

Secure Approximate String Matching using

Homomorphic Encryption for Privacy-preserving

Record Linkage

Shahidul Islam Khan

Department of Computer Science &

Engineering (CSE)

International Islamic University

Chittagong

Chittagong, Bangladesh
nayeemkh@gmail.com

Rakib Hosen

Department of Computer Science &

Engineering (CSE)

International Islamic University

Chittagong

Chittagong, Bangladesh
rkbjr11@gmail.com

Iqbal Hossain

Department of Computer Science &

Engineering (CSE)

International Islamic University

Chittagong

Chittagong, Bangladesh
iqbalhrasel57@gmail.com

Abstract—String matching is an important part in many

real world applications. It must robust against variations in

string field. In record linkage for two different datasets

matching should detect two patients in common in spite of

small variations. But it becomes difficult in case of confidential

data because sometimes data sharing between organizations

become restricted for privacy purposes. Several techniques

have been proposed on privacy-preserving approximate string

matching such as Secure Hash Encoding etc. Relative to other

techniques for approximate string matching Homomorphic

encryption is very new.

In this paper we have proposed a Homomorphic

Encryption based approximate string matching technique for

matching multiple attributes. There is no solution currently

available for multiple attributes matching using Homomorphic

encryption. We have proposed two different methods for

multiple attributes matching. Compare to other existing

approaches our proposed method offers security guarantees

and greater matching accuracy.

Keywords—Homomorphic Encryption, Privacy-preserving

Record Linkage, approximate string matching

I. INTRODUCTION

Record linkage is the task of finding the records in
dataset that refers to the same entity across different data
sources. Privacy-preserving record linkage is a linkage that
reveals the common characteristics of patient present in both
datasets. Linking records between patient datasets would
help us to better understanding of disease risks and treatment
effects. Existing record linkage can be classified in two
categories exact matching and approximate matching. In
exact matching fixed set of rules is defined to identify
records are matching or not. But the real world data is noisy
and contain variations of string, so exact string matching is
less effective in real world data. Errors can generate from
many sources due to typing mistakes and other causes.
That’s why approximate string matching has become one of
the important tasks in privacy-preserving record linkage.
Several techniques have proposed on approximate string.
Each of them solved different kind of problems. Exact
matching between each record is less effective when we
consider real world data, so in this thesis we are going to
propose Homomorphic encryption technique for approximate
string matching.

II. BACKGROUND STUDY

A. Approximate Matching

A common and widely used approach for approximate
string matching in record linkage where strings are
decomposed into sets of n-grams and then a set similarity
metric applied between two strings. If n = 2 we call it
bigrams. In our proposed method we have used bigram
decomposition. We have used _ as a special character to
create special bigrams representing the beginning and the
end of a string.

The set of bigrams of a x-character long string S is
defined as

BIGRAMS(S) = {b(1)b(2),…,b(x)b(x+1)}

For example,

 BIGRAMS(ALGORITHM)= {_A, AL, LG, GO, OR, RI,
IT, TH, HM, M_}

B. Set Similarity

Given two sets p, q. The similarity of two strings can be
defined as

For an example let p = BIGRAMS(JAMAL) and q =
BIGRAMS(KAMAL)

So we have to set a threshold t then we are interested in

computing the set similarity of two strings and check if

approximate matching is possible or not. More specifically

we are interested in the given function:

C. Secure Approximate Matching

Record linkage is defined between two parties PA and PB.
Their main goal is to identify all records that referring to the
same entity securely. PA and PB hold a list of names
respectively.

A = [a1,…,an] and B = [b1,…,bn]

For each ai ϵ A and bj ϵ B

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2022 doi:10.20944/preprints202210.0064.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202210.0064.v1
http://creativecommons.org/licenses/by/4.0/

Let ai ← BIGRAMS(ai), bj ← BIGRAMS(bj)

Let dij ← ThresDice(ai, bj, t)

If dij = 1 then it’s means that they are same.

III. RELATED WORK

Secure hash encoding [18] was the first technique for
privacy-preserving record linkage. It is one way hash
encoding function where a string converted into a hash value.
It is converted into a hash value such that it is nearly
impossible for current technology to know the original string
value. Most popular algorithms for secure hashing are MD5,
SHA-1, SHA-2. It can be applied for exact matching.

Bloom Filter [16] is the most popular methods for
approximate string matching. In this method party runs
strings through a type of locality-preserving hash function
where similar strings produce similar hashes. It can be
applied for multiple attributes matching. Relative to other
methods it is fast but does not provide any formal security
guarantees.

Damgard, Geisler, Kroigard proposed a Homomorphic
encryption based technique called DGK Cryptosystem for
secure integer comparison [6]. It provides formal security
guarantees but it is not applicable for string comparison.

Aleksander Essex extended the DGK Cryptosystem for
secure string comparison [2]. But it is applicable for only
single attribute matching.

IV. DEFINITIONS AND NOTATIONS

Definition 1 (Quadratic Residuosity). An integer x is a
quadratic residuo modulo p if there exists some integer y
such that y

2
= x mod p, where x ϵ

It can be defined as follows:

Definition 2 (Threshold Function). For a threshold t ϵ Z
+

 let

τt be a threshold function which can be defined as follows:

Definition 3 (d-approximation of τt). Let s be a prime and f

be an offset where 0 < f < (s + 1) [2] such that

 For 0 ≤ x ≤ d

Then we can say that the quadratic residuosity function QRs

d-approximates threshold function τt at offset f.

TABLE 1

Example: 6-approximation of τ2(x) in Z59 at 23

Definition 4 (Minimum Set Intersection Cardinality).

Minimum set intersection cardinality is the minimum

matched required to exceed the given threshold.

For example if two strings are a = “NUMBER” b =

“DIGIT”

Len(BIGRAMS(a)) = 7, Len(BIGRAMS(b)) = 6, if the

given threshold is 0.9 the MSIC will be = 6, because if the

set-intersection of the two inputs less than 6 then their

threshold value will be less than 0.9

V. ENCRYPTION SCHEME

A. Key Generation

For a given security parameter select two x-bit primes p

and q and select two y-bit primes u, v. x and y bit are chosen

such that prime factorization is impossible. Then compute n

= pq such that su | (p-1) and sv | (q-1). Let Zn
*
 denote the set

of relative primes of n and let Gsub denote the unique

subgroup of Zn
*

which has order sv in Zq
*

and su in Zp
*
. Let

Guv is the unique subgroup which has order uv in Zn
*
. For

simplicity let assumes that g is the generator of Gsub and h is

the generator of Guv. We have to select a prime s and offset f

such that

So our public key is P-key = (n, g, h, d, y, d, f, s, t),

where d is the domain bound

Let μ = (uv)
-1

 then our private key is S-key = uvμ

B. Encryption

For a message m in the range 0 ≤ m ≤ d select a uniform
random element r from [1,…,2

y-1
] and compute

 C =

So C is the computed ciphertext for a message. The
Encryption function will take message m and P-key as a
parameter and output ciphertext C.

C. Decryption

For the decryption of the ciphertext C using our private

key S-key compute

Cuvµ = (gm)uvµ (hr)uvµ

 = (gm)uv(uv)-1

 = gm

We have to compute m by applying discrete logarithm

logs(g
m
) then QRs(m) is our final output

VI. METHODOLOGY

A. Multiple Attributes Matching (MAM1)

For single attribute matching proposed solution [2] by

Aleksander Essex works fine for smaller string. the group

order s increase rapidly if we increase the Maximum set

size. So it will take more time and computation will be

difficult. For example for string size 20 the group order s is

148139 and the offset is 74050. These values can be

computed by brute force method.

x 0 1 2 3 4 5 6

QR59(x + 23) 0 0 1 1 1 1 1

 0 0 1 1 1 1 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2022 doi:10.20944/preprints202210.0064.v1

https://doi.org/10.20944/preprints202210.0064.v1

 To match single attributes our job is very simple. But it is

challenging when we have to match multiple attributes

because string length cannot exceeds the certain limit.

Fig 1. Basic work flow

We have proposed two different methods for multiple

attributes matching. The first solution is simple, we have

concatenated all attributes together. The functionality is

defined as follows:

Multiple Attributes Matching I:

 Public Parameters: Public Key

 Private Inputs: Party A holds a list of strings A =

[a1, a2,…,an] and Party B holds a list of strings B =

[b1, b2,…, bn]

 Functionality:

1) Party A and Party B pre-process their own

datasets independently and each party

concatenates their attributes independently.

2) For each ai ϵ A, Party A computes

Ciphertext Ci ← EncryptedBigrams(ai) and

send each Ciphertext Ci to Party B

3) For each Ciphertext Ci and for each bj ϵ B

Party B computes Set Intersection

Cardinality. Let’s denotes the function as

SIC(plaintext, ciphertext). So Party B

computes set intersection cardinality for Ci

and bj.

rij ← SIC(bj, Ci)

4) For each rij Party A and Party B privately

computes the threshold dice coefficient dij

5) For each dij Party B send dij and i to party

A.

 Output: If Decrypt(dij) = 1, then Party A outputs

i’th entry

So this is the basic functionality of Multiple Attributes

Matching I (MAM1). The main limitation of this approach is

that the concatenated string length should be smaller

otherwise it will be more complex. So this is one of the

solution for Multiple Attributes Matching.

B. Multiple Attributes Matching II

As we stated earlier previous method (MAM1) have

some limitations. In case of two same name, same age but

different gender it can show matched in case of approximate

matching. For example, if a patient is shahin, age 27 and

gender Male in dataset A and other patient name shahin, age

27 and gender Female exists in dataset B. After

concatenation it will be SHAHINBAM in dataset A and

SHAHINBAF in dataset B. Surely it will match. But in real

life these two patients are not same so to resolve this problem

we have proposed another method for Multiple Attributes

Matching. The main procedure of this method is given

below:

1) Sort attributes according to their priority i.e.

more important attribute comes earlier than less

important attributes.

2) Set threshold for each attributes. As priority of

each attributes are not same so the threshold for

each attributes may not be the same. So we have

to set threshold for each attributes.

3) If match possible for each attributes for a patient

then record it as match.

The functionality of this method is defined as follows:

Multiple Attributes Matching II:

 Public Parameters: Public Key

 Private Inputs: Party A holds a list of strings A =

[a1, a2,…,an] and Party B holds a list of strings B =

[b1, b2,…, bn]

 Functionality:

1) Party A and Party B pre-process their own

datasets independently.

2) Both Party sort their attributes according to

the same rules.

3) For each attributes and for each ai ϵ A, Party

A computes Ciphertext Ci ←

EncryptedBigrams(ai) and send each

Ciphertext Ci to Party B.

4) For each attributes and for each Ciphertext

Ci and for each bj ϵ B of same attribute

Party B computes Set Intersection

Cardinality. Let’s denotes the function as

SIC(plaintext, ciphertext). So Party B

computes set intersection cardinality for Ci

and bj.

rij ← SIC(bj, Ci)

5) For each rij Party A and Party B privately

computes the threshold dice coefficient dij

6) For each dij Party B send dij and i to party

A.

7) If Decrypt(dij) ≠ 1 then stop the process

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2022 doi:10.20944/preprints202210.0064.v1

https://doi.org/10.20944/preprints202210.0064.v1

 Output: If Decrypt(dij) = 1, for all attribute then

Party A outputs i’th entry

So this is the basic functionality of Mulitple Attributes

Matching II (MAM2) compare to the first proposed method

it is more complex and it will take more time but it is more

efficient than first proposed method.

VII. IMPLEMENTATION AND RESULT

A. Implementation

We have implemented our proposed algorithm in Python

3 and we have used the python gmpy2 library for prime

generation, find generator and modular exponentiation. We

have pre-computed some values for faster encryption and

decryption. We implemented our algorithm in an HP brand

computer, which has Intel Core i3 2.60 GHz processor and

4GM RAM runs on Windows 10. The program processed

1000 patient names in an average of 11 minutes to generated

262MB ciphertext data and homomorphic matching

generated 202MB ciphertext data.

B. Result

We have implemented single attribute matching to
compare our proposed method.

 Unique Match for 100

Records

 0.8 0.9 1.0

Single Attribute Matching 38 26 20

Multiple Attributes Matching I 32 11 10

Multiple Attributes Matching II 19 10 10

TABLE 2: Number Unique Match for three different
thresholds

TABLE 2 shows the number of unique match of three

proposed method for three different thresholds. From the

Table 4.1 we can see that number match increases if we

decreases threshold value. For the same threshold the

number of mach for MAM2 is less than MAM1.

C. Matching Accuracy

Unlike bloom filter encoding there is no chance of collision.

As we implemented our algorithm using threshold based

comparison there are no matching errors. Because its

implements its own functionality.

Therefore we are concerned only how often distinct records

in dataset A trigger a match. That means we are interested

only on the rate of false positives.

For each ai ϵ PartyA compared each bj ϵ PartyB, if ai was

matched with bj then a FP recorded.

Method Accuracy Precision Recall F1 Score

SAM 0.98 0.92 1.0 0.95

MAM1 0.97 0.78 1.0 0.87

MAM2 0.99 0.91 1.0 0.95

TABLE 3: Matching accuracy of each method

False Positive Rate:

Fig 2. Comparison between MAM1 and MAM2

 Fig 2. describes the comparison of False Positive

Rate of our two proposed method (MAM1 and MAM2) we

can see that MAM2 shows better performance compare to

MAM1

Fig 3. Comparison with 1000-bit bloom filter

Fig 3 shows the comparison of our proposed method with

1000-bit Bloom Filter. So we can see that the False Positive

Rate is almost same when threshold is greater than or equal

0.9 but if we decrease the threshold value then the False

Positive Rate of Bloom Filter increases compare to our

proposed method. So our proposed method shows better

performance compare to Bloom Filter.

D. Running Time Analysis

TABLE 4: Running time of each proposed method

From Table 4 We can see that MAM2 takes more time than

MAM1 but the accuracy for threshold 0.9 for MAM2 is

better than MAM1. MAM2 will show better performance

for threshold less than 0.9. Times are given in second.

VIII. LIMITATIONS

In this paper we have extended the DGK Cryptosystem [6]

for secure approximate string matching. Relative to other

Method For 100 data Accuracy For

Threshold 0.9
0.8 0.9

MAM1 86.5s 75.7s 0.97

MAM2 163.42s 153.47s 0.99

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2022 doi:10.20944/preprints202210.0064.v1

https://doi.org/10.20944/preprints202210.0064.v1

methods the False Positive Rate of our method is very low,

but we have some limitations in this method

Larger String Length: In extended version of DGK

Cryptosystem
[2]

 the group order s increases rapidly if we

increase the string length. We have allowed maximum 20

characters in string field. But in real world data string can be

very large. So it is one of the challenging tasks in this

method.

Reducing Encryption Time: One of the most popular

method for approximate string matching is Bloom Filter,

which is very fast. Though our proposed method offers more

formal security guarantees and greater matching accuracy

compare to Bloom Filter Encoding our proposed method is

not fast enough. So it is another challenging task.

IX. CONCLUSION

In the result section we have seen that there is great

difference between our method and Bloom Filter in case of

False Positive Rate, which means that our proposed method

has greater matching accuracy. We just applied multiple

attributes matching on three attributes for simplicity, but we

can apply our proposed method Multiple Attributes

Matching II (MAM2) for greater than three attributes and

we can set different threshold value for each attribute.

So we think our proposed method can be applied on those

areas where data security is very important and where two

organizations do not want to share their data directly. It can

be applied to build national data warehouse linking different

datasets securely. We hope that it will contribute in the field

secure approximate string matching.

REFERENCES

[1] Shahidul Islam Khan; Abu Sayed Md. Latiful Hoque:

“Health Data Integration with secured record linkage”, 3rd

International Conference on Networking, Systems and

Security (NSysS 2017);

[2] Aleksander Essex : “Secure Approximate String Matching

for Privacy-preserving Record Linkage” IEEE transactions on

information forensics and security.

[3] Boris P. Hejblum, Griffin M. Weber: “Probabilistic record

linkage of de-identified research datasets with discrepancies

using diagnosis codes.”

[4] Emily C. O’Brien, Ana Maria Rodriguez, Hye-Chung Kum,

Laura E. Schanberg, Marcy Fitz-Randoph, Sean M. O’Brien,

Soko Setoguchi: “Patient perspectives on the linkage of health

data for research: Insights from an online community

questionnaire” International Journal of Medical Informatics.

[5] D. Vatsalan P, Christen, and V.S. Verykios, “A taxonomy

of privacy-preserving record linkage techniques.” Information

Systems, vol. 38, no. 6, pp. 946-969, 2013

[6] I.Damgard, M. Geisler, and M. Kroigaard, “Efficient and

secure comparison for online auctions,” in Australasian

Conference on Information Security and Privacy. Springer,

2007, pp. 416-430

[7] https://www.ncsbe.gov/data-stats/other-election-related-

data

[8] P. Hall, G. Dowling, “Approximate string matching ACM

computing surveys” 12 – (4) (1980) 381-402

[9] P.Jokinen, J. Tarhio, E. Ukkonent, “A coparison of

approximate string matching algorithms”, Software practice

and experience 26 (12) 1439 – 1458

[10] D.Vatsalan and P. Christen, “Scalable privacy-preserving

record linkage for multiple databases” in Proceedings of the

23rd ACM International Conference on Conference on

Information and Knowledge Management, ACM, 2014, pp.

1795-1798

[11] J.H. Cheon, M. Kim, and M. Lauter, “Homomorphic

computation of edit distance,” in international conference on

financial cryptography and Data Security. Springer, 2015, pp.

194-212.

[12] https://crypto.stanford.edu/pbc/notes/numbertheory/

[13] Handbook of Applied Cryptography:

http://cacr.uwaterloo.ca/hac/

[14] Danusha Vatsalan, Peter Christen, “An Iterative Two-Party

protocol for scalable privacy-preserving record linkage,”

[15] Fully Homomorphic Encryption: Cryptography’s Holy Grail

[16] B.H. Bloom. “Space/time trade-offs in hashing encoding with

allowable errors”, Communication of the ACM, vol. 13. No.

7.pp. 422-426

[17] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data

banks and privacy homomorphisms.

[18] L. Dusserre, C. Quantin, H. Bouzelat, “A one way public key

cryptosystem for the linkage of nominal files” in

epidemiological studies, Medinfo 8 (1995) 644–647.

[19] A. Yao, “How to generate and exchange secrets”, 27th Annual

Symposium on Foundations of Computer Science, IEEE,

1986, pp. 162–167.

[20] A. Karakasidis, V.S. Verykios, P. Christen, “Fake injection

strategies for private phonetic matching,” International

Workshop on Data Privacy Management, Leuven, Belgium,

2011

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2022 doi:10.20944/preprints202210.0064.v1

https://www.ncsbe.gov/data-stats/other-election-related-data
https://www.ncsbe.gov/data-stats/other-election-related-data
https://crypto.stanford.edu/pbc/notes/numbertheory/
http://cacr.uwaterloo.ca/hac/
https://doi.org/10.20944/preprints202210.0064.v1

