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Abstract: Object recognition is an essential element of machine intelligence tasks. However, one 

model cannot practically be trained to identify all the possible objects it encounters. An ensemble of 

models may be needed to cater to a broader range of objects. Building a mathematical understand-

ing of the relationship between various objects that share comparable outlined features is envisaged 

as an effective method of improving the model ensemble through a pre-processing stage, where 

these objects' features are grouped under a broader classification umbrella. This paper proposes a 

mechanism to train an ensemble of recognition models coupled with a model selection scheme to 

scale-up object recognition in a multi-model system. An algorithmic relationship between the learnt 

parameters of a trained classification model and the features of input images is presented in the 

paper for the system to learn the model selection scheme. The multiple models are built with a CNN 

structure, whereas the image features are extracted using a CNN/VGG16 architecture. Based on the 

models' excitation weights, a neural network model selection algorithm, which links a new object 

with the models and decides how close the features of the object are to the trained models for se-

lecting a particular model for object recognition is developed and tested on a five-model neural 

network platform. The experiment results show the proposed model selection scheme is highly ef-

fective and accurate in selecting an appropriate model for a network of multiple models. 

Keywords: CNN; AI; Causality; Understandability; Object Features; Excitation Weight; Multi-

model Neural Network; Model Selection. 

 

1. Introduction 

Recent advances in neural networks have enabled many strenuous tasks to be accom-

plished by machines, sometimes surpassing human performance. Object recognition [1], 

Scene understanding [2], [3], image super-resolution [4] and image captioning [5] are a 

few of such machine intelligence tasks related to visual perception. In supervised learning 

with visual perception tasks, machines can learn from repeated measurements of studied 

phenomena and the associated frequency of different event outcomes. Such visual per-

ception tasks are at the heart of Artificial Intelligence (AI). Different recognition tech-

niques such as classification, time-series retrieval temporal features and spatial infor-

mation verification require a measure of functional similarity between time series, tem-

poral and/or spatial information included with the input data [6]. 

However, the human brain categorises things according to what the brain is looking 

for when it sees things [7]. That depends on what objects the brain sees and its imagery 

features during the brain analysis or focusing processes. For example, if humans recognise 

an image of the sea, they may expect straightaway to see ships, fish anglers, swimmers, 

and other water (sea)-related objects. Therefore, we can say that the model of the water-

related objects will be selected and applied for further detection and analysis processes. 

This classification criterion flags a different approach in the classification processing 
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mechanism by processing the recognised object features pre to the processing analysis 

procedure. However, a machine cannot easily and quickly build this recognition 

knowledge without human interference in defining the related model, especially if the 

machine is loaded with many different models. In some instances of problem analysing, 

our observation can extract a deficient level of features that forces us to know about the 

latent variables due to the usual difficulty in computing the probability densities [8]. This 

human recognition neural system inspired the development of the Artificial Neural Net-

work (ANN) concept [9]. In 1943, Walter Pitts and Warren McCulloch created the first 

neural network computational model based on mathematical algorithms known as 

threshold logic [10]. These algorithms were the first computational description of multi-

layered perceptron (MLP) neural network behaviour, which was the primary key in giv-

ing the machine the ability to generate recognition models for specified object classes. As 

a result of these models, and like the MLP, Convolutional Neural Network (CNN) has 

emerged in the development of ANN as a standard tool for computerized image classifi-

cation [11], which has proved a decisive success in various computer vision tasks (e.g. 

video action recognition [12], image classification [13], etc.) The CNN is designed to deal 

with the available training data and various optimisation and activation functions to build 

an image recognition model by appropriately adapting its contents of convolution blocks 

with its learnable parameters, including the convolutional filter weights.  

However, a significant concern with machine learning systems that deal with this 

technology field is the need for human interference in controlling machine learning [14]. 

The domain to be analysed in ANN systems must be pointed at with a human's help. This 

means the machine must be instructed on which model to use for a new test input image 

or perform a new training procedure of all added classes from scratch. Therefore, specify-

ing a machine to deal with a particular domain is a considerable drawback in neural net-

work technology. Hence, making the machine able to recognise the domain related to the 

test image according to its transformed features will enable the machine to pick the right 

domain, leading to a selection of the correct model and a more efficient learning proce-

dure.  

To address this gap, we investigate a possible link between a trained object recogni-

tion model's learnt weight vector and the extracted feature vector of a data sample. This 

link can be considered the fingerprint that proves the relation between the trained deep 

learning CNN model's parameters and the related image features from the input dataset 

used for training. By recognising this link, the system can use that knowledge as a model 

pre-selection scheme and immediately transfer the selected model's learnt knowledge to 

the newly recognised object for further development. However, this new selection scheme 

comes with severe adjustment and tuning challenges, from the massive development of 

AI model architectures to the various feature-extraction techniques. 

This paper proposes a new neural network ensemble paradigm driven by an auto-

matic model selection algorithm by investigating the hypothesized link relationship be-

tween the model's learnt parameters and the extracted features (i.e., the excitation weights 

in a neural network). This leads to exploring possible relations between the images' fea-

tures used for training and the trained models' parameters. Hence, when applying to the 

yet-to-be-recognised image, the relationship can allow the machine to recognise the re-

lated model to continue with any nominated procedure without requesting human con-

firmation. This approach is instrumental in increasing the recognition level by widening 

the neural networks with rapid development of big data technology and high-perfor-

mance computers.  

In the paper, we developed an algorithmic linkage between the model's learnt pa-

rameters and the input images' extracted features. Using the link algorithm, we further 

developed a network model selection scheme for multi-domain neural networks and 

proved its effectiveness in model selection through a series of experiments. The proposed 

selection scheme would let the system save its computation power without trading off 
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any future classification accuracy by efficiently generating a model ready for prediction 

without incurring extra computation resources on the actual training procedure. 

The paper is arranged as follows: the related work is first discussed in Section 2, and 

the proposed linkage and network model selection algorithm are presented in Section 3. 

We describe the details of the network selection experiment and the results in Section 4. 

With the findings discussed in Section 5, we finally summarise the paper's conclusion in 

Section 6. 

2. Related work 

Humans identify unknown objects with their instinct to learn about them until they 

build corresponding knowledge at the end. This fact motivated Joseph et al. [15] to pro-

pose their Open World Object Detection (ORE) model as a novel solution to computer 

vision problems. The ORE model identified unknown objects and learned them incremen-

tally without forgetting the previously learned classes. This provided a novel solution to 

the problem they formulated about open-world object detection based on energy-based 

unknown identification of the noticed separation between known and unknown classes 

for unknown detection. They used contrastive clustering that identifies how close a simi-

lar and dissimilar item can be for open-world learning. By differentiating the unknown 

instance feature representation from the other known ones and facilitating learning new 

class instances' feature representations without overlapping with the previous ones, the 

ORE reduced the incremental object detection setting confusion through characterising 

and identifying unknown instances. As a result, it is a model of incremental learning with-

out forgetting.  

Moreover, with the observation of the recognition system using CNN, whereas the 

CNN's filter dimensions are relatively fixed over time, a dramatic decrease in the number 

of excitation weights is noticed during technology development [16]. This observation re-

flects a practical link between the number of excitation weights and the model accuracy 

performance, especially when deep learning becomes the best tool that yields good accu-

racy in image classification with large input compared to traditional computer vision al-

gorithms [17]. These findings encouraged Poojary and Pai [18] to perform a comparative 

study of the model’s optimisation techniques in fine-tuned CNN models, concluding that 

fine-tuned transfer learning CNN models are best for building models with similar given 

tasks to the original task. However, they found that the performance of CNN models is 

heavily affected by the used model's optimisation techniques.  

The basic CNN recognition computations are based on a multi-dimensional dot-

product operation applied between the extracted feature vectors and the model’s weights 

vectors [19]. According to the model's weights' sparsity, Hegde et al. [19] studied how 

weight repetition can be used during CNN inference to improve performance and save 

energy, and consequently, the Unique Weight CNN Accelerator (UCNN) was proposed. 

As a result, the generalisation of exploiting repetition in all zero weights improved the 

efficiency with UCNN, which approved the actual relation between the model perfor-

mance and the input features for better computation processes up to 3.7 times on three 

trendy CNNs. 

Other work in the literature studied the CNN models’ excitation weights and their 

relation to recognising the tested images. In [20], the authors identified CNN's two signif-

icant weights characteristics, the magnitude and location, during training. They devel-

oped two separate weight excitation (WE) mechanisms with those useful characteristics. 

The WE mechanisms were applied to modify the backpropagation process via weights' 

reparameterisation. These two mechanisms improved accuracy on the various networks 

they tested, such as an increase of 1.3% to the previous accuracy rate of the ResNet50 

models. The authors demonstrated the importance of weights in the convolution blocks 

in providing substantial performance gains without changing inference at the structure of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2022                   doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1


 

 

 

 

CNN or adding computation cost. However, their work again needed human interference 

in choosing the studied domain and forwarding the decision to the system. Furthermore, 

a few studies have also worked on the relationship between the extracted features and the 

trained model's detection results [21], [22]. 

Han et al. [23] researched the intensity of computation processes and memory usage 

in neural networks to overcome deployment difficulties on embedded systems. They 

studied the relationship between the model's weights and the input training process to 

reduce the overall computation costs and overcome the fact that CNN froze the architec-

ture during training. They proposed a three-step method of learning the essential connec-

tions by trimming the unimportant connections and retraining the network for weights 

fine-tuning. They decreased the number of weights by a factor of 9 – 13 times for various 

networks without suffering accuracy loss. 

With the continuous development of deep learning, its applications in practical 

scenes have kept rising more than before. However, it became more challenging to train 

models with rare mission scenarios due to limited samples available for training. These 

difficulties raised the importance of model adaptation within the few-shot learning with 

limited supervised information related to the concerned task. Since fewer labelled samples 

are available with few-shot learning, it became necessary to apply features with fewer 

training samples as much as possible. Jiang et al. [24] proposed a new metric-based few-

shot learning method called Multi-Scale Metric Learning (MSML). MSML uses a feature 

pyramid structure [25] and a pre-trained feature extraction network to create multi-scale 

feature maps, then accommodate a multi-scale different samples' feature comparison 

through learning a multi-scale relation creation network. They enhanced the multi-scale 

relation generation network metric-learning by proposing the inter-class and intra-class 

relation loss function (IIRL) to enlarge heterogeneous group discrimination samples and 

decrease the same class samples' distance. They applied the MSML method on 

miniImageNet and tieredImageNet and yielded superior few-shot learning classification 

results. However, it requires a comprehensive approach to target positioning, image seg-

mentation, and recognition. 

Finally, the proof of the existence of a linkage between the features extracted from a 

training image and the trained model's structure and excitation weights was explored by 

the mathematical relationship between the resulting model's parameters and the model's 

featured input, Alsaghir et al. [26]. In their work, A feature-weight (FW) linkage was built 

to calculate the primary model-related FW array for comparing the extracted features of 

a test image to allocate the related model correctly in a multi-model system. In applying 

such a linkage algorithm to a multi-domain machine learning system, the system can se-

lect the related model for the correct domain for further analysis without human interfer-

ence. 

3. The proposed method for network selection 

For an object recognition system loaded with multiple models, it will be difficult for 

the system to decide which model to use for recognising the tested object without apply-

ing the new image to all models that generate a separate prediction for each model or 

retraining all different recognised classes by all models. To address this issue, the pro-

posed network selection method uses a pre-processing stage to direct a new image to the 

related recognition model for further analysis without human interference. Building such 

a pre-processing algorithmic approach is useful for recognition systems that can mimic 

human reactions and starts their prediction process effectively straight away. It avoids 

further model training when detecting a new unknown object in a multi-model system by 

selecting the closely related model based on features extracted from the image. 

The proposed method includes three main steps: 1) combining the trained and tested 

image features with the model’s excitation weights in FW arrays ℓ� and ℓ��, which are 
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generated for each different CNN recognition model, �, and loaded into the system; 2) 

calculating the relative distances between arrays ℓ� and ℓ��, of the different CNN models 

by applying a sequence of deviation operations; and 3) comparing the distance between 

all possible network models to link the new unknown input image to an appropriately 

trained model. Figure 1 illustrates these processing steps. 

Figure 1. Block diagram of the main steps in the proposed network model selection algorithm. Each 

CNN model is built with three convolutional blocks. ℓ is the dot-product of trained image features 

and the model’s excitation weights array, ℓ�  is the dot-product of test image features and the 

model’s excitation weights array, and ���� and ����� are the deviation values between ℓ and ℓ�. 

These values were presented to the Network Selection stage to analyse the relative distance between 

the feature-weight arrays, ℓ and ℓ�, in accordance with the values of ℝ1� and ℝ2�. 

3.1. FW array generation 

The FW linkage arrays are generated by applying a dot-product operation, denoted 

as (⊙), between the extracted � features, � = [�� ��  ⋯ ��]�, of an object's image and the 

excitation weights, � = [��  ��   ⋯   ��], of the trained model, as shown in (1). Note that 

[∙]� is the transpose of an array, and � =  25088 due to CNN/VGG16 being used in the 

feature extraction [27]. 

� ⊙ � = (��)� =

⎣
⎢
⎢
⎡

�� ⋅ �� �� ⋅ �� … �� ⋅ ��

�� ⋅ �� �� ⋅ �� … �� ⋅ ��

�� ⋅  ⋮   �� ⋅  ⋮    ⋱ �� ⋅   ⋮  

�� ⋅ �� �� ⋅ �� … �� ⋅ ��⎦
⎥
⎥
⎤
    (1) 

This array generation stage can be further divided into two steps, with each trained 

model loaded into the system. The first step links the original correctly predicted image's 

features with the related model's excitation weights. The second step links the extracted 

features of the unknown new test image with the same model's excitation weights. 

As the first step, all images in the training datasets must go through the CNN/VGG16 

feature extraction process, and the features are fed to the CNN model for training. A fea-

ture array, ℱ�
� , of training image � with model �, can be constructed, such that ℱ�

� =

[���
�  ���

�  ⋯ ���
� ]� . An excitation weight array, �� , of each model �, is extracted from the 

model, such that �� = ∑ ��,��� , where ��,��
= [��,��,� ��,��,� ��,��,�] refers to the � excita-

tion weights of the convolutional block ��  of model �, and � ∈ [1,3] as there are three 

convolutional blocks in the proposed network models.  

In accordance with (1), the link, ℓ�
�, between model � and training image � is calcu-

lated as follows: 

ℓ�
� = ℱ�

� ⊙ �� =  ∑ �ℱ�
� ⊙ ��,��

��
��� , ∀� ∈ [1, �],   (2) 
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where ℓ�
� is an [� × �] array and � is the number of models loaded into the system. In 

our model selection system in the experiment, � is 5. Note that hereafter � ∈ [1, �] and 

� ∈ [1, �] in all relevant descriptions. 

A newly recognised object (image), �, from the test dataset also goes through the 

CNN/VGG16 for feature extraction in the second step. The test image � does not contrib-

ute to the model's training processes. Using the same method as described in the first step 

above, a feature array ℱ�
� for image � with model � can also be generated. Thus, similar 

to (2), a new link ℓ��
� between the model � and the features of test image �, can be built as 

follows: 

ℓ��
� = ℱ�

� ⊙ �� = ∑ �ℱ�
� ⊙ ��,��

��
��� ,      (3) 

where ℓ��
� is also an [� × �] array.  

3.2. Network selection algorithm 

The network selection algorithm developed in this paper uses the linkage arrays, ℓ�
� 

and ℓ��
� to estimate the relative distances in order to find the nearest test FW array to the 

expected model's FW arrays. It starts by reducing array dimensions and developing dif-

ferent deviation criteria to build a logical approach that defines the distances between the 

FW arrays. In the end, a distance comparison is performed to select the correctly related 

network model. 

3.2.1. Dimension reduction 

Since the FW arrays are size of [N×N] that has 629,407,744 elements, we need to re-

duce the array’s dimensions to a level that can be tuned effectively. We aim to reduce the 

dimensions of these arrays to a much smaller size of [9 × 1] by extracting nine values 

from each FW array. This will allow a straightforward comparison between the new test 

images, old images used in training, and the trained recognition models. The values are 

extracted using the N� elements of the FW array, and extra 3N values that include the 

elements of a chosen row, a chosen column, and the array's diagonal elements to enhance 

the uniqueness.  

We first generate a row-summation vector and a column-summation vector of the 

FW array for model �, as defined in (4.1) and (4.2): 

��� = �

ℇ��,�

⋮
ℇ��,�

� = �

∑ ℓ�
�[1, �]�

���

⋮
∑ ℓ�

�[�, �]�
���

�,      (4.1) 

��� = �

ℇ��,�

⋮
ℇ��,�

� = �

∑ ℓ�
�[�, 1]�

���

⋮
∑ ℓ�

�[�, �]�
���

�,      (4.2) 

where ��� and ��� refer to vectors with elements ℇ��,� and ℇ��,� that are the summa-

tion of rows and columns of link array ℓ�
� , ∀� ∈ [1, N], respectively.  

The minimum and maximum elements of ���  and ��� , denoted as ���ℰ�  and 

���ℰ�, are found in (5.1) and (5.2). With each element being scaled to the range of [-1.0, 

1.0] in accordance with (6), the vectors ��� and ��� are normalised and denoted as �′�� 

and �′�� , as shown in (7.1) and (7.2).  

���ℰ� = ���
�∈[�,�]

�ℇ��,�, ℇ��,��          (5.1) 

���ℰ� = ���
�∈[�,�]

�ℇ��,�, ℇ��,��         (5.2) 

ℇ�,�
� = 2.0 ∗ �

ℇ�,� � ���ℰ�

���ℰ� � ���ℰ�
� − 1.0      (6)  
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�′�� = [ℰ��,�
� , ℰ��,�

� , ⋯ , ℇ��,�
� ]�       (7.1) 

�′�� = [ℰ��,�
� , ℰ��,�

� , ⋯ , ℇ��,�
� ]�       (7.2) 

The means ���, ���, and the standard deviations ���, ���, of all elements in the nor-

malised vectors �′�� and �′��, are further calculated as in (8.1), (8.2), (9.1) and (9.2), re-

spectively. 

��� = �∑ ℇ��,�
��

��� �/�        (8.1) 

��� = �∑ ℇ��,�
��

��� �/�        (8.2) 

��� = �∑ (ℰ��,�
� − ���)�/��

���       (9.1) 

��� = �∑ (�
��� ℰ��,�

� − ���)�/�      (9.2) 

We further define two new parameters, ���,� and ���,�, as element distances to the 

means for vectors �′�� and �′�� , respectively, as follows: 

���,� = �ℰ��,�
� − ���� ����        (10.1) 

���,� = �ℰ��,�
� − ���� ����        (10.2) 

According to (11.1) and (11.2), the row � and column � with the maximum element 

distances will be used for network selection with the FW link arrays ℓ�
� and ℓ��

� of net-

work model  �. 

� = arg � max
�∈[�,�]

����,���       (11.1) 

� = arg � max
�∈[�,�]

����,���       (11.2) 

Based on �, �, and FW arrays ℓ�
� and ℓ��

�, nine other values are obtained for network 

model selection, as follows: 

1. A pair of sums of elements in row � for the training image � and test image � of 

model �, respectively, as shown in (12.1) and (12.2). 

ℝ1�
� = ∑ ℓ�

�[�, �]�
���         (12.1) 

ℝ1�
� = ∑ ℓ��

�[�, �]�
���         (12.2) 

2. A sum of next row elements to �, ℝ2�
�, for the training images� of model �, accord-

ing to (12.3). 

ℝ2�
� = ∑ ℓ�

�[� + 1, �]�
���        (12.3) 

3. A pair of sums of column � elements in FW arrays, denoted as ℂ�
�  and ℂ�

�, for the 

training image � and test image � of model �, respectively, according to (13.1) and 

(13.2). 

ℂ�
� = ∑ ℓ�

�[�, �]�
���         (13.1) 

ℂ�
� = ∑ ℓ��

�[�, �]�
���         (13.2) 

4. A pair of sums of diagonal elements in FW arrays, denoted as ��
�  and ��

�, for the 

training images � and test image � of model �, according to (14.1) and (14.2). 

��
� = ∑ ℓ��

� [�, �]�
���         (14.1) 

��
� = ∑ ℓ�

�[�, �]�
���         (14.2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2022                   doi:10.20944/preprints202210.0081.v1

https://doi.org/10.20944/preprints202210.0081.v1


 

 

 

 

5. A pair of sums of all elements in FW arrays, denoted as ��
� and ��

�, for the test image 

� and training images � of model �, according to (15.1) and (15.2). 

��
� = ∑ ∑ ℓ��

� [�, �]�
���

�
���        (15.1) 

��
� = ∑ ∑ ℓ�

� [�, �]�
���

�
���        (15.2) 

6. A pair of ratios of row � sums to the sums of all elements in FW arrays, denoted as 

�ℝ�,�
�  and �ℝ�,�

� , for the test image � and training images � of model �, according to 

(16.1) and (16.2). 

�ℝ�,�
� =

ℝ��
�

��
�          (16.1) 

�ℝ�,�
� =

ℝ��
�

��
�          (16.2) 

7. A pair of ratios of column � sums to the sums of all elements in FW arrays, denoted 

as �ℂ,�
�  and �ℂ,�

� , for the test image � and training images � of model �, according 

to (17.1) and (17.2). 

�ℂ,�
� =

ℂ�
�

��
�          (17.1) 

�ℂ,�
� =

ℂ�
�

��
�          (17.2) 

8. A pair of ratios of diagonal sums to the sums of all elements in FW arrays, denoted 

as ��,�
�  and ��,�

� , for the test image � and training images � of model �, according 

to (18.1) and (18.2). 

��,�
� =

��
�

��
�          (18.1) 

��,�
� =

��
�

��
�          (18.2) 

9. Extracting a singular value ����
�  with the Singular Value Decomposition (SVD), 

from the FW linkage array, ℓ�
�, for training image � and model � [28]. The array ℓ�

� 

can be factorized as in (19): 

ℓ�
� = ����,         (19) 

where �  is a [� × �] matrix of the orthonormal eigenvectors of (ℓ�
� × ℓ�

��
) , �  is 

a [� × �] diagonal matrix of the singular values, which are the square roots of the 

eigenvalues of (ℓ�
� �

× ℓ�
�), and ��  is the transpose of a [� × �]  matrix containing 

the orthonormal eigenvectors of (ℓ�
��

× ℓ�
�). Through solving � − (����

� × �) = 0, 

where � is the identity matrix, a suitable singular value ����
�  can be found for ℓ�

�.  

3.2.2. Deviation values calculations 

The proposed model selection system generates deviation values from the previously 

generated nine values in (12.1-19). These deviation values indicate the relative difference 

of the generated nine values between the FW arrays in training and test, and are the pri-

mary tool in making the comparison mathematically between the FW arrays. It starts by 

creating different criteria of deviation comparison between each model's FW array in 

training, ℓ�
�, and the test image-related FW arrays, ℓ��

�, with mathematical connections be-

coming available for model selection during the comparison.  

In order to generate the deviation values, we first calculate a group of imagined 

phases between the extracted pair of ratios of ℓ��
� and ℓ�

�, including between each model’s 
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pair of row-values of ℝ1�
� and  ℝ1�

�, pair of column-values of ℂ�
�  and ℂ�

�, pair of diago-

nal-values of ��
�  and ��

�, pair of the array's all-element values of ��
�  and ��

�, pair of the 

array's row � ratio values of �ℝ�,�
�  and �ℝ�,�

� , pair of array's column � values of �ℂ,�
�  

and �ℂ,�
� , and pair of array's diagonal ratio values of ��,�

�  and ��,�
� , related to each model 

� . These imagined phases, ��,�, ∀� ∈ [1,7] , are calculated as in (20.1-20.7). An average 

phase, �� , for each model � is obtained in (21). 

��,� = ������ �
ℝ��

�

ℝ��
� �        (20.1) 

��,� = ������ �
ℂ�

�

ℂ�
��        (20.2) 

��,� = ������ �
��

�

��
��        (20.3) 

��,� = ������ �
��

�

��
��           (20.4) 

Φ�,� = arctan �
�ℝ�,�

�

�ℝ�,�
� �              (20.5) 

��,� = ������ �
�ℂ,�

�

�ℂ,�
� �              (20.6) 

��,� = ������ �
��,�

�

��,�
� �        (20.7) 

�� = �∑ ��,�
�
��� �/7        (21) 

These calculated average phases, �� , for FW array of training image � and test image 

� of each model �, are used to calculate the first relative deviation distance, denoted as 

����,�, as defined in (22). 

����,� = ∏ ��� − ����
���
���

           (22) 

The system gets the second relative distance value, ����,�, by applying a non-linear 

function to the average phase ��  and scaled with the singular value ����
�  for each 

model �. Here we use ������ as the non-linear function, ����,� is defined as in (23). 

����,� = arctan (��) × ����
�          (23) 

The third deviation value, ����,�, is generated by calculating the difference between 

the pair of ratios of �ℝ�,�
� , and �ℝ�,�

�  from the ℓ��
�  and ℓ�

� arrays, respectively, as shown in 

(24). 

����,� = �ℝ�,�
� − �ℝ�,�

�         (24) 

The fourth deviation value, ����,�, is defined as in (25). 

����,� =
�����,�� ����,��

����,�
                       (25) 

We then construct two unique arrays, �� and ��, as shown in (26.1) and (26.2), and 

the determinant values for each of ��
� and ��

� , as shown in (27.1) and (27.2). The fifth de-

viation value, ����,�, of model � is then defined as in (28). 

��
� = �

ℝ1�
� ℂ�

�

��
� ��

��        (26.1) 

��
� = �

ℝ1�
� ℂ�

�

��
� ��

��        (26.2) 
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����
� = �ℝ1�

� × ��
�� − �ℂ�

� × ��
��        (27.1) 

����
� = ����(��

�) = �ℝ1�
� × ��

�� − �ℂ�
� × ��

��        (27.2) 

����,� = ����
� − ����

�           (28) 

The sixth deviation value, ����,�, of model �, is defined in (29). 

����,� = ������[(��� ( ����,� × ����,�/ℂ�
� − ℂ�

�)) + ���(����,�)]  (29) 

The system defines the seventh deviation value, ����,�, of model �, as in (30), which 

links the sixth and first deviation values. 

����,� = ����,� × ����,�        (30) 

Afterwards, the system compares the last generated deviation value, ����,�, with the 

same values of all tested models � for selected test image � according to (31). 

����,� =

∏ ������,������,����
���
���

����,�
× ����,�     (31) 

Furthermore, the system calculates another value, ����,�, as defined in (32). 

����,� = ∏ ������,� − ����,����
���
���

       (32) 

Finally, the system uses the last deviation value, �����,� to link ����,� and ����,� 

with the ratio values ��,�
�  and �ℂ,�

� , and ℝ2�
�, as defined in (33). 

�����,� = (����,�/����,�)/��,�
� × �ℂ,�

� × ℝ2�
�     (33)  

3.2.3. Network selection algorithm 

The network selection algorithm, as shown in (34), compares the relative distances 

between the FW arrays, ℓ��
� and ℓ�

�, according to the specially developed deviation criteria 

in (33) of each model �, to select the related network model with the shortest distance. 

We define the rules for choosing the related network model as: the selected model, 

�,̅ is the one with the minimum or maximum �����,�, depending on the signs of ℝ1�
�, ℝ2�

�, 

����,�, and �����,�, as shown in (34). 

 

�̅ =

⎩
⎪
⎨

⎪
⎧arg � min

�∈[1,�]
����10,��� ,  �� ℝ1

�
� > ℝ2�

�, ���8,� >  0, (ℝ2
�
� × ���10,�) > 0

arg � max
�∈[1,�]

����10,��� ,  �� ℝ1
�
� < ℝ2�

�, ���8,� <  0, (ℝ2
�
� × ���10,�) < 0

0, ��ℎ������                                                                                                              

 , (34) 

 

where �̅ = 0 represents a failed network selection. 

 

The overall selection algorithm can be described as follows: 

Algorithm: Network Selection 

1. procedure Array_Generation WeightsFeatures(��,�, ��,�) 

⊳  �������� ������′� ����� �������� 
2.   if ����� ==  ������� ����� 
3.      � ← ��,�

�  

4.   else  
5.      � ← ��,�

�  

⊳  �������� ������� ����� ������� 
6.   � ← ��,� 

⊳  �������� �������������������� 

7.   � = � . � 
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8. procedure Dimension_Reduction ReducedValues(��
�), (�� �

�) 

⊳  �������� ����� ������� ������� ������ 
9.   Select a particular row and column sequence (�), (�). 
10.    for � =  � → � 
11.      ℝ� ←  ℝ� + �[�, �] 
12.      ℝ� ←  ℝ� +  �[� + �, �] 
13.      ℂ    ←  ℂ +  �[�, �] 
14.      �   ←  � + �[�, �] 
15.    for � =  � → � 
16.      for � =  � → � 
17.         ��   ←  �� +  �[�, �] 

18.      end 

19.      �   ←  � +    ��  
20.    end 

21.      �ℝ�  ← ℝ�
��  

22.      �ℂ    ←  ℂ
��  

23.      ��   ←  �
��  

24.      ���  ← ��� 

25. procedure Deviation_Values DevValues(ℝ�, ℂ, �, �, ���) 
⊳  �������� �����, ������, �����, ������ ��������� ������ 

26.    for � =  � → � 
27.     Building ��,� to ��,�with (20.1-20.7) 

28.     Building phase average �� with (21) 

29.     Building ����,�, ����,�, ����,�, ����,� with (22-25) 

30.    end 
⊳  �������� �����, �����, �������, �����, �����, ����� ��������� ����� 

31.   for � =  � → � 
32.     Building (��)�, (��)� array with (26.1) and (26.2) 

33.     Generate (����)�, (����)� determinant, with (27.1) and (27.2) 

34.     Building the fifth, sixth, seventh, eighth, ninth, and tenth deviation values with 
    (28), (29), (30), (31), (32), and (33). 

35.   end 

36. procedure Model_Selection Model  � �(�����)�� (ℝ��)�,(ℝ��)�,(����)�,(�����)�
� 

37. ⊳  ����� ��������� 
38.   for �, � =  � → � 
39.      if (ℝ��)� > (ℝ��)� ,  

40.        if  (����)� >  �,  

41.          if  [(ℝ��)� ×   ������)�] > ��  

42.            Select model � with ��� � ���
�∈[�,�]

������,���  
43.        else   
44.          Select model � = � 
45.      end 
46.      elseif (ℝ��)� < (ℝ��)�  

47.         if (����)� <  �,  
48.           if (ℝ��)� ×   (�����)� < � 
49.             Select model � with ��� � ���

�∈[�,�]
������,��� 

50.         else     
51.          Select model � =  � 
52.      End 
53.      return � 
54.   end 

 

4. Result discussion 

4.1. Experiment setup 

To evaluate the proposed network selection algorithm, we built a neural network 

system with five different neural network models, as listed in Table 1. The first model was 

adapted to distinguish between cats and dogs from a dataset extracted from the Dogs vs 

Cats dataset of 25000+ images available from the Kaggle [29]. The second model was 

trained to distinguish three different fruit types (Apple Red Yellow 2, Cantaloupe 1, and 

Orange) within the Fruits_360-Kaggle dataset [30]. The third model is to recognise seven 

types of facial emotions using the AFEW2.0 dataset [31], [32]. The fourth model is to clas-

sify four classes of objects, including aeroplanes, cars, flowers, and motorbikes extracted 

from the Natural Images-Kaggle dataset of 6899 images [33]. Finally, the fifth model is 

built to classify six classes of objects, including bathrooms, closets, computer rooms, 
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garages, hospital rooms, and libraries extracted from the Indoor_Images-Kaggle dataset 

generated for object recognition [34]. The algorithm is implemented using Python (version 

3.8.5) and TensorFlow (version 2.3.1) library. 

Each model in the system is built with three blocks in series. There are two convolu-

tional layers with ReLU activation functions, a Batch Normalisation layer after each con-

volutional layer, a Max-Pooling layer and a Dropout layer in each of the first two blocks. 

The third block is configured with one convolutional layer with ReLU activation function, 

followed by a Batch Normalisation layer and a Max-Pooling layer flattened into two dense 

Fully Connected layers along with ReLU and Softmax functions to indicating the results 

of object classification, as shown in Figure. 2. The details of the overall system configura-

tion are listed in Table 1.  

Figure 2. Illustration of a CNN model used to build the five-model neural network selection system. 

This model is designed to classify four objects (aeroplanes, cars, flowers, and motorbikes). Other 

models in the system have a similar structure but are trained for different classification tasks. 

Table 1. Configuration details of a CNN model in the five-model neural network selection system. 

This model is designed for the classification of four objects. 

Block 
Layer 
No. 

Layer Type 
Input Data 
Dimension 

Output Data 
Dimension 

Number of 
Parameters 

 1 Input 3 × 48 × 48 3 × 48 × 48  

First 

Block 

2 
Conv2D 
(activation = relu) 

3 × 48 × 48 32 × 46 × 46 896 

3 
Batch Normalization 
(axis=-1) 

32 × 46 × 46 32 × 46 × 46 128 

4 
Conv2D 
(activation = relu) 

32 × 46 × 46 32 × 44 × 44 9248 

5 
Batch Normalization 
(axis=-1) 

32 × 44 × 44 32 × 44 × 44 128 

6 
MaxPooling2D 
(pool_size = (2, 2)) 

32 × 44 × 44 32 × 22 × 22 0 

7 
Dropout 
(p-rate = 0.25) 

32 × 22 × 22 32 × 22 × 22 0 

8 Conv2D 32 × 22 × 22 64 × 20 × 20 18496 
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Second 

Block 

(activation = relu) 

9 
Batch Normalization 
(axis = -1) 

64 × 20 × 20 64 × 20 × 20 256 

10 
Conv2D 
(activation=relu) 

64 × 20 × 20 64 × 18 × 18 36928 

11 
Batch Normalization 
(axis = -1) 

64 × 18 × 18 64 × 18 × 18 256 

12 
MaxPooling2D 
(pool_size = (2, 2)) 

64 × 18 × 18 64 × 9 × 9 0 

13 
Dropout 
(p-rate = 0.25) 

64 × 9 × 9 64 × 9 × 9 0 

Third 

Block 

14 
Conv2D 
(activation = relu) 

64 × 9 × 9 128 × 7 × 7 73856 

15 
Batch Normalization 
(axis = -1) 

128 × 7 × 7 128 × 7 × 7 512 

16 
MaxPooling2D 
(pool_size = (2, 2)) 

128 × 7 × 7 128 × 3 × 3 0 

17 Flatten 128 × 3 × 3 1152 0 

18 
Dropout  
(p-rate = 0.5) 

1152 1152 0 

19 
Dropout  
(p-rate = 0.5) 

1152 1024 1180672 

20 
Dense 
(activation = softmax) 

1024 4 2050 

4.2. Performance in training 

The network selection system is composed of five different models. Each model is 

trained for different classification tasks in 80 epochs with the selected dataset and other 

experiment setups described in the previous section. For example, Figure 3 shows the per-

formance of Model 4 in terms of accuracy and loss in training and validation. This model 

is trained to classify four distinctive classes with the Natural Images-Kaggle dataset from 

[33]. We can see, from Figure 3, that Model 4 is converging quickly in training and is stable 

after about 40 epochs. The best training and validation accuracy are 99.8% and 98.1%, re-

spectively.    

     

        a)             b)  
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Figure 3. Training and validation performance of a model in the five-model neural network selection 

system. a) Accuracy of model 4, and b) loss of model 4. 

4.3. Performance of network selection algorithm 

4.3.1 Evaluation criterion 

The performance evaluation is based on the accuracy of model selection in the sys-

tem. We define correct selections as the sum of true-positive (TP) selections and the true-

negative (TN) selections, incorrect selections as the sum of false-positive (FP) selections 

and false-negative (FN) selections. The selection accuracy is the ratio of correct selections 

to the sum of correct and incorrect selections, as defined in (35). 

 

�������� =
������� ����������

������� ���������� � ��������� ����������
=

�����

�� � �� � �� � ��
  (35) 

 

We aim for a high level of accuracy of model selection for the proposed algorithm. 

However, high accuracy can sometimes be misleading. For example, in testing the selec-

tion of Model 1, we have 200 images from the dataset of Model 1 and 1000 images from 

other models’ datasets. If the proposed selection algorithm is built in a way that it always 

selects models other than Model 1 for all images, it will achieve an accuracy of 1000/1200 

= 83.33%. This is highly misleading as our algorithm is unable to select the correct model. 

Therefore, the selection accuracy alone is not able to determine if the selection algorithm 

is good or bad, but accuracy combined with precision, recall, and F1_Score can give us a 

good indication of the performance of the algorithm. For this reason, we also use selection 

precision, recall, and F1_Score in evaluating the performance of the proposed algorithm. 

Precision is the ratio of the true positive selections to the total number of positive 

selections, as shown in (36). Recall calculates the ratio of true positive selections to the 

total number of positive labels, including true positive and false negative selections, as 

defined in (37). The F1-Score is the harmonic mean of precision and recall, as expressed in 

(38). A high F1-Score means a high value for both recall and precision, with a score of 1.0 

representing the perfect precision and recall of the algorithm. 

 

��������� =  
���� �������� ����������

���� �������� ���������������� �������� ����������
=

��

�����
   (36) 

������ =  
���� �������� ����������

����� ������ ��������� ������
=  

��

��� ��
       (37) 

�1_����� = 2.0 ×
������ ×���������

����������������
            (38)  

 

4.3.2 Result analysis 

To evaluate the performance of the network selection algorithm with the experi-

mental five-model system, a total of 1200 images were randomly selected for testing. 

These images are from five different datasets that belong to the five models, with 200 im-

ages for each model except for Model 3, where 400 images are used. All images in the 

experiment have not been used in the training and validation of the system. After apply-

ing the network selection algorithm in (34), we examine whether the correct model is se-

lected or not for the images for further processing by the system. The details of the exper-

iment results are listed in Table 2. 

Table 2. Results of model selection accuracy of the proposed algorithm on the multi-model system 

Models 

Tested 

Number of 

Images Tested 

Models Selected Selection 

Accuracy Model 1 Model 2 Model 3 Model 4 Model 5 
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Model 1 200 172 4 7 5 12 0.9633 

Model 2 200 1 183 4 1 11 0.9767 

Model 3 400 6 0 382 3 9 0.9692 

Model 4 200 7 3 2 181 7 0.9767 

Model 5 200 2 4 6 0 188 0.9575 

Average       0.9687 

 

Out of a total number of 1200 test images, 200 images are from the dataset of Model 

1. The algorithm correctly selects 172 images for Model 1 and incorrectly allocates 28 im-

ages to other models. For the remaining 1000 images that are not from the dataset of Model 

1, the algorithm incorrectly selects 16 of them for Model 1 and correctly classifies 984 im-

ages as not for Model 1. This gives a TP=127, FN=28, FP=16, and TN=984 for Model 1, 

representing a selection accuracy of 96.33% by applying (35). Similarly, we can get the 

selection accuracies for other models, as listed in the last column in Table 2. Other evalu-

ation metrics – precision, recall and F1_Score, along with the accuracy of the network se-

lection algorithm for each of the models, are also calculated according to (36-38) and listed 

in Table 3. 

Table 3. Results of model selection precision, recall and F1_Score of the proposed algorithm on the 

multi-model system 

Models Tested 
Metrics of Network Selection 

Accuracy Precision Recall F1_Score 

Model 1 0.9633 0.9149 0.8600 0.8866 

Model 2 0.9767 0.9433 0.9150 0.9289 

Model 3 0.9692 0.9526 0.9550 0.9538 

Model 4 0.9767 0.9526 0.9050 0.9282 

Model 5 0.9575 0.8282 0.9400 0.8806 

Average 0.9687 0.9183 0.9150 0.9156 

 

It is noted, from Table 2, that the best selection accuracy achieved is 97.67% for Model 

2 and 4, the lowest model selection accuracy is 95.75.0% for Model 5, and the average 

accuracy of model selection of the algorithm is 96.87% in the experiment. Although the 

algorithm selects the greatest number of images from dataset of Model 5 correctly, it also 

has 39 images, the highest number among all models, that are from other models’ datasets 

is allocated to Model 5 incorrectly. This can be translated into Model 5 having the lowest 

number of TN selections. Therefore, the selection accuracy for Model 5 is the lowest 

among the five models in the experiment system.  

Amongst the five different models in the experiment, Table 3 shows that the selection 

algorithm has the lowest recall value of 86% for Model 1 and the lowest precision value 

of 82.82% for Model 5. It is obvious, in Table 2, that Model 1 has the largest number of FN 

selections (i.e., any selections other than Model 1) as indicated in the row of Model 1, while 

the column of Model 5 shows that Model 5 has the greatest number of FP selections (i.e., 

incorrectly selected Model 5 for images of other models). Therefore, Model 5 has the least 

precision value and Model 1 has the least recall value according to (36) and (37), respec-

tively. Comparing with the F1_Scores of Models 1 and 5, there is little difference between 

them; hence the proposed selection algorithm performs the same for both models.  

We also note, in Table 3, that the proposed selection algorithm has similar perfor-

mance metrics for both Models 2 and 4, which are better than that of Models 1 and 5. 
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Among all models tested in the experiment, the selection algorithm performed best for 

Model 3 as three out of the model’s four metrics are the best in comparison with metrics 

of other models. The lowest ratios of false negative selections and false positive selections 

for Model 3 contribute to the algorithm performing best in this case. 

With an average selection accuracy of 96.87% and more than 91% of average metrics 

of precision, recall and F1_Score, the FW-based network selection algorithm is perceived 

effective in choosing an appropriate model for images for further processing in a multiple 

complex neural network system on the benchmark datasets. 

 

4.4 Limitation 

According to (11.1) and (11.2), the row � and column � with the maximum element 

distances in the FW arrays are selected in building the parameters of the network selection 

algorithm. In order to understand the effectiveness of this row and column selection 

method, we have also used randomly selected FW rows and columns in the proposed 

network selection algorithm. The selection accuracies with randomly selected FW rows 

and columns varying between 72~89% are achieved. This is not significantly different with 

a completely failed design of the selection algorithm, which could have a theoretical se-

lection accuracy of 83.33% in the experiment. Although the proposed network selection 

algorithm achieves a relatively high selection accuracy by using the maximum element 

distances in selecting the FW rows and columns, other methods to select suitable repre-

sentative parameters of the FW arrays could be deployed in the algorithm and tested in 

the experiment. There is great potential for further optimisation and improvement to at-

tain higher performance metrics of accuracy, precision, and recall. 

One application of the proposed algorithm is to choose an appropriate neural net-

work model for the input image for further processing in a complex multi-model system, 

hence, to improve the efficiency and effectiveness of the system. However, if the algorithm 

selects an incorrect network model for processing the input image further, the output of 

the system will be completely wrong, and the consequence could be catastrophic. This 

may happen as our algorithm does not select models with 100% accuracy. Therefore, it is 

vital to achieve a very high selection accuracy in such a multi-model system if the selection 

algorithm is useful in improving the efficiency and effectiveness of the system. 

6. Conclusion 

This paper investigated an algorithmic linkage between the input images’ features 

and the related CNN model's excitation weights. Based on this feature-weights linkage, 

we proposed a network selection algorithm, which could choose the appropriate neural 

network from multiple models for training, verification, and further processing in a com-

plex multi-model system. With this approach, the system could avoid training every 

model when new objects need to be classified and added to the system. Therefore, by 

applying this algorithm, the system could enhance its multi-modality learning process 

with resources saving and less processing time. The proposed algorithm achieved an av-

erage selection accuracy of 96.87% in the test of a five-model neural network system. 

Although the proposed model selection algorithm could reduce the usage of compu-

tation resources and improve the system effectiveness and efficiency, further adaptation 

and development are required to achieve high selection accuracy for it to be useful in 

complex multi-model systems. Moreover, it needs, in the future, to be tested adequately 

to extract the most generalized correct patterns that match the trained models. Neverthe-

less, this paper provides a new paradigm, which would let machines be capable of devel-

oping a multi-model learning technique instead of just building a single large model for 

future complex neural network systems. 
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