

Article

A model selection algorithm for complex multi-domain CNN

systems based on feature-weights relation in deep learning

Eyad Alsaghir, Xiyu Shi* and Varuna De Silva

Institute for Digital Technologies, Loughborough University London, Queen Elizabeth Olympic Park,

Here East, London E20 3BS, UK; e.alsaghir@lboro.ac.uk (EA); v.d.de-silva@lboro.ac.uk (VDS)

* Correspondence: x.shi@lboro.ac.uk; Tel.: +44-20-38051324

Abstract: Object recognition is an essential element of machine intelligence tasks. However, one

model cannot practically be trained to identify all the possible objects it encounters. An ensemble of

models may be needed to cater to a broader range of objects. Building a mathematical understand-

ing of the relationship between various objects that share comparable outlined features is envisaged

as an effective method of improving the model ensemble through a pre-processing stage, where

these objects' features are grouped under a broader classification umbrella. This paper proposes a

mechanism to train an ensemble of recognition models coupled with a model selection scheme to

scale-up object recognition in a multi-model system. An algorithmic relationship between the learnt

parameters of a trained classification model and the features of input images is presented in the

paper for the system to learn the model selection scheme. The multiple models are built with a CNN

structure, whereas the image features are extracted using a CNN/VGG16 architecture. Based on the

models' excitation weights, a neural network model selection algorithm, which links a new object

with the models and decides how close the features of the object are to the trained models for se-

lecting a particular model for object recognition is developed and tested on a five-model neural

network platform. The experiment results show the proposed model selection scheme is highly ef-

fective and accurate in selecting an appropriate model for a network of multiple models.

Keywords: CNN; AI; Causality; Understandability; Object Features; Excitation Weight; Multi-

model Neural Network; Model Selection.

1. Introduction

Recent advances in neural networks have enabled many strenuous tasks to be accom-

plished by machines, sometimes surpassing human performance. Object recognition [1],

Scene understanding [2], [3], image super-resolution [4] and image captioning [5] are a

few of such machine intelligence tasks related to visual perception. In supervised learning

with visual perception tasks, machines can learn from repeated measurements of studied

phenomena and the associated frequency of different event outcomes. Such visual per-

ception tasks are at the heart of Artificial Intelligence (AI). Different recognition tech-

niques such as classification, time-series retrieval temporal features and spatial infor-

mation verification require a measure of functional similarity between time series, tem-

poral and/or spatial information included with the input data [6].

However, the human brain categorises things according to what the brain is looking

for when it sees things [7]. That depends on what objects the brain sees and its imagery

features during the brain analysis or focusing processes. For example, if humans recognise

an image of the sea, they may expect straightaway to see ships, fish anglers, swimmers,

and other water (sea)-related objects. Therefore, we can say that the model of the water-

related objects will be selected and applied for further detection and analysis processes.

This classification criterion flags a different approach in the classification processing

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202210.0081.v1
http://creativecommons.org/licenses/by/4.0/

mechanism by processing the recognised object features pre to the processing analysis

procedure. However, a machine cannot easily and quickly build this recognition

knowledge without human interference in defining the related model, especially if the

machine is loaded with many different models. In some instances of problem analysing,

our observation can extract a deficient level of features that forces us to know about the

latent variables due to the usual difficulty in computing the probability densities [8]. This

human recognition neural system inspired the development of the Artificial Neural Net-

work (ANN) concept [9]. In 1943, Walter Pitts and Warren McCulloch created the first

neural network computational model based on mathematical algorithms known as

threshold logic [10]. These algorithms were the first computational description of multi-

layered perceptron (MLP) neural network behaviour, which was the primary key in giv-

ing the machine the ability to generate recognition models for specified object classes. As

a result of these models, and like the MLP, Convolutional Neural Network (CNN) has

emerged in the development of ANN as a standard tool for computerized image classifi-

cation [11], which has proved a decisive success in various computer vision tasks (e.g.

video action recognition [12], image classification [13], etc.) The CNN is designed to deal

with the available training data and various optimisation and activation functions to build

an image recognition model by appropriately adapting its contents of convolution blocks

with its learnable parameters, including the convolutional filter weights.

However, a significant concern with machine learning systems that deal with this

technology field is the need for human interference in controlling machine learning [14].

The domain to be analysed in ANN systems must be pointed at with a human's help. This

means the machine must be instructed on which model to use for a new test input image

or perform a new training procedure of all added classes from scratch. Therefore, specify-

ing a machine to deal with a particular domain is a considerable drawback in neural net-

work technology. Hence, making the machine able to recognise the domain related to the

test image according to its transformed features will enable the machine to pick the right

domain, leading to a selection of the correct model and a more efficient learning proce-

dure.

To address this gap, we investigate a possible link between a trained object recogni-

tion model's learnt weight vector and the extracted feature vector of a data sample. This

link can be considered the fingerprint that proves the relation between the trained deep

learning CNN model's parameters and the related image features from the input dataset

used for training. By recognising this link, the system can use that knowledge as a model

pre-selection scheme and immediately transfer the selected model's learnt knowledge to

the newly recognised object for further development. However, this new selection scheme

comes with severe adjustment and tuning challenges, from the massive development of

AI model architectures to the various feature-extraction techniques.

This paper proposes a new neural network ensemble paradigm driven by an auto-

matic model selection algorithm by investigating the hypothesized link relationship be-

tween the model's learnt parameters and the extracted features (i.e., the excitation weights

in a neural network). This leads to exploring possible relations between the images' fea-

tures used for training and the trained models' parameters. Hence, when applying to the

yet-to-be-recognised image, the relationship can allow the machine to recognise the re-

lated model to continue with any nominated procedure without requesting human con-

firmation. This approach is instrumental in increasing the recognition level by widening

the neural networks with rapid development of big data technology and high-perfor-

mance computers.

In the paper, we developed an algorithmic linkage between the model's learnt pa-

rameters and the input images' extracted features. Using the link algorithm, we further

developed a network model selection scheme for multi-domain neural networks and

proved its effectiveness in model selection through a series of experiments. The proposed

selection scheme would let the system save its computation power without trading off

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

any future classification accuracy by efficiently generating a model ready for prediction

without incurring extra computation resources on the actual training procedure.

The paper is arranged as follows: the related work is first discussed in Section 2, and

the proposed linkage and network model selection algorithm are presented in Section 3.

We describe the details of the network selection experiment and the results in Section 4.

With the findings discussed in Section 5, we finally summarise the paper's conclusion in

Section 6.

2. Related work

Humans identify unknown objects with their instinct to learn about them until they

build corresponding knowledge at the end. This fact motivated Joseph et al. [15] to pro-

pose their Open World Object Detection (ORE) model as a novel solution to computer

vision problems. The ORE model identified unknown objects and learned them incremen-

tally without forgetting the previously learned classes. This provided a novel solution to

the problem they formulated about open-world object detection based on energy-based

unknown identification of the noticed separation between known and unknown classes

for unknown detection. They used contrastive clustering that identifies how close a simi-

lar and dissimilar item can be for open-world learning. By differentiating the unknown

instance feature representation from the other known ones and facilitating learning new

class instances' feature representations without overlapping with the previous ones, the

ORE reduced the incremental object detection setting confusion through characterising

and identifying unknown instances. As a result, it is a model of incremental learning with-

out forgetting.

Moreover, with the observation of the recognition system using CNN, whereas the

CNN's filter dimensions are relatively fixed over time, a dramatic decrease in the number

of excitation weights is noticed during technology development [16]. This observation re-

flects a practical link between the number of excitation weights and the model accuracy

performance, especially when deep learning becomes the best tool that yields good accu-

racy in image classification with large input compared to traditional computer vision al-

gorithms [17]. These findings encouraged Poojary and Pai [18] to perform a comparative

study of the model’s optimisation techniques in fine-tuned CNN models, concluding that

fine-tuned transfer learning CNN models are best for building models with similar given

tasks to the original task. However, they found that the performance of CNN models is

heavily affected by the used model's optimisation techniques.

The basic CNN recognition computations are based on a multi-dimensional dot-

product operation applied between the extracted feature vectors and the model’s weights

vectors [19]. According to the model's weights' sparsity, Hegde et al. [19] studied how

weight repetition can be used during CNN inference to improve performance and save

energy, and consequently, the Unique Weight CNN Accelerator (UCNN) was proposed.

As a result, the generalisation of exploiting repetition in all zero weights improved the

efficiency with UCNN, which approved the actual relation between the model perfor-

mance and the input features for better computation processes up to 3.7 times on three

trendy CNNs.

Other work in the literature studied the CNN models’ excitation weights and their

relation to recognising the tested images. In [20], the authors identified CNN's two signif-

icant weights characteristics, the magnitude and location, during training. They devel-

oped two separate weight excitation (WE) mechanisms with those useful characteristics.

The WE mechanisms were applied to modify the backpropagation process via weights'

reparameterisation. These two mechanisms improved accuracy on the various networks

they tested, such as an increase of 1.3% to the previous accuracy rate of the ResNet50

models. The authors demonstrated the importance of weights in the convolution blocks

in providing substantial performance gains without changing inference at the structure of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

CNN or adding computation cost. However, their work again needed human interference

in choosing the studied domain and forwarding the decision to the system. Furthermore,

a few studies have also worked on the relationship between the extracted features and the

trained model's detection results [21], [22].

Han et al. [23] researched the intensity of computation processes and memory usage

in neural networks to overcome deployment difficulties on embedded systems. They

studied the relationship between the model's weights and the input training process to

reduce the overall computation costs and overcome the fact that CNN froze the architec-

ture during training. They proposed a three-step method of learning the essential connec-

tions by trimming the unimportant connections and retraining the network for weights

fine-tuning. They decreased the number of weights by a factor of 9 – 13 times for various

networks without suffering accuracy loss.

With the continuous development of deep learning, its applications in practical

scenes have kept rising more than before. However, it became more challenging to train

models with rare mission scenarios due to limited samples available for training. These

difficulties raised the importance of model adaptation within the few-shot learning with

limited supervised information related to the concerned task. Since fewer labelled samples

are available with few-shot learning, it became necessary to apply features with fewer

training samples as much as possible. Jiang et al. [24] proposed a new metric-based few-

shot learning method called Multi-Scale Metric Learning (MSML). MSML uses a feature

pyramid structure [25] and a pre-trained feature extraction network to create multi-scale

feature maps, then accommodate a multi-scale different samples' feature comparison

through learning a multi-scale relation creation network. They enhanced the multi-scale

relation generation network metric-learning by proposing the inter-class and intra-class

relation loss function (IIRL) to enlarge heterogeneous group discrimination samples and

decrease the same class samples' distance. They applied the MSML method on

miniImageNet and tieredImageNet and yielded superior few-shot learning classification

results. However, it requires a comprehensive approach to target positioning, image seg-

mentation, and recognition.

Finally, the proof of the existence of a linkage between the features extracted from a

training image and the trained model's structure and excitation weights was explored by

the mathematical relationship between the resulting model's parameters and the model's

featured input, Alsaghir et al. [26]. In their work, A feature-weight (FW) linkage was built

to calculate the primary model-related FW array for comparing the extracted features of

a test image to allocate the related model correctly in a multi-model system. In applying

such a linkage algorithm to a multi-domain machine learning system, the system can se-

lect the related model for the correct domain for further analysis without human interfer-

ence.

3. The proposed method for network selection

For an object recognition system loaded with multiple models, it will be difficult for

the system to decide which model to use for recognising the tested object without apply-

ing the new image to all models that generate a separate prediction for each model or

retraining all different recognised classes by all models. To address this issue, the pro-

posed network selection method uses a pre-processing stage to direct a new image to the

related recognition model for further analysis without human interference. Building such

a pre-processing algorithmic approach is useful for recognition systems that can mimic

human reactions and starts their prediction process effectively straight away. It avoids

further model training when detecting a new unknown object in a multi-model system by

selecting the closely related model based on features extracted from the image.

The proposed method includes three main steps: 1) combining the trained and tested

image features with the model’s excitation weights in FW arrays ℓ� and ℓ��, which are

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

generated for each different CNN recognition model, �, and loaded into the system; 2)

calculating the relative distances between arrays ℓ� and ℓ��, of the different CNN models

by applying a sequence of deviation operations; and 3) comparing the distance between

all possible network models to link the new unknown input image to an appropriately

trained model. Figure 1 illustrates these processing steps.

Figure 1. Block diagram of the main steps in the proposed network model selection algorithm. Each

CNN model is built with three convolutional blocks. ℓ is the dot-product of trained image features

and the model’s excitation weights array, ℓ� is the dot-product of test image features and the

model’s excitation weights array, and ���� and ����� are the deviation values between ℓ and ℓ�.

These values were presented to the Network Selection stage to analyse the relative distance between

the feature-weight arrays, ℓ and ℓ�, in accordance with the values of ℝ1� and ℝ2�.

3.1. FW array generation

The FW linkage arrays are generated by applying a dot-product operation, denoted

as (⊙), between the extracted � features, � = [�� �� ⋯ ��]�, of an object's image and the

excitation weights, � = [�� �� ⋯ ��], of the trained model, as shown in (1). Note that

[∙]� is the transpose of an array, and � = 25088 due to CNN/VGG16 being used in the

feature extraction [27].

� ⊙ � = (��)� =

⎣
⎢
⎢
⎡

�� ⋅ �� �� ⋅ �� … �� ⋅ ��

�� ⋅ �� �� ⋅ �� … �� ⋅ ��

�� ⋅ ⋮ �� ⋅ ⋮ ⋱ �� ⋅ ⋮

�� ⋅ �� �� ⋅ �� … �� ⋅ ��⎦
⎥
⎥
⎤
 (1)

This array generation stage can be further divided into two steps, with each trained

model loaded into the system. The first step links the original correctly predicted image's

features with the related model's excitation weights. The second step links the extracted

features of the unknown new test image with the same model's excitation weights.

As the first step, all images in the training datasets must go through the CNN/VGG16

feature extraction process, and the features are fed to the CNN model for training. A fea-

ture array, ℱ�
� , of training image � with model �, can be constructed, such that ℱ�

� =

[���
� ���

� ⋯ ���
�]� . An excitation weight array, �� , of each model �, is extracted from the

model, such that �� = ∑ ��,��� , where ��,��
= [��,��,� ��,��,� ��,��,�] refers to the � excita-

tion weights of the convolutional block �� of model �, and � ∈ [1,3] as there are three

convolutional blocks in the proposed network models.

In accordance with (1), the link, ℓ�
�, between model � and training image � is calcu-

lated as follows:

ℓ�
� = ℱ�

� ⊙ �� = ∑ �ℱ�
� ⊙ ��,��

��
��� , ∀� ∈ [1, �], (2)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

where ℓ�
� is an [� × �] array and � is the number of models loaded into the system. In

our model selection system in the experiment, � is 5. Note that hereafter � ∈ [1, �] and

� ∈ [1, �] in all relevant descriptions.

A newly recognised object (image), �, from the test dataset also goes through the

CNN/VGG16 for feature extraction in the second step. The test image � does not contrib-

ute to the model's training processes. Using the same method as described in the first step

above, a feature array ℱ�
� for image � with model � can also be generated. Thus, similar

to (2), a new link ℓ��
� between the model � and the features of test image �, can be built as

follows:

ℓ��
� = ℱ�

� ⊙ �� = ∑ �ℱ�
� ⊙ ��,��

��
��� , (3)

where ℓ��
� is also an [� × �] array.

3.2. Network selection algorithm

The network selection algorithm developed in this paper uses the linkage arrays, ℓ�
�

and ℓ��
� to estimate the relative distances in order to find the nearest test FW array to the

expected model's FW arrays. It starts by reducing array dimensions and developing dif-

ferent deviation criteria to build a logical approach that defines the distances between the

FW arrays. In the end, a distance comparison is performed to select the correctly related

network model.

3.2.1. Dimension reduction

Since the FW arrays are size of [N×N] that has 629,407,744 elements, we need to re-

duce the array’s dimensions to a level that can be tuned effectively. We aim to reduce the

dimensions of these arrays to a much smaller size of [9 × 1] by extracting nine values

from each FW array. This will allow a straightforward comparison between the new test

images, old images used in training, and the trained recognition models. The values are

extracted using the N� elements of the FW array, and extra 3N values that include the

elements of a chosen row, a chosen column, and the array's diagonal elements to enhance

the uniqueness.

We first generate a row-summation vector and a column-summation vector of the

FW array for model �, as defined in (4.1) and (4.2):

��� = �

ℇ��,�

⋮
ℇ��,�

� = �

∑ ℓ�
�[1, �]�

���

⋮
∑ ℓ�

�[�, �]�
���

�, (4.1)

��� = �

ℇ��,�

⋮
ℇ��,�

� = �

∑ ℓ�
�[�, 1]�

���

⋮
∑ ℓ�

�[�, �]�
���

�, (4.2)

where ��� and ��� refer to vectors with elements ℇ��,� and ℇ��,� that are the summa-

tion of rows and columns of link array ℓ�
� , ∀� ∈ [1, N], respectively.

The minimum and maximum elements of ��� and ��� , denoted as ���ℰ� and

���ℰ�, are found in (5.1) and (5.2). With each element being scaled to the range of [-1.0,

1.0] in accordance with (6), the vectors ��� and ��� are normalised and denoted as �′��

and �′�� , as shown in (7.1) and (7.2).

���ℰ� = ���
�∈[�,�]

�ℇ��,�, ℇ��,�� (5.1)

���ℰ� = ���
�∈[�,�]

�ℇ��,�, ℇ��,�� (5.2)

ℇ�,�
� = 2.0 ∗ �

ℇ�,� � ���ℰ�

���ℰ� � ���ℰ�
� − 1.0 (6)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

�′�� = [ℰ��,�
� , ℰ��,�

� , ⋯ , ℇ��,�
�]� (7.1)

�′�� = [ℰ��,�
� , ℰ��,�

� , ⋯ , ℇ��,�
�]� (7.2)

The means ���, ���, and the standard deviations ���, ���, of all elements in the nor-

malised vectors �′�� and �′��, are further calculated as in (8.1), (8.2), (9.1) and (9.2), re-

spectively.

��� = �∑ ℇ��,�
��

��� �/� (8.1)

��� = �∑ ℇ��,�
��

��� �/� (8.2)

��� = �∑ (ℰ��,�
� − ���)�/��

��� (9.1)

��� = �∑ (�
��� ℰ��,�

� − ���)�/� (9.2)

We further define two new parameters, ���,� and ���,�, as element distances to the

means for vectors �′�� and �′�� , respectively, as follows:

���,� = �ℰ��,�
� − ���� ���� (10.1)

���,� = �ℰ��,�
� − ���� ���� (10.2)

According to (11.1) and (11.2), the row � and column � with the maximum element

distances will be used for network selection with the FW link arrays ℓ�
� and ℓ��

� of net-

work model �.

� = arg � max
�∈[�,�]

����,��� (11.1)

� = arg � max
�∈[�,�]

����,��� (11.2)

Based on �, �, and FW arrays ℓ�
� and ℓ��

�, nine other values are obtained for network

model selection, as follows:

1. A pair of sums of elements in row � for the training image � and test image � of

model �, respectively, as shown in (12.1) and (12.2).

ℝ1�
� = ∑ ℓ�

�[�, �]�
��� (12.1)

ℝ1�
� = ∑ ℓ��

�[�, �]�
��� (12.2)

2. A sum of next row elements to �, ℝ2�
�, for the training images� of model �, accord-

ing to (12.3).

ℝ2�
� = ∑ ℓ�

�[� + 1, �]�
��� (12.3)

3. A pair of sums of column � elements in FW arrays, denoted as ℂ�
� and ℂ�

�, for the

training image � and test image � of model �, respectively, according to (13.1) and

(13.2).

ℂ�
� = ∑ ℓ�

�[�, �]�
��� (13.1)

ℂ�
� = ∑ ℓ��

�[�, �]�
��� (13.2)

4. A pair of sums of diagonal elements in FW arrays, denoted as ��
� and ��

�, for the

training images � and test image � of model �, according to (14.1) and (14.2).

��
� = ∑ ℓ��

� [�, �]�
��� (14.1)

��
� = ∑ ℓ�

�[�, �]�
��� (14.2)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

5. A pair of sums of all elements in FW arrays, denoted as ��
� and ��

�, for the test image

� and training images � of model �, according to (15.1) and (15.2).

��
� = ∑ ∑ ℓ��

� [�, �]�
���

�
��� (15.1)

��
� = ∑ ∑ ℓ�

� [�, �]�
���

�
��� (15.2)

6. A pair of ratios of row � sums to the sums of all elements in FW arrays, denoted as

�ℝ�,�
� and �ℝ�,�

� , for the test image � and training images � of model �, according to

(16.1) and (16.2).

�ℝ�,�
� =

ℝ��
�

��
� (16.1)

�ℝ�,�
� =

ℝ��
�

��
� (16.2)

7. A pair of ratios of column � sums to the sums of all elements in FW arrays, denoted

as �ℂ,�
� and �ℂ,�

� , for the test image � and training images � of model �, according

to (17.1) and (17.2).

�ℂ,�
� =

ℂ�
�

��
� (17.1)

�ℂ,�
� =

ℂ�
�

��
� (17.2)

8. A pair of ratios of diagonal sums to the sums of all elements in FW arrays, denoted

as ��,�
� and ��,�

� , for the test image � and training images � of model �, according

to (18.1) and (18.2).

��,�
� =

��
�

��
� (18.1)

��,�
� =

��
�

��
� (18.2)

9. Extracting a singular value ����
� with the Singular Value Decomposition (SVD),

from the FW linkage array, ℓ�
�, for training image � and model � [28]. The array ℓ�

�

can be factorized as in (19):

ℓ�
� = ����, (19)

where � is a [� × �] matrix of the orthonormal eigenvectors of (ℓ�
� × ℓ�

��
) , � is

a [� × �] diagonal matrix of the singular values, which are the square roots of the

eigenvalues of (ℓ�
� �

× ℓ�
�), and �� is the transpose of a [� × �] matrix containing

the orthonormal eigenvectors of (ℓ�
��

× ℓ�
�). Through solving � − (����

� × �) = 0,

where � is the identity matrix, a suitable singular value ����
� can be found for ℓ�

�.

3.2.2. Deviation values calculations

The proposed model selection system generates deviation values from the previously

generated nine values in (12.1-19). These deviation values indicate the relative difference

of the generated nine values between the FW arrays in training and test, and are the pri-

mary tool in making the comparison mathematically between the FW arrays. It starts by

creating different criteria of deviation comparison between each model's FW array in

training, ℓ�
�, and the test image-related FW arrays, ℓ��

�, with mathematical connections be-

coming available for model selection during the comparison.

In order to generate the deviation values, we first calculate a group of imagined

phases between the extracted pair of ratios of ℓ��
� and ℓ�

�, including between each model’s

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

pair of row-values of ℝ1�
� and ℝ1�

�, pair of column-values of ℂ�
� and ℂ�

�, pair of diago-

nal-values of ��
� and ��

�, pair of the array's all-element values of ��
� and ��

�, pair of the

array's row � ratio values of �ℝ�,�
� and �ℝ�,�

� , pair of array's column � values of �ℂ,�
�

and �ℂ,�
� , and pair of array's diagonal ratio values of ��,�

� and ��,�
� , related to each model

� . These imagined phases, ��,�, ∀� ∈ [1,7] , are calculated as in (20.1-20.7). An average

phase, �� , for each model � is obtained in (21).

��,� = ������ �
ℝ��

�

ℝ��
� � (20.1)

��,� = ������ �
ℂ�

�

ℂ�
�� (20.2)

��,� = ������ �
��

�

��
�� (20.3)

��,� = ������ �
��

�

��
�� (20.4)

Φ�,� = arctan �
�ℝ�,�

�

�ℝ�,�
� � (20.5)

��,� = ������ �
�ℂ,�

�

�ℂ,�
� � (20.6)

��,� = ������ �
��,�

�

��,�
� � (20.7)

�� = �∑ ��,�
�
��� �/7 (21)

These calculated average phases, �� , for FW array of training image � and test image

� of each model �, are used to calculate the first relative deviation distance, denoted as

����,�, as defined in (22).

����,� = ∏ ��� − ����
���
���

 (22)

The system gets the second relative distance value, ����,�, by applying a non-linear

function to the average phase �� and scaled with the singular value ����
� for each

model �. Here we use ������ as the non-linear function, ����,� is defined as in (23).

����,� = arctan (��) × ����
� (23)

The third deviation value, ����,�, is generated by calculating the difference between

the pair of ratios of �ℝ�,�
� , and �ℝ�,�

� from the ℓ��
� and ℓ�

� arrays, respectively, as shown in

(24).

����,� = �ℝ�,�
� − �ℝ�,�

� (24)

The fourth deviation value, ����,�, is defined as in (25).

����,� =
�����,�� ����,��

����,�
 (25)

We then construct two unique arrays, �� and ��, as shown in (26.1) and (26.2), and

the determinant values for each of ��
� and ��

� , as shown in (27.1) and (27.2). The fifth de-

viation value, ����,�, of model � is then defined as in (28).

��
� = �

ℝ1�
� ℂ�

�

��
� ��

�� (26.1)

��
� = �

ℝ1�
� ℂ�

�

��
� ��

�� (26.2)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

����
� = �ℝ1�

� × ��
�� − �ℂ�

� × ��
�� (27.1)

����
� = ����(��

�) = �ℝ1�
� × ��

�� − �ℂ�
� × ��

�� (27.2)

����,� = ����
� − ����

� (28)

The sixth deviation value, ����,�, of model �, is defined in (29).

����,� = ������[(��� (����,� × ����,�/ℂ�
� − ℂ�

�)) + ���(����,�)] (29)

The system defines the seventh deviation value, ����,�, of model �, as in (30), which

links the sixth and first deviation values.

����,� = ����,� × ����,� (30)

Afterwards, the system compares the last generated deviation value, ����,�, with the

same values of all tested models � for selected test image � according to (31).

����,� =

∏ ������,������,����
���
���

����,�
× ����,� (31)

Furthermore, the system calculates another value, ����,�, as defined in (32).

����,� = ∏ ������,� − ����,����
���
���

 (32)

Finally, the system uses the last deviation value, �����,� to link ����,� and ����,�

with the ratio values ��,�
� and �ℂ,�

� , and ℝ2�
�, as defined in (33).

�����,� = (����,�/����,�)/��,�
� × �ℂ,�

� × ℝ2�
� (33)

3.2.3. Network selection algorithm

The network selection algorithm, as shown in (34), compares the relative distances

between the FW arrays, ℓ��
� and ℓ�

�, according to the specially developed deviation criteria

in (33) of each model �, to select the related network model with the shortest distance.

We define the rules for choosing the related network model as: the selected model,

�,̅ is the one with the minimum or maximum �����,�, depending on the signs of ℝ1�
�, ℝ2�

�,

����,�, and �����,�, as shown in (34).

�̅ =

⎩
⎪
⎨

⎪
⎧arg � min

�∈[1,�]
����10,��� , �� ℝ1

�
� > ℝ2�

�, ���8,� > 0, (ℝ2
�
� × ���10,�) > 0

arg � max
�∈[1,�]

����10,��� , �� ℝ1
�
� < ℝ2�

�, ���8,� < 0, (ℝ2
�
� × ���10,�) < 0

0, ��ℎ������

 , (34)

where �̅ = 0 represents a failed network selection.

The overall selection algorithm can be described as follows:

Algorithm: Network Selection

1. procedure Array_Generation WeightsFeatures(��,�, ��,�)

⊳ �������� ������′� ����� ��������
2. if ����� == ������� �����
3. � ← ��,�

�

4. else
5. � ← ��,�

�

⊳ �������� ������� ����� �������
6. � ← ��,�

⊳ �������� ��������������������

7. � = � . �

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

8. procedure Dimension_Reduction ReducedValues(��
�), (�� �

�)

⊳ �������� ����� ������� ������� ������
9. Select a particular row and column sequence (�), (�).
10. for � = � → �
11. ℝ� ← ℝ� + �[�, �]
12. ℝ� ← ℝ� + �[� + �, �]
13. ℂ ← ℂ + �[�, �]
14. � ← � + �[�, �]
15. for � = � → �
16. for � = � → �
17. �� ← �� + �[�, �]

18. end

19. � ← � + ��
20. end

21. �ℝ� ← ℝ�
��

22. �ℂ ← ℂ
��

23. �� ← �
��

24. ��� ← ���

25. procedure Deviation_Values DevValues(ℝ�, ℂ, �, �, ���)
⊳ �������� �����, ������, �����, ������ ��������� ������

26. for � = � → �
27. Building ��,� to ��,�with (20.1-20.7)

28. Building phase average �� with (21)

29. Building ����,�, ����,�, ����,�, ����,� with (22-25)

30. end
⊳ �������� �����, �����, �������, �����, �����, ����� ��������� �����

31. for � = � → �
32. Building (��)�, (��)� array with (26.1) and (26.2)

33. Generate (����)�, (����)� determinant, with (27.1) and (27.2)

34. Building the fifth, sixth, seventh, eighth, ninth, and tenth deviation values with
 (28), (29), (30), (31), (32), and (33).

35. end

36. procedure Model_Selection Model � �(�����)�� (ℝ��)�,(ℝ��)�,(����)�,(�����)�
�

37. ⊳ ����� ���������
38. for �, � = � → �
39. if (ℝ��)� > (ℝ��)� ,

40. if (����)� > �,

41. if [(ℝ��)� × ������)�] > ��

42. Select model � with ��� � ���
�∈[�,�]

������,���
43. else
44. Select model � = �
45. end
46. elseif (ℝ��)� < (ℝ��)�

47. if (����)� < �,
48. if (ℝ��)� × (�����)� < �
49. Select model � with ��� � ���

�∈[�,�]
������,���

50. else
51. Select model � = �
52. End
53. return �
54. end

4. Result discussion

4.1. Experiment setup

To evaluate the proposed network selection algorithm, we built a neural network

system with five different neural network models, as listed in Table 1. The first model was

adapted to distinguish between cats and dogs from a dataset extracted from the Dogs vs

Cats dataset of 25000+ images available from the Kaggle [29]. The second model was

trained to distinguish three different fruit types (Apple Red Yellow 2, Cantaloupe 1, and

Orange) within the Fruits_360-Kaggle dataset [30]. The third model is to recognise seven

types of facial emotions using the AFEW2.0 dataset [31], [32]. The fourth model is to clas-

sify four classes of objects, including aeroplanes, cars, flowers, and motorbikes extracted

from the Natural Images-Kaggle dataset of 6899 images [33]. Finally, the fifth model is

built to classify six classes of objects, including bathrooms, closets, computer rooms,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

garages, hospital rooms, and libraries extracted from the Indoor_Images-Kaggle dataset

generated for object recognition [34]. The algorithm is implemented using Python (version

3.8.5) and TensorFlow (version 2.3.1) library.

Each model in the system is built with three blocks in series. There are two convolu-

tional layers with ReLU activation functions, a Batch Normalisation layer after each con-

volutional layer, a Max-Pooling layer and a Dropout layer in each of the first two blocks.

The third block is configured with one convolutional layer with ReLU activation function,

followed by a Batch Normalisation layer and a Max-Pooling layer flattened into two dense

Fully Connected layers along with ReLU and Softmax functions to indicating the results

of object classification, as shown in Figure. 2. The details of the overall system configura-

tion are listed in Table 1.

Figure 2. Illustration of a CNN model used to build the five-model neural network selection system.

This model is designed to classify four objects (aeroplanes, cars, flowers, and motorbikes). Other

models in the system have a similar structure but are trained for different classification tasks.

Table 1. Configuration details of a CNN model in the five-model neural network selection system.

This model is designed for the classification of four objects.

Block
Layer
No.

Layer Type
Input Data
Dimension

Output Data
Dimension

Number of
Parameters

 1 Input 3 × 48 × 48 3 × 48 × 48

First

Block

2
Conv2D
(activation = relu)

3 × 48 × 48 32 × 46 × 46 896

3
Batch Normalization
(axis=-1)

32 × 46 × 46 32 × 46 × 46 128

4
Conv2D
(activation = relu)

32 × 46 × 46 32 × 44 × 44 9248

5
Batch Normalization
(axis=-1)

32 × 44 × 44 32 × 44 × 44 128

6
MaxPooling2D
(pool_size = (2, 2))

32 × 44 × 44 32 × 22 × 22 0

7
Dropout
(p-rate = 0.25)

32 × 22 × 22 32 × 22 × 22 0

8 Conv2D 32 × 22 × 22 64 × 20 × 20 18496

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

Second

Block

(activation = relu)

9
Batch Normalization
(axis = -1)

64 × 20 × 20 64 × 20 × 20 256

10
Conv2D
(activation=relu)

64 × 20 × 20 64 × 18 × 18 36928

11
Batch Normalization
(axis = -1)

64 × 18 × 18 64 × 18 × 18 256

12
MaxPooling2D
(pool_size = (2, 2))

64 × 18 × 18 64 × 9 × 9 0

13
Dropout
(p-rate = 0.25)

64 × 9 × 9 64 × 9 × 9 0

Third

Block

14
Conv2D
(activation = relu)

64 × 9 × 9 128 × 7 × 7 73856

15
Batch Normalization
(axis = -1)

128 × 7 × 7 128 × 7 × 7 512

16
MaxPooling2D
(pool_size = (2, 2))

128 × 7 × 7 128 × 3 × 3 0

17 Flatten 128 × 3 × 3 1152 0

18
Dropout
(p-rate = 0.5)

1152 1152 0

19
Dropout
(p-rate = 0.5)

1152 1024 1180672

20
Dense
(activation = softmax)

1024 4 2050

4.2. Performance in training

The network selection system is composed of five different models. Each model is

trained for different classification tasks in 80 epochs with the selected dataset and other

experiment setups described in the previous section. For example, Figure 3 shows the per-

formance of Model 4 in terms of accuracy and loss in training and validation. This model

is trained to classify four distinctive classes with the Natural Images-Kaggle dataset from

[33]. We can see, from Figure 3, that Model 4 is converging quickly in training and is stable

after about 40 epochs. The best training and validation accuracy are 99.8% and 98.1%, re-

spectively.

 a) b)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

Figure 3. Training and validation performance of a model in the five-model neural network selection

system. a) Accuracy of model 4, and b) loss of model 4.

4.3. Performance of network selection algorithm

4.3.1 Evaluation criterion

The performance evaluation is based on the accuracy of model selection in the sys-

tem. We define correct selections as the sum of true-positive (TP) selections and the true-

negative (TN) selections, incorrect selections as the sum of false-positive (FP) selections

and false-negative (FN) selections. The selection accuracy is the ratio of correct selections

to the sum of correct and incorrect selections, as defined in (35).

�������� =
������� ����������

������� ���������� � ��������� ����������
=

�����

�� � �� � �� � ��
 (35)

We aim for a high level of accuracy of model selection for the proposed algorithm.

However, high accuracy can sometimes be misleading. For example, in testing the selec-

tion of Model 1, we have 200 images from the dataset of Model 1 and 1000 images from

other models’ datasets. If the proposed selection algorithm is built in a way that it always

selects models other than Model 1 for all images, it will achieve an accuracy of 1000/1200

= 83.33%. This is highly misleading as our algorithm is unable to select the correct model.

Therefore, the selection accuracy alone is not able to determine if the selection algorithm

is good or bad, but accuracy combined with precision, recall, and F1_Score can give us a

good indication of the performance of the algorithm. For this reason, we also use selection

precision, recall, and F1_Score in evaluating the performance of the proposed algorithm.

Precision is the ratio of the true positive selections to the total number of positive

selections, as shown in (36). Recall calculates the ratio of true positive selections to the

total number of positive labels, including true positive and false negative selections, as

defined in (37). The F1-Score is the harmonic mean of precision and recall, as expressed in

(38). A high F1-Score means a high value for both recall and precision, with a score of 1.0

representing the perfect precision and recall of the algorithm.

��������� =
���� �������� ����������

���� �������� ���������������� �������� ����������
=

��

�����
 (36)

������ =
���� �������� ����������

����� ������ ��������� ������
=

��

��� ��
 (37)

�1_����� = 2.0 ×
������ ×���������

����������������
 (38)

4.3.2 Result analysis

To evaluate the performance of the network selection algorithm with the experi-

mental five-model system, a total of 1200 images were randomly selected for testing.

These images are from five different datasets that belong to the five models, with 200 im-

ages for each model except for Model 3, where 400 images are used. All images in the

experiment have not been used in the training and validation of the system. After apply-

ing the network selection algorithm in (34), we examine whether the correct model is se-

lected or not for the images for further processing by the system. The details of the exper-

iment results are listed in Table 2.

Table 2. Results of model selection accuracy of the proposed algorithm on the multi-model system

Models

Tested

Number of

Images Tested

Models Selected Selection

Accuracy Model 1 Model 2 Model 3 Model 4 Model 5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

Model 1 200 172 4 7 5 12 0.9633

Model 2 200 1 183 4 1 11 0.9767

Model 3 400 6 0 382 3 9 0.9692

Model 4 200 7 3 2 181 7 0.9767

Model 5 200 2 4 6 0 188 0.9575

Average 0.9687

Out of a total number of 1200 test images, 200 images are from the dataset of Model

1. The algorithm correctly selects 172 images for Model 1 and incorrectly allocates 28 im-

ages to other models. For the remaining 1000 images that are not from the dataset of Model

1, the algorithm incorrectly selects 16 of them for Model 1 and correctly classifies 984 im-

ages as not for Model 1. This gives a TP=127, FN=28, FP=16, and TN=984 for Model 1,

representing a selection accuracy of 96.33% by applying (35). Similarly, we can get the

selection accuracies for other models, as listed in the last column in Table 2. Other evalu-

ation metrics – precision, recall and F1_Score, along with the accuracy of the network se-

lection algorithm for each of the models, are also calculated according to (36-38) and listed

in Table 3.

Table 3. Results of model selection precision, recall and F1_Score of the proposed algorithm on the

multi-model system

Models Tested
Metrics of Network Selection

Accuracy Precision Recall F1_Score

Model 1 0.9633 0.9149 0.8600 0.8866

Model 2 0.9767 0.9433 0.9150 0.9289

Model 3 0.9692 0.9526 0.9550 0.9538

Model 4 0.9767 0.9526 0.9050 0.9282

Model 5 0.9575 0.8282 0.9400 0.8806

Average 0.9687 0.9183 0.9150 0.9156

It is noted, from Table 2, that the best selection accuracy achieved is 97.67% for Model

2 and 4, the lowest model selection accuracy is 95.75.0% for Model 5, and the average

accuracy of model selection of the algorithm is 96.87% in the experiment. Although the

algorithm selects the greatest number of images from dataset of Model 5 correctly, it also

has 39 images, the highest number among all models, that are from other models’ datasets

is allocated to Model 5 incorrectly. This can be translated into Model 5 having the lowest

number of TN selections. Therefore, the selection accuracy for Model 5 is the lowest

among the five models in the experiment system.

Amongst the five different models in the experiment, Table 3 shows that the selection

algorithm has the lowest recall value of 86% for Model 1 and the lowest precision value

of 82.82% for Model 5. It is obvious, in Table 2, that Model 1 has the largest number of FN

selections (i.e., any selections other than Model 1) as indicated in the row of Model 1, while

the column of Model 5 shows that Model 5 has the greatest number of FP selections (i.e.,

incorrectly selected Model 5 for images of other models). Therefore, Model 5 has the least

precision value and Model 1 has the least recall value according to (36) and (37), respec-

tively. Comparing with the F1_Scores of Models 1 and 5, there is little difference between

them; hence the proposed selection algorithm performs the same for both models.

We also note, in Table 3, that the proposed selection algorithm has similar perfor-

mance metrics for both Models 2 and 4, which are better than that of Models 1 and 5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

Among all models tested in the experiment, the selection algorithm performed best for

Model 3 as three out of the model’s four metrics are the best in comparison with metrics

of other models. The lowest ratios of false negative selections and false positive selections

for Model 3 contribute to the algorithm performing best in this case.

With an average selection accuracy of 96.87% and more than 91% of average metrics

of precision, recall and F1_Score, the FW-based network selection algorithm is perceived

effective in choosing an appropriate model for images for further processing in a multiple

complex neural network system on the benchmark datasets.

4.4 Limitation

According to (11.1) and (11.2), the row � and column � with the maximum element

distances in the FW arrays are selected in building the parameters of the network selection

algorithm. In order to understand the effectiveness of this row and column selection

method, we have also used randomly selected FW rows and columns in the proposed

network selection algorithm. The selection accuracies with randomly selected FW rows

and columns varying between 72~89% are achieved. This is not significantly different with

a completely failed design of the selection algorithm, which could have a theoretical se-

lection accuracy of 83.33% in the experiment. Although the proposed network selection

algorithm achieves a relatively high selection accuracy by using the maximum element

distances in selecting the FW rows and columns, other methods to select suitable repre-

sentative parameters of the FW arrays could be deployed in the algorithm and tested in

the experiment. There is great potential for further optimisation and improvement to at-

tain higher performance metrics of accuracy, precision, and recall.

One application of the proposed algorithm is to choose an appropriate neural net-

work model for the input image for further processing in a complex multi-model system,

hence, to improve the efficiency and effectiveness of the system. However, if the algorithm

selects an incorrect network model for processing the input image further, the output of

the system will be completely wrong, and the consequence could be catastrophic. This

may happen as our algorithm does not select models with 100% accuracy. Therefore, it is

vital to achieve a very high selection accuracy in such a multi-model system if the selection

algorithm is useful in improving the efficiency and effectiveness of the system.

6. Conclusion

This paper investigated an algorithmic linkage between the input images’ features

and the related CNN model's excitation weights. Based on this feature-weights linkage,

we proposed a network selection algorithm, which could choose the appropriate neural

network from multiple models for training, verification, and further processing in a com-

plex multi-model system. With this approach, the system could avoid training every

model when new objects need to be classified and added to the system. Therefore, by

applying this algorithm, the system could enhance its multi-modality learning process

with resources saving and less processing time. The proposed algorithm achieved an av-

erage selection accuracy of 96.87% in the test of a five-model neural network system.

Although the proposed model selection algorithm could reduce the usage of compu-

tation resources and improve the system effectiveness and efficiency, further adaptation

and development are required to achieve high selection accuracy for it to be useful in

complex multi-model systems. Moreover, it needs, in the future, to be tested adequately

to extract the most generalized correct patterns that match the trained models. Neverthe-

less, this paper provides a new paradigm, which would let machines be capable of devel-

oping a multi-model learning technique instead of just building a single large model for

future complex neural network systems.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

Author Contributions: Conceptualization, EA, XS; methodology, EA, XS, and VDS; software, EA;

validation, EA and VDS; formal analysis, EA, XS and VDS; investigation, EA; resources, EA, XS;

data curation, EA; writing—original draft preparation, EA, XS; writing—review and editing, EA,

XS, and VDS; visualisation, EA, XS; supervision, XS, and VDS; project administration, XS, and VDS;

funding acquisition, XS.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kubilius, J.; Schrimpf, M. et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In Proceed-

ings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 10-12 Dec. 2019. pp.

12805–12816. Available online: https://dl.acm.org/doi/pdf/10.5555/3454287 (accessed on 13 Nov 2021)

2. Naseer, M.; Khan, S.; Porikli, F. Indoor Scene Understanding in 2.5/3D for Autonomous Agents - A Survey. IEEE Access 2019,

7, 1859–1887. doi: 10.1109/ACCESS.2018.2886133

3. Zolanvari, S.M.I.; Ruano, S.; Rana, A.; Cummins, A.; Da Silva, R.E.; Rahbar, M.; Smolic, A. DublinCity: Annotated LiDAR

Point Cloud and its Applications. In Proceedings of the 30th British Machine Vision Conference (BMVC 2019), Dublin,

United Kingdom, 9-12 Sept. 2019. pp. 1-13. Available online: https://bmvc2019.org/wp-content/uploads/papers/0644-pa-

per.pdf (accessed on 13 Nov. 2021)

4. Li, J.; Yuan, Y.; Mei, K.; Fang, F. Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution. In Pro-

ceedings of International Conference on Computer Vision Workshop, Seoul, Korea, 27-28 Oct. 2019. pp. 3814–3823. doi:

10.1109/ICCVW.2019.00474

5. Geetha, G.; Kirthigadevi, T.; Ponsam, G.G.; Karthik, T.; Safa, M. Image Captioning Using Deep Convolutional Neural Net-

works (CNNs). Journal of Physics: Conference Series 2020, 1712, 1-13. doi: 10.1088/1742-6596/1712/1/012015

6. Li, K.; Ma, W.; Sajid, U.; Wu, Y.; Wang, G. Object Detection with Convolutional Neural Networks. In Deep Learning in Com-

puter Vision Principles and Applications, 1st. ed.; Hassaballah, M., Awad, A.I., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp.

41-62. doi: 10.1201/9781351003827

7. Contini, E.W.; Goddard, E.; Wardle, S.G. Reaction Times Predict Dynamic Brain Representations Measured with MEG for

Only Some Object Categorisation Tasks. Neuropsychologia 2021, 151, 107687. doi: 10.1016/j.neuropsychologia.2020.107687

8. Zheng M, Kleinberg S. Using Domain Knowledge to Overcome Latent Variables in Causal Inference from Time Series.

Proceedings of Machine Learning Research. 2019 Aug; 106:474-489. PMID: 32123870; PMCID: PMC7050445.

9. Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-Inspired Artificial Intelligence. Neuron. 2017 Jul

19;95(2):245-258. https://doi.org/10.1016/j.neuron.2017.06.011

10. Pitts, W.; McCulloch, W. The Linear Theory of Neuron Networks: The Static Problem. The Bulletin of Mathematical Biophysics

1943, 4, 169–175, doi: 10.1007/BF02478112

11. Rawat, W. Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural

Computation 2017, vol. 29, no. 9, pp. 2352–2449. https://doi.org/10.1162/NECO_a_00990

12. Ullah, A.; Muhammad, K.; Haq, I.U.; Baik, S.W. Action Recognition Using Optimized Deep Autoencoder and CNN for

Surveillance Data Streams of Non-Stationary Environments. Future Generation Computer Systems 2019, 96, 386–397. doi:

10.1016/j.future.2019.01.029

13. Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with Multiscale Convolution and Diversified Metric for Hyperspectral

Image Classification. IEEE Trans. Geosci. Remote Sens., 2019, 57(6), 3599–3618. doi: 10.1109/TGRS.2018.2886022.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

14. Everitt, T.; Hutter, M. Universal artificial intelligence. In Foundations of trusted autonomy, 1st ed.; H. A. Abbass, H. A.; Scholz,

J.; Reid, D. J., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 117, pp. 15-46.

15. Joseph, K. J.; Khan, S.; Khan, F. S.; Balasubramanian, V. N. Towards Open World Object Detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021, pp. 5826-

5836, doi: 10.1109/CVPR46437.2021.00577.

16. Kim, H.; Nam, H.; Jung, W.; Lee, J. Performance Analysis of CNN Frameworks for GPUs. In Proceedings of 2017 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, CA, USA, 24-25 Apr.

2017; pp. 55–64. doi: 10.1109/ISPASS.2017.7975270

17. Kwasigroch, A.; Mikołajczyk, A.; Grochowski, M. Deep Neural Networks Approach to Skin Lesions Classification - A

Comparative Analysis. In Proceedings of the 22nd International Conference on Methods and Models in Automation and

Robotics (MMAR), Miedzyzdroje, Poland, 28-31 Aug. 2017, pp. 1069-1074. doi: 10.1109/MMAR.2017.8046978

18. Poojary R.; Pai, A. Comparative Study of Model Optimization Techniques in Fine-Tuned CNN Models. In Proceedings of

2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah,

United Arab Emirates, 19-21 Nov. 2019, pp. 1-4. doi: 10.1109/ICECTA48151.2019.8959681

19. Hegde, K.; Yu, J.; Agrawal, R.; Yan, M.; Pellauer, M.; Fletcher, C.W. UCNN: Exploiting computational reuse in

deep neural networks via weight repetition. In Proceedings of 2018 ACM/IEEE 45th Annual International Symposium

on Computer Architecture, pp. 674–687. doi: 10.1109/ISCA.2018.00062

20. Quader, N.; Bhuiyan, M. M. I.; Lu, J.; Dai, P.; Li, W. Weight excitation: Built-in attention mechanisms in convolutional neural

networks. In Proceeding of the European conference on computer vision, Springer, pp 87–103 2020. doi: 10.1007/978-3-030-

58577-8_6

21. Xu, X.; Li, Y.; Wu, G.; Luo, J. Multi-modal deep feature learning for RGB-D object detection. Pattern Recognition 2017, Volume

72, pp. 300–313. doi: 10.1016/j.patcog.2017.07.026

22. Long, H.; Chung, Y.; Liu, Z.; Bu, S. Object Detection in Aerial Images Using Feature Fusion Deep Networks. IEEE Access

2019, Volume 7, pp 30980-30990. doi: 10.1109/ACCESS.2019.2903422

23. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks. In Proceedings

of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 7 - 12 Dec. 2015, vol. 1,

pp. 1135–1143.

24. Jiang, W.; Huang, K.; Geng, J.; Deng, X. Multi-Scale Metric Learning for Few-Shot Learning. IEEE Transactions on Circuits

and Systems for Video Technology 2021, Volume 31, no. 3, pp. 1091-1102, March 2021, doi: 10.1109/TCSVT.2020.2995754.

25. Lin, T. Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), January 2017, pp. 936-944,

doi: 10.1109/CVPR.2017.106.

26. Alsaghir, E.; Shi, X.; De Silva, V.; Kondoz, A. Understanding Dilated Mathematical Relationship between Image Features

and the Convolutional Neural Network’s Learnt Parameters. Entropy 2022, 24, 132. https://doi.org/10.3390/ e24010132

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceeding of the 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference

on Learning Representations, ICLR. pp.1-14. https://doi.org/10.48550/arXiv.1409.1556

28. Aggarwal, C.C. Machine Learning with Shallow Neural Networks. In Neural Networks and Deep Learning 2018; Springer:

Cham, Switzerland; pp. 455-456. doi: 10.1201/b22400-15

29. Kaggle. Dogs vs. Cats. Kaggle, 2013. Available online: https://www.kaggle.com/c/dogs-vs-cats/data (accessed: 01-Apr-2020)

30. Yasli, B. fruits-360. Kaggle, 2020. Available online: https://www.kaggle.com/barisyasli/fruit360 (accessed: 16-Aug-2020)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

31. Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting Large, Richly Annotated Facial-Expression Databases from Movies.

IEEE MultiMedia 2012, Volume 19, no. 3, pp. 34-41, July-Sept. 2012. doi: 10.1109/MMUL.2012.26.

32. Dhall, A.; Goecke, R.; Joshi, J.; Sikka, K.; Gedeon, T. Emotion Recognition In The Wild Challenge 2014: Baseline, Data and

Protocol. ACM ICMI, 2014.

33. Roy, P.; Bhattacharya, S.; Ghosh, S. Natural Images. Kaggle, 2018. Available online:

https://www.kaggle.com/prasunroy/natural-images (accessed: 18-Jan-2021).

34. Singh, S. K. Indoor Images. Kaggle, 2020. Available online: https://www.kaggle.com/sshubhamsingh/indoor-images

(accessed: 28-Jan-2021).

35. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018; pp. 455-456. doi: 10.1201/b22400-15

36. Shankar, P. M. Pedagogy of Bayes’ rule, confusion matrix, transition matrix, and receiver operating characteristics. Computer

Applications in Engineering Education 2019, Volume 27, number 2, pp. 510 - 518.

37. Tharwat, A. Classification assessment methods. Applied Computing and Informatics 2018, Volume 17, no. 1, pp. 168–192. doi:

10.1016/j.aci.2018.08.003

38. Lin, W. and Jay Kuo, C. C. Perceptual visual quality metrics: A survey. J. Vis. Commun. Image Represent. 2011, Volume 22, no.

4, pp. 297–312, February 2011. http://dx.doi.org/10.1016/j.jvcir.2011.01.005

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022 doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1

