8 >0, f € L*(Q) and V = W,?(Q).
Observe that
J) = J(u)+ (W v5) 2 — (4%, 05) 12
= T [ VuVudrt (6, 0) — (u, £
(2 % L4 2 p\2
(U, v5) 2 + z/n(u B) dx
> 1 [ VuVudr ot 5i)s - (0 e
— (v, 0 4 —B)?
égf{ <U,vo>L2+ > ‘/Q('U ‘B) dx}
= I/ Vu-Vudx+ (u?,00) 2 — (u, f) 2
1
2“/(00 dx—/%/ vy dx
= Ji(w,vp). (54)

Having obtained J; (u, vj), we propose the following exactly penalized primal-dual formulation
J5 (u,v§), where

Ji0,95) = Ji (0,05) + 5 [ (=90 + 20u— 2 dx,

so that
Ji(uw,0)) = 1/ Vi Vudx+ (12, 05) 2 — (u, f) 2
1
2“/(710 dx—,B/ v dx
b [ (VP 205 — f)2 d, (55)

In particular, if we set
Vi={ueV : |ul|o <Kz},

and
Ky =1/(8K3a),

do0i:10.20944/preprints202210.0091.v10


https://doi.org/10.20944/preprints202210.0091.v10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2023

27 of 45

we may also define

J3(u) = sup J5(u,v5),

vy EB*
where
B' = {05 € Y" ¢ [lojlle < K/8),

for appropriate K, K3 > 0.

Here we highlight that ] is concave in v on B* (indeed it is concave on Y*) and the parameter
K; > 0 multiplying a positive definite quadratic functional in u improves the convexity conditions of
J3.
9. One More Duality Principle Suitable for the Primal Formulation Global Optimization

In this section we establish one more duality principle and related convex dual formulation
suitable for a global optimization of the primal variational formulation.

Let O C R® be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

For the primal formulation, we define V = W&’Z(Q) and consider a functional | : V — R where

J(u) = %/()Vu-Vudx—l—%/Q(uz—,B)zdx
—(u, f) 2. (56)

Here we assume f € L2(Q), and define Y = Y* = L2(Q)
Va={ueV : |lullo <Ks},

AT={ueV :uf>0 ae inQ},
and

Vi = AT NV,

for an appropriate constant K3 > 0 to be specified.
Define also the functionals F; : V - R, /,: V xY - Rand G: Y — Rby

Fi() = 2 [ (P dx—(u frz,

F(u,v3,v5) = /Vu Vudx — (u?, )2 + —= / (V2u)

K

> ( Y1V2u + 205u — hy)? dx, (57)

w?) =3 | -

for appropriate positive constants Kj, K, K3 to be specified.
Moreover, define Ff : Y* — R, and F; : [Y*]> = Rand G* : Y* — R, by

and

F(v) = 51615{@!/ v3)12 — Fi(u)}
1 (035 + f)?
= % / S ax, (58)

do0i:10.20944/preprints202210.0091.v10
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and
Fy(v3,03,00) = sup{(u,03)12 — Fa(u,03,09) }
ueV
_ 1 (v + Ky (—71V? + 205 )1y )?
2 Ja K2V4 + ’)/Vz — 206 — Kl(*’)/lvz +2U§)2
Ky [ 42
- /Q 12 dx
for appropriate 41 > 0 and H; € L2(Q), and
G*(vg) = sup{(v,v5)2 — G(v)}
veY
_ i *\2 *
- - /Q(UO) dx + 5/0 o dx. (59)

Furthermore, we define
D" ={v; € Y" : |l03][0 < (3/2)Kp},

B* = {0} € Y" : ||vf]le < Ky},

for an appropriate constant K4 > 0 to be specified.
Define also
Ci={v €Y : [[vpllw < Ka}-

and J{ : D* x C] — Rby
Ji(03,03,00) = —F (03) + F3 (v3,03,09) — G (v)-

Moreover, assuming K > K; > Ky > max{1, K3, a, 8,7, 71, || fllcos || 71 |0 }-
By directly computing 6%]; (v3, v}, v}) denoting

A= —2Kihy,
B = 4Ky (=11 V? +203),
¢ = —KV* — V24205 + Ky (—71 V2 + 203)),
g1 =05 — K (=11 V2 + 203y,

e,
%
we may obtain, considering that ¢ < 0
82 * *, *1 * A— 2
Ji (03,95, v5) — 4Kyu? — ( uB) <0
9(v3)? ¢
on D* x B*.
Moreover,

2
%] (v3,03,05) %5 (03,05, vp) _ (0% (03, 05, vp)
9(v3)? o(v3)? 005003

K2H; + K1 H.
- o), “
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where
Hy = (8(—h? + 4hy (=71 V? +205)u — 3[(—11 V2 + 203)2ulu),

and
Hy = [(—yV? + 20} u]u.

At a critical point we have H; = 0 and
Hy = fup >0, aein Q.
With such results, we may define the restrictions
C; ={v; € Y* : Hy(v;,0v3,v5) >0, Vo; € D*,v3 € B*}.

Cs ={vy € Y* : Hy(v3,0v3,05) > 0,Yv; € D, v3 € B*}.
Here, we define C* = C; N C; N C3.
On the other hand, clearly we have

21} (03,93,%%) _

FIER
(v5)

From such results, we may obtain that ]} in convex in (v3, vg) and it is concave in v; on D* x B* x C*.

The Main Duality Principle and a Related Convex Dual Formulation

Considering the statements and definitions presented in the previous section, we may prove the
following theorem.

Theorem 7. Let (03, 030)) € D* x B* x C* be such that
0] (03,03,35) = 0
and uy € V; be such that

R
0 vy

Assume also
ug # 0, ae. in Q.

Under such hypotheses, we have
6] (ug) =0,
—'ylVZuo +203up —hy =0,

and
J(uo) = uiél‘gl J(u)

: * * * *
, . inf ¢ sup Ji(v3,03,0p)
(v3,03)€D* X B* | yrecH

= J{(95,05,05). (61)
Proof. Observe that d]; (95,95,9)) = 0 so that, since Jj is convex in (v},v3) € D* x B* x C* and

0%J3 (83,03, v5)

3(0p)? >0, Yoy € Cy,
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we obtain
X (ko ak o axk : * * ko oa%k X (oak Ak *
J1(93,03,90) = inf  Ji(v3,03,0) sup Ji(93,93,0p).
(v3,03)€D*xB 05 EC*
Consequently, from this and the Saddle Point Theorem, we obtain
Ji(03,03,80) =  inf 4 sup Ji(v3,03,0p) -
(v3,03)€D*xB* | gz eC
Now we are going to show that
6] (uo) = 0.
From o e
9J1 (3,95, %5) —0
ov} ’
and e
oF(05)
o W
Jv;
we have e e
_an (93,03,95) =0
ot 0=
02
and
ﬁ; = K2V4u0 - f
Observe now that
Fy(03,03,09) = sup{—(u,03)12 — Fa(u,v3,05) }.
ueV
Denoting
H(v;,03,0y,u) = (u,v3)12 — F2(u,03,0p),
there exists i € V such that
Ak AK Ak A
0H(03,03,05,1) o
Ju ’
and
F; (03,03, 09) = H(03, 03,0, ),
so that
Jv; Jv;
OH (35,23, 5, 1) 9
— 3
ou Jv;
= 1. (62)
Summarizing, we have got
)R A
0= m = U.
Jv;

From such results and the Legendre tranform proprieties we get

oF (uo)

*
2= 5
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and o
o — oF; (uo, 9%,95)
2 ou ’
On the other hand, from the variation of J{ in v3, we have
OF; (83,93, 95)
9v;
OH(05,0%,05,11) ol
2 ~ 2737707
= —Ki(—71Vup + 203u9 — h1)2ug + a—uav;
= —K1<—71V2M0 + 25;1/[0 — h1)2u0
= 0. (63)
From such results, since
ug #0, a.e. in Q),
we get
—v1Vuy + 20319 —hy =0, a.e. in Q.
Finally, from the variation of J{ in v; we obtain
oF; (03,03,0) B 0G*(vy)
vt ovx 0.
) Yo
so that SE(3%, 0%, 0% 0) 9 .
2 05,03,0p,1) 0l v,
_— _— — = 0'
"ot Ju dug o« p
Thus,
v = a(uf — B)
Consequently, from such last results, we have
0=195—105
. aFl (uo) _ an(uo, @;, UAS)
a ou ou
= K2V4u0 —f- K2V4u0 — 'yVZuo + 208110
—yV2ug + 2a(ug — B)uo — f
— 6] (uo)- (64)

Summarizing,
6 ] ( uop ) =0.

Furthermore, also from such last results and the Legendre transform properties, we have
Fi(03) = (uo,03)12 — Fi(uo0),
F3 (92,8590) = (uo,03)12 — Fa(ut0, 93, 9),

G*(95) = (ug, v5) 2 — G(ug),
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so that
Ji (05,55, 5;)
= —F(82) + F (93,95, 85) — G*(%p)
= J(uo). (65)
Finally, observe that
Ji(v3,03,05) < Fi(u) = (u,03)12 + F5 (v3,03,05) = G*(vp),
Vu € Vi, vy € D¥, vj € B, v5 € C*.
Therefore,
sup Ji(v3,03,09) < sup {—{u,v3)12 + Fi(u) + F (v3,03,7) — G*(vp) },
vy EC* vy€Cy
so that
inf sup Ji(v3, 05,08
(v3,03)€D" xB° {vgelg* e es O)}
< inf{sup {—(u,03)0 + Fu(u) + F5 (03,03, 08) — G*(vp))
(vg,v;)eD*xB* v;eCs
= J(u),Yu € V. (66)
Summarizing, we have got
Ji(92,03,85) = inf sup Ji(03,03,%)
(?};,U;)ED*XB* v eCr
< inf J(u). (67)
ueVy
Joining the pieces, we have got
J(uo) = inf J(u)
ueVy
= inf sup Ji(v3,03,05)
(v3,v3)€D* xB* {USEC*
= Ji(92,03,8). (68)

The proof is complete.
O

10. A Related Numerical Computation through the Generalized Method of Lines

We start by recalling that the generalized method of lines was originally introduced in the book
entitled "Topics on Functional Analysis, Calculus of Variations and Duality" [7], published in 2011.

Indeed, the present results are extensions and applications of previous ones which have been
published since 2011, in books and articles such as [5,7-9]. About the Sobolev spaces involved we
would mention [1]. Concerning the applications, related models in physics are addressed in [4,11].

We also emphasize that, in such a method, the domain of the partial differential equation in
question is discretized in lines (or more generally, in curves) and the concerning solution is written on
these lines as functions of boundary conditions and the domain boundary shape.
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In fact, in its previous format, this method consists of an application of a kind of a partial finite
differences procedure combined with the Banach fixed point theorem to obtain the relation between
two adjacent lines (or curves).

In the present article, we propose an improvement concerning the way we truncate the series
solution obtained through an application of the Banach fixed point theorem to find the relation between
two adjacent lines. The results obtained are very good even as a typical parameter ¢ > 0 is very small.

In the next lines and sections we develop in details such a numerical procedure.

10.1. About a Concerning Improvement for the Generalized Method of Lines

Let O C R? where
Q={(r0cR*:1<r<2,0<6<2n}.

Consider the problem of solving the partial differential equation

u=up(0), on 0Q)y, (69)
u=us(0), on 9();.

Here
Q={(r0)cR>:1<r<20<6<2n},

00 = {(1,0) € R* : 0 <0 <27},
00 = {(2,0) €R? : 0< 0 <27},

e>0,a>0,8>0,and f =1, on Q.
In a partial finite differences scheme, such a system stands for

Up1 — 2y + 1y y 1ty —u,—q 1 0%uy, 3 B
—€< 72 +a ] +é 562 +aun_ﬁun—fnr

Vn e {1,---,N — 1}, with the boundary conditions

up =0,
and
unN = 0.
Here N is the number of linesand d = 1/N.
In particular, for n = 1 we have
up —2uy+ug 1 (ug —ug)  10%u 3
‘£< 2 Thod ‘g ) TeiThusfy
so that
1 1 0%u d?
uy = | up+uy +ug+ —(uy —ug) d+ —2—21d2 + (—ocu‘;’ + puy — f1)— | /3.0,
t tl a6 €
We solve this last equation through the Banach fixed point theorem, obtaining u; as a function of
Uj.

Indeed, we may set
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and
1 1 02uk
k+1 k k 142
uy = <u2+u1+uo+t1(u1—u0)d+t%aezd
k3 k 4
+(—a(uy)® + puy —f1)€> /3.0, (70)
vk € N.
Thus, we may obtain
up = lim uf = Hy(uo, ug).
k—o0
Similarly, for n = 2, we have
1 1 82142 2
U = u3+u2+H1(u2,u0)+t—(u27Hl(u2,uo))d+3—2d
1 =) a0
dZ
+(—au + Buy — f2)£> /3.0, (71)

We solve this last equation through the Banach fixed point theorem, obtaining u; as a function of
uz and ug.
Indeed, we may set

and
1 1 0%ub
uﬁ“ = u3+u’§+Hl(u'§,uo) + t—(u’ﬁ—Hl(ulzc,uo)) d+ —2—22012
2 t5 06
Kk K a?
‘I‘(*“(uz)?’ + ﬁuz — f2)8> /30, (72)
Vk € N.
Thus, we may obtain
uy = lim uf = Hy(us, up).
k—o0
Now reasoning inductively, having
up—1 = Hy1(un, o),
we may get
1 1 azun 2
Uy = | tpp1+up+ Hy1(un, ug) + ?(un — Hy1(un,u0)) d+ 5 —5-d
n t2 00
d2
+(—au + Buy _f")s> /3.0, (73)

We solve this last equation through the Banach fixed point theorem, obtaining u, as a function of
U1 and ug.
Indeed, we may set
Uy =ty 41
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and

1 1 a2uk
uktt = (un+1 o+t + Hya (165, 10) + (1, — Hy (1, 10)) d+ 5 o5t d?
n n

2
+(—a(uk)® + ﬁuﬁ — fn)ds> /3.0, (74)

Vk € N.
Thus, we may obtain
uy = lim uf = Hy, (1,41, up).
k—o0

We have obtained u, = Hy, (4,11, u9), Vn € {1,--- ,N — 1}.
In particular, uy = uz(0), so that we may obtain

un-1 = Hy-1(un,u0) = HN-1(0) = Fn-1(un, uo) = Fn—1(us(8), uo()).
Similarly,
un-—2 = Hy-2(un-1,u0) = Hy-2(HNn-1(un,u0)) = Fn—2(un, to) = Fn—1(uf(0),u0(0)),
an so on, up to obtaining
uy = Hy(uz) = Fi(un,uo) = Fi(ug(0),uo(0))-
The problem is then approximately solved.

10.2. Software in Mathematica for Solving Such an Equation
We recall that the equation to be solved is a Ginzburg-Landau type one, where
2 2 .
—s(%—k%%—k%gﬁ)—kau?’—ﬁu:ﬂ in Q,
u=20, on d()q,
u = uf(G), on aﬂz.

(75)

Here
Q={(r,0) eR?: 1<r<2,0<6<2n1},

00 = {(1,0) €R? : 0 <6 <2m},
00 = {(2,0) e R?* : 0 <0 <27},

e€>0,2a>0,8>0,and f =1, on . In a partial finite differences scheme, such a system stands for

Upi1 — 2y + 1y y 1y —u,—q 1 0%uy, 3 B
_€< 72 +a i g 962 +04un_,5un*fnr

Vn € {1,---,N — 1}, with the boundary conditions

ug =0,
and
un = uglx].

Here N is the number of lines and d = 1/N.
At this point we present the concerning software for an approximate solution.
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Such a software is for N = 10 (10 lines) and u([x] = 0..

3 o 8 383636 36 36 3 3 3 3 o o 438 6 36 36 36 3 3 3 o o 36 3% e

1. mg = 10; (N =10 lines)

2.d=1/m8§;

3.0 =01;(e=0.1)

4. A=10;

5. B=1.0;

6. Forli=1,i <m8,i++,f[i] =1.0]; (f=1, onQ)
7. a=0.0;

8. For[i=1,i <m8,i+ +,

Clear[b, u];
ti]=1+ixd;
blx_] = uli+1][x];
9. For[k =1,k <30,k + 4+, (we have fixed the number of iterations)
z= (u[i+1}[x} +ba] +a + gy (b[x] — a) x4
+ B DIBlH], {x,2}] @2 + (—A % b[x]® + B+ ulx] + £ * %) /3.0;
z=
Series|z, {uli + 1][x],0,3}, {u[i + 1]'[x],0,1}, {uli + 1)"[x],0,1},
{uli +1)"[x],0,0}, {uli +1]""[x], 0,0}];
z = Normal|z],
z = Expand|z];

blx_] = z|;
10. m;[i] = z;
11. Clear[b];
12. ufi+1][x_] = b[x];
13. a =aq[i] |;
14. b[x_] = ug[x];
15. For[i=1,i <m8,i++,

A1 = ay[m8 —i];

Ay = Series[Aq, {ug[x],0,3}, {u}[x],O,l}, {u’f’[x],O,l}, {u}”[x],0,0}, {u’f’”[x],0,0}],'
A1 = Normal[A,];

A1 = Expand[Aq];

u[m8 —il[x_] = Ay,

bx-] = Ar)

Print[u[m8/2][x]|;

NN ——

The numerical expressions for the solutions of the concerning N = 10 lines are given by

u[l][x] = 047352+ 0.00691uy[x] — 0.00459u¢[x]* + 0.00265u ¢[x]* + 0.00039 (u}) ]
—0.000581 ¢[x] (u ) [x] 4 0.00050u ¢ [x]? (17) [x] — 0.000181213u¢[x]* (uf) [x] ~ (76)

ul2][x] = 076763 +0.01301u¢[x] — 0.00863u[x]* + 0.00497u ¢ [x]* + 0.00068 (1} ) [x]
—0.00103u[x] (uf)[x] 4 0.00088u ¢ [x] (uf) [x] — 0.00034u ¢ [x] (1) [] (77)
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uB][x] = 091329 + 0.02034u[x] — 0.01342u[x]* + 0.007681 ¢ [x]* + 0.00095 (1} ) [x]
—0.00144u ¢ [x] (1f) [x] + 0.00122u¢[x]* (f) [x] — 0.00051u¢[x]* () [x] (78)

uld][x] = 097125+ 0.03623u[x] — 0.02328u[x]* + 0.01289u ¢ [x]* + 0.00147331 (u} ) [x]

—0.00223u ¢ [x] (uf) [x] + 0.00182u f[x]* (uf ) [x] — 0.00074u ¢ [x] () [] (79)

ul5][x] = 1.01736 + 0.09242u ¢[x] — 0.05110u¢[x]* + 0.02387u ¢ [x]> + 0.00le(u}’) [x]
—0.00378u ¢ [x] (u}f ) [x] + 0.00292u ¢ [x]? (f) [x] — 0.00132u¢[x]* (u} ) [x] (80)

ulb][x] = 1.02549 +0.21039u[x] — 0.09374u[x]* + 0.03422u[x]* +0.00147 (u})[x]
—0.006341 [x] (u'f) [x] + 0.00467u ¢ [x]*(uf) [x] — 0.00200u ¢ [x]* () [x] (81)

ul7][x] = 093854 + 0.36459u[x] — 0.14232u¢[x]* + 0.04058u[x]* +0.00259 (u})[x]

—0.00747373u ¢ [x] (7 ) [x] + 0.0047969u ¢ [x]z(u}’)[x] —0.00194u/ [x]3(u}’)[x] (82)

ul8][x] = 0.74649 4+ 0.57201u[x] — 0.17293u[x]* + 0.02791us[x]> + 0.00353(u} ) [x]
—0.00658u[x] (uf)[x] 4 0.00407u ¢ [x]? (uf) [x] — 0.00172u ¢ [x]* (7 [x] (83)

u9][x] = 0.43257 + 0.81004u[x] — 0.13080u[x]* + 0.00042u ¢ [x] + 0.00294(u}) [x]
—0.00398u[x] (uf ) [x] 4 0.00222u ¢ [x] (uf) [x] — 0.00066u ¢ [x] (17) [x] (84)

10.3. Some Plots Concerning the Numerical Results

In this section we present the lines 2, 4, 6, 8 related to results obtained in the last section.

Indeed, we present such mentioned lines, in a first step, for the previous results obtained through
the generalized of lines and, in a second step, through a numerical method which is combination of
the Newton’s one and the generalized method of lines. In a third step, we also present the graphs
by considering the expression of the lines as those also obtained through the generalized method of
lines, up to the numerical coefficients for each function term, which are obtained by the numerical
optimization of the functional |, below specified. We consider the case in which up(x) = 0 and
us(x) = sin(x).

For the procedure mentioned above as the third step, recalling that N = 10 lines, considering that
u}’ (x) = —ug(x), we may approximately assume the following general line expressions:

un(x) =a(l,n) +a(2,n)us(x) —|—u(3,n)uf(x)3 +a(4,n)uf(x)3, Vne{l,---N-1}.
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Defining

W, = —e (unJrl (x) — Zugz(x) + unfl(x)) o %11 (un(x) _dunfl(x)) _ f—%ui{(x) + un(x)?) . un(x) -1,

and

) N-1 ,2n )
IaG}) = X [ (W) da

we obtain {a(j, n)} by numerically minimizing J.

Hence, we have obtained the following lines for these cases. For such graphs, we have considered
300 nodes in x, with 277/300 as units in x € [0, 271].

For the Lines 2, 4, 6, 8, through the generalized method of lines, please see Figures 1, 4, 7, 10.

For the Lines 2, 4, 6, 8, through a combination of the Newton’s and the generalized method of
lines, please see Figures 2, 5, 8, 11.

Finally, for the Line 2, 4, 6, 8 obtained through the minimization of the functional J, please see
Figures 3, 6,9, 12.
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Figure 1. Line 2, solution u(x) through the general method of lines
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Figure 2. Line 2, solution u;(x) through the Newton’s Method
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Figure 3. Line 2, solution u(x) through the minimization of functional |
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Figure 4. Line 4, solution u4(x) through the general method of lines
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Figure 5. Line 4, solution uy(x) through the Newton’s Method
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Figure 6. Line 4, solution u4(x) through the minimization of functional |
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Figure 7. Line 6, solution u4(x) through the general method of lines
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Figure 9. Line 6, solution u4(x) through the minimization of functional |
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Figure 8. Line 6, solution u4(x) through the Newton’s Method
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Figure 10. Line 8, solution ug(x) through the general method of lines
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Figure 11. Line 8, solution ug(x) through the Newton’s Method


https://doi.org/10.20944/preprints202210.0091.v10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2023 do0i:10.20944/preprints202210.0091.v10

44 of 45

0.2 . . . . .
0 50 100 150 200 250 300

Figure 12. Line 8, solution ug(x) through the minimization of functional |
11. Conclusions

In the first part of this article we develop duality principles for non-convex variational
optimization. In the final concerning sections we propose dual convex formulations suitable for
a large class of models in physics and engineering. In the last article section, we present an advance
concerning the computation of a solution for a partial differential equation through the generalized
method of lines. In particular, in its previous versions, we used to truncate the series in d> however, we
have realized the results are much better by taking line solutions in series for u¢[x] and its derivatives,
as it is indicated in the present software.

This is a little difference concerning the previous procedure, but with a great result improvement
as the parameter ¢ > 0 is small.

Indeed, with a sufficiently large N (number of lines), we may obtain very good qualitative results
even as € > 0 is very small.
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