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Abstract: Vegetation indexes help perform precision farming because they provide useful information
regarding moisture, nutrient content, and crop health. Primary sources of those indexes are satellites
and unmanned aerial vehicles equipped with expensive multispectral sensors. Reducing the price
of obtaining such information would increase the availability of precision farming for small farms.
Several studies have proposed deep neural network methods to estimate the indexes from RGB
color images. However, those methods report relatively large errors for mature plants, when highly
non-linear relationships of images and vegetation indexes arise. One could apply multilayer random
forest-based models (Deep Forests) to solve this problem, but the discriminative power of such models
is limited: they cannot catch complex dependencies between image features. In this paper, we propose
a method that combines ideas of deep forests, random forests of kernel trees, and global pruning
of random forests to tackle the problem. As a result, the method considers the properties of objects
with a complex structure: the presence of relationships between groups of features, displacement,
and scaling of objects. The experimental results show the proposed method outperforms neural
network-based solutions on several datasets.
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1. Introduction

Vegetation indexes help estimate many crucial agricultural indicators such as moisture,
nutrient content, and crop health. One of the most frequently used vegetation indexes
is NDVI (normalized difference vegetation index). Primary sources of those indexes are
satellites and unmanned aerial vehicles (UAV) equipped with expensive multispectral
sensors. Reducing the price of obtaining such information would increase the availability
of precision farming for small farms. Several studies have proposed deep neural network
methods to estimate the indexes from RGB color images. However, as it is pointed out in
[1] the framework provides accurate results only for immature plants, and the reason is
highly non-linear relationship between RGB colors and vegetation for senescent plants.
Consequently, the "high-frequency functions" phenomenon comes into effect [2].

In this paper, we propose to utilize a Deep Forest to deal with that issue because this
approach does not use smooth models, but at the same time, it provides competitive results
on image processing [3]. Deep forest uses a cascade structure to perform layer-by-layer
processing of raw features. However, several studies report that Deep Forest has limited
ability to catch dependencies between features, which can lead to poor performance in
some cases [4]. Besides, it uses Extremely Random Forests to control overfitting, which in
practice can lead to unstable results. We modified Deep Forest to overcome those issues as
follows:

1. The use of random forests of decision trees with multivariate non-linear splits as
the basic classification algorithm allows considering the relationships between the
features of the analyzed objects, reducing the number of data processing layers and,
consequently, improving performance [5,6].

2. The use of Extremely Random Forests is abandoned. Instead, we apply pruning from
[7], which makes it possible to increase both the accuracy and the stability of the
method.
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This paper is structured as follows. Section 2 provides an overview of vegetation index
detection studies, as well as various modifications of the Deep Forest model. Section 3
presents description of the proposed Deep Kernel Forest. Besides, it describes a modification
of Kernel Forests to solve regression problems. Section 3 presents datasets used to perform
experiments, and Section 4 provides conclusion and future work.

2. Related Work

Visual analysis of land is the primary tool of precision agriculture. For example,
vegetation indices obtained by the analysis of multispectral images help monitor crop
health. Paper [8] proposes a remote sensing recognition method based on a convolutional
neural network. They combine 4 channels (red, green, blue, and near-infrared) to reveal
the changing characteristics of the landslide. Finally, a convolutional neural network was
applied to solve the problem. The experiments showed that the method is more accurate
than traditional methods. The high cost of multispectral cameras led researchers to focus on
the analysis of pure RGB color images. The paper [1] uses a convolutional neural network
to reveal the non-linear relationship between a color land image and related vegetation
indexes. That network obtains vegetation indexes of various crops. Experiment results show
that the obtained values agree with ground-measured indexes. However, they also revealed
that the method provides accurate outputs only until appearance of senescence. Paper [9]
shows a method to estimate vegetation indexes with a cheap RGBN (RGB + near infrared)
camera and machine learning algorithms. Experiment results provide a comparison of the
results obtained with a multispectral camera and the predictions of the RGBN camera-based
solution to analyze corns under different nitrogen and water treatments. They show that
the proposed approach achieved high performance at estimating vegetation indexes with
the machine learning model. Study [10] proposes a method to process high-resolution
drone images consisting of RGB and near-infrared bands to detect vegetation indexes.
The experimental results provide insight into applying drones and neural networks as a
solution for precision agriculture.

All the studies above utilize neural networks to estimate vegetation levels. However,
as was pointed out above the framework provides accurate results only for immature
plants. We believe the reason is that the "high-frequency functions" phenomenon comes
into effect [2] and Deep Forest (DF) models could overcome that issue. Deep Forest is a
multilayer cascade model based on non-differentiable modules in contrast to deep neural
networks. Besides, those models require a small amount of training data due to a small
number of parameters. Paper [11] presents a detailed analysis that shows deep forests have
sufficient model complexity with enough depth, and the cascaded structure boosts the
feature representations layer by layer instead of the predictions. Many experiments show
that Deep Forest has comparable performance to deep neural networks; therefore, it has
been applied to solve many real-world data and text mining problems. Primary efforts in
developing this approach focus on tuning it to solve various machine learning settings.
For example, study [12] proposes a deep forest algorithm for multi-instance learning. The
experiments show this algorithm achieves competitive results. Yang et al. [13] present a
multi-label learning deep forest algorithm, which employed measure-aware feature re-use
and layer growth to solve a multi-label learning problem. Paper [14] presents an adaptive
weighted Deep forest. The training procedure of this forest assigns weights to each training
sample at each level of the model just like the AdaBoost approach.

Although Deep Forests show competitive results on many problems, there is still room
for improvements related to considering various feature interactions.

For example, Chen et al. argue that the prediction-based feature representation of Deep
Forest is a critical deficiency because the predicted class probabilities deliver very limited
information [4]. They present a deep forest model that utilizes high-order interactions of
input features to generate more informative and diverse feature representations [4]. They
created a generalized version of Random Intersection Trees to reveal stable high-order
relationships and apply activated linear combinations to transform them into hierarchical
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distributed representations. These relationship-based representations obviate the need to
store random forests in the front layers, thus greatly improving computational efficiency.
The provided experiment results show that the proposed forest achieves competitive
classification scores with significantly reduced time and memory costs.

Another way to catch those feature interactions is to use more complex decision splits
in ensemble trees. In this study, we replaced standard Random forests in the layers with
more complex Kernel forests to do so [6].

3. Kernel Forest-based Methods
3.1. Kernel Forest

Kernel Forest is a Random Forest built from trees with kernel decision splitters [6]. The
method to train such trees at the top level follows a general top-down induction procedure;
however, it produces quasi-optimal oblique and kernel splits at the decision stump level.
At each stump, the algorithm greedily finds a quasi-optimal distribution of classes to
subtrees (in terms of impurity minimization) and trains this stump as a binary classifier
via optimization of an SVM-like loss function with a margin re-scaling approach [15]. This
approach helps optimize the margin between subtree data and arbitrary impurity criteria
(Gini impurity, Information gain, etc.).

For each decision stump, parameters of the decision surface are obtained with the
following optimization problem:

a∗ = arg max
a

−1
2

m

∑
i=1

m

∑
j=1

aiajK(xi, xj) +
m

∑
i=1

ai, (1)

s.t.
m

∑
i=1

ai
L(hi,−hi)

≤ C
m

(2)

where xi is features of the object with index i, hi ∈ {−1,+1} defines the target subtree for
the sample with index i, aij is the weight of the training sample i (non-zero for the support
vectors), L(hi,−hi) reflects the growth of the impurity criterion in case of miss-classification,
K(xi, xj) : Rf ×Rf → R is a kernel function for objects with the feature-set size f , C is the
regularization term, and m is the size of the training dataset.

3.2. Kernel Forest Regressor

Many practical applications in agriculture such as vegetation index detection require
solving regression problems. Regressors map object features to some target real values
X → R. In this study, we propose a way how to modify the classification method from
[6] (Kernel Forest) to solve those problems. As in the original Kernel Forest, the method
utilizes standard top-down induction of a decision tree, and at each step of this induction,
it performs training of a kernel-based decision stump.

In a regression tree, the decision stump assigns some real values R1 and R2 to the left
and right subtrees. The Kernel Forest requires those assignments to be done before actual
training of the decision split. Therefore, we need to pick up those values in such a way as
to minimize the average distance between all the training samples lying at each subtree. In
this study, we utilized the K-means clustering algorithm with K = 2 to find those values.
K-Means algorithm clusters samples by separating them into groups of equal variance,
minimizing within-cluster sum-of-squares, i.e. it fits out goal. Finally, we use the found
cluster centroids as values of R1 and R2.

Another feature of the method [6] is that it scales the training sample weights accord-
ingly to their effect on the impurity criterion (Gini impurity, information gain, etc.). In case
of regression, we use the mean square distance from all the training samples of a particular
subtree to the values assigned to this subtree instead of impurity:
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Figure 1. Training of the input layer of the proposed algorithm (Deep Kernel Forest, DKF)

l(R, y) = ||R− y||22 (3)

3.3. Deep Kernel Forest

The method is a modification of the Deep Forest, in which data is processed sequen-
tially on several layers. The input layer has the following structure (Fig. 1). In that layer, the
multi-grained scanning [3] generates a set of objects based on each sample from the training
set and all those generated objects are labeled with the class of the original sample. These
objects are used to train a random kernel forest [6], then the trained forest is strengthened
and pruned with the method from [7].

The basic idea of that strengthening procedure is to replace the original class empirical
probabilities stored in all tree leaves of a pre-trained forest with the synthetic ones generated
by explicitly minimizing a global loss function, according to the averaging rule of random
forests. Suppose the forest has T trees with Γ leaves on each tree. Let Φ : Rf → {0, 1}TΓ be
a function that for any sample x returns the binary vector, whose elements are 1 if x goes to
the corresponding decision tree leaf and 0 otherwise.

Φ(x) = (φ1(x), φ2(x), . . . , φTΓ(x)) (4)

Matrix W contains the corresponding class weight for all the decision tree leaves the
ensemble.

W = (w1, w2, . . . , wTΓ) (5)

Ren with colleagues define the refined classifier as the following linear function [7]:

y = W∗Φ(x) (6)
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Figure 2. Difference in the feature generation in Deep Forest (left) and Deep Kernel Forest (right)

where W∗ can be found with the following SVM-like optimization on a training set
with size m.

W∗ = arg min
W

1
2
||W||2F +

C
m

m

∑
i=1

l(yi, ŷi),

s.t.yi = WΦ(x), ∀i ∈ [1, m],

(7)

where C is a regularization term, and l(yi, ŷi) is a loss function.
As a result, the complementary information between trees is exploited, and the fitting

power is significantly improved. However, the global optimization in training might cause
over-fitting for many tree leaves. To tackle this Ren proposes a global pruning method that
alternates between refining all tree leaves and merging the insignificant leaves to reduce
the risk of over-fitting and model size. The method is to join two adjacent leaves if the
norm of their leaf vectors is close to zero.

After the pruning procedure, the random kernel forest is used to form embeddings of
processed samples for the next layer. These embeddings represent the generated synthetic
class probabilities from trees of the kernel forest. The embeddings include the original
feature features as well as the empirical probability vectors returned by the refined forest
trees. In practice, as in the original study [3] we utilize cross-validation to estimate the
class probabilities because it reduces the bias of the obtained values. Fig. 2 highlights
difference in the feature generation procedure in Deep Forest and Deep Kernel Forest. Deep
Kernel Forest allow obtaining less fragmented regions in the original feature-set. The global
refinement procedure leads to forming more helpful embeddings for the next layer.

The next layer has the same structure, except it does not perform multi-grained
scanning. The following layers can be added to the model until accuracy scores on cross
validation keep growing.

4. Datasets
4.1. Standard image recognition datasets

First, we conducted experiments on three standard UCI multi-class datasets, and the
CIFAR-10 image dataset. We used USPS, Letter, and MNIST from the UCI [16]. They
are devoted to image recognition problems. For example, the MNIST and USPS datasets
contain handwritten images of digits, while the Letter dataset contains Latin letters. The
CIFAR-10 dataset is also related to image recognition [17]. It contains 32 by 32 colored
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images of 10 classes (airplane, horse, bird, etc.) with eight gray levels. We apply a simple
preprocessing technique to all the image recognition datasets. Namely, we perform feature-
level normalization of the data with "MinMaxScaler" and "Normalize" tools from Scikit-
Learn [18]. No other complex processing is used.

4.2. RGB-NDVI prediction dataset

We collected a dataset to evaluate RGB to NDVI models as follows. Generally, we
have stuck the procedure described in [19]. First, we obtained several multispectral satellite
images of rural areas in Europe from April to October 2018. We got the high-resolution
multispectral raster data (RGB and Infrared) of the Sentinel-2 satellite from the Copernicus
web platform [20]. Then we applied QGIS Desktop software tool to evaluate NDVI based
on red and infrared bands. With those bands one can use a simple expression to evaluate
that index:

NDVI =
I − R
I + R

, (8)

where I is infrared level and R is red level.
Finally, we generated RGB and NDVI images with size 232× 232, then we store RGB

images as the sample features and NDVI average values as the labels. The size of the
obtained dataset is 1000 samples for training and 1000 for validation. We also divided all
the dataset into two pieces: the first one covers the data range from April to June (Spring),
and the second one covers the range from July to October (Summer/Autumn). Here we
utilize a naive presumption that the first subset should contain mostly images of immature
plants, while the second one contains images of mature ones. Therefore, accuracy scores
would be different for those subsets. As for the classification datasets, we did not perform
any complex feature pre-processing because the primary goal of this study is to assess
helpfulness of the proposed algorithm modifications rather than achieving best results on
particular datasets.

5. Experiment results

In all the experiments we used Deep Forests and Kernel Forests with three layers. We
applied a commonly recognized grid search with cross-validation technique to estimate
the ensembles hyperparameters: decision stump regularization {100, 1000, 3000, 5000},
maximum tree depth {4, 5, 6, 7, 8}, the proportion of features to be considered at each
stump {0.08, 0.1, 0.2}, pruning (up to 0.9) ratio, kernel parameters (gamma = {10, 100} for
the Gaussian kernel, size of the sliding window [8− 128], and size of the sliding window
step [2− 32] depending on a dataset. We applied the grid search on sampled subsets of the
original datasets because training time of DF and KDF is really long. Finally, we used the
obtained hyperparameter values to perform tests on full datasets.

In the first experiment, we assessed the classification quality on commonly recognized
datasets. We tested the original Deep Forest (gcForest), Random Kernel Forest (a forest with
multivariate decision trees), the Deep Kernel Forest, in which basic classifiers are replaced
by Random Kernel Forests, and modifications of the Deep Kernel Forest with pruning
and sliding window. We used accuracy to evaluate the classification quality because most
studies on UCI and Cifar-10 datasets utilize this score, so we can stay comparable with
these results.
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Table 1. Classification scores of the tested methods (accuracy).

Dataset Deep Forest Kernel Forest Deep Kernel
Forest

Deep Kernel
Forest + prune

Slide window +
Deep Kernel

Forest + prune

MNIST 99.2 99.1 98.0 99.2 99.4
USPS 95.9 95.8 93.5 97.8 97.9
Letter 96.3 97.4 97.2 98.5 98.5

Cifar-10 61.8 58.0 60.3 62.9 63.2

Table 1 shows that further complexification of the basic estimators in the Deep Forest
without any additional regularization does not lead to any significant improvements in
analysis accuracy. We believe that means the complexity of Deep Forest is pretty high, and
further increasing that complexity leads to over-fitting. On the other hand, adding a simple
tree refinement and pruning [7] leads to notable accuracy growth. The feature and sample
re-generation with the sliding window approach [3] leads to significant improvement for
Cifar-10 only. We believe this is because images from this dataset have higher resolution
and provide more diversity in terms of represented objects, which means the image scaling
and transforming can have much effect on classification accuracy.

Table 2. MSE scores of the NDVI prediction.

Interval Deep Forest Deep Kernel Forest + prune AlexNet

Spring 0.006 0.004 0.006
Summer/Autumn 0.007 0.004 0.006

All 0.007 0.004 0.007

In the second experiment we assessed the quality of NDVI prediction with the Deep
Forest, Deep Kernel Forest (with pruing and sliding window), and AlexNet neural network
[17]. We considered AlexNet in this experiment because it is widely used to predict NDVI
in other studies [1]. In the experiments we evaluated mean squared error (MSE) of the
predictions. Results from Table 2 show that Deep Kernel Forest can predict the NDVI
level more accurately than Deep Forest or AlexNet models. In contrast to [1] we did not
detect any dramatic difference for NDVI evaluation in "Spring" and "Summer/Autumn"
subsets with AlexNet. We believe this is because first of all, the naive division we used
to separate immature plats from senecent ones. Besides, in [1] they use UAV images with
larger scale, when "high-frequency functions" effects are more observable. The obtained
NDVI prediction error is pretty low, although we did not perform any complex image
pre-processing. Therefore, the proposed modified model can be applied to assess NDVI in
practical software applications for precise farming.

6. Discussion

The experiments show that the proposed modifications improve quality for both
classification and regression tasks. On the one hand, accurate and informative feature
representation generation is a cornerstone of cascade models such as Deep Forest. Each
layer of Deep Forest for each data sample encodes a feature subspace related to this sample.
Kernel Forest detects more homogeneous subspaces than Random Forest and considers
complex feature relationships, while Ren’s refinement approach helps directly improve
those feature representations via optimization of a global loss [7]. On the other hand,
algorithms to generate multivariate tree ensembles have significantly lower training speed
[6], which remains an open problem.
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7. Conclusions

The paper presents a modified Deep Forest that combines the Kernel Forest model
and random forest refinement technique. The experiments on commonly recognized image
classification datasets show the proposed method significantly outperform the original
Deep Forest. Tests on the RGB-NDVI datasets confirm that the proposed method forms
accurate predictions for immature and senescent plants. We believe the proposed combina-
tion of multi-layer Deep forests and refined Kernel Forests can be considered as a small step
towards general-purpose multi-layer models to process non-smooth relationships in data.

The remaining issue of the Deep Kernel Forests is that the multi-grained scanning
procedure leads to an exponential growth of the training dataset. In the future, we will try
to develop an online modification of the proposed method to tackle that problem.

Funding: The study was financially supported by the Ministry of Education and Science of the
Russian Federation (agreement no. 075-15-2020-805 from 2 October 2020).

Data Availability Statement: The datasets generated and analysed during the current study are
available in the RGB-NDVI repository at http://keen.isa.ru/ndvi. The Kernel Deep Forest imple-
mentation used in the current sudy is available at https://github.com/masterdoors/kernel_trees/
tree/master/sources/cascade.
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