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Abstract—String matching is an important part in many 

real world applications. It must robust against variations in 

string field. In record linkage for two different datasets 

matching should detect two patients in common in spite of 

small variations. But it becomes difficult in case of confidential 

data because sometimes data sharing between organizations 

become restricted for privacy purposes. Several techniques 

have been proposed on privacy-preserving approximate string 

matching such as Secure Hash Encoding etc. Relative to other 

techniques for approximate string matching Homomorphic 

encryption is very new. 

In this paper we have proposed a Homomorphic 

Encryption based approximate string matching technique for 

matching multiple attributes. There is no solution currently 

available for multiple attributes matching using Homomorphic 

encryption. We have proposed two different methods for 

multiple attributes matching. Compare to other existing 

approaches our proposed method offers security guarantees 

and greater matching accuracy. 

Keywords—Homomorphic Encryption, Privacy-preserving 

Record Linkage, approximate string matching 

I. INTRODUCTION 

Record linkage is the task of finding the records in 
dataset that refers to the same entity across different data 
sources. Privacy-preserving record linkage is a linkage that 
reveals the common characteristics of patient present in both 
datasets. Linking records between patient datasets would 
help us to better understanding of disease risks and treatment 
effects. Existing record linkage can be classified in two 
categories exact matching and approximate matching. In 
exact matching fixed set of rules is defined to identify 
records are matching or not. But the real world data is noisy 
and contain variations of string, so exact string matching is 
less effective in real world data. Errors can generate from 
many sources due to typing mistakes and other causes. 
That’s why approximate string matching has become one of 
the important tasks in privacy-preserving record linkage. 
Several techniques have proposed on approximate string. 
Each of them solved different kind of problems. Exact 
matching between each record is less effective when we 
consider real world data, so in this thesis we are going to 
propose Homomorphic encryption technique for approximate 
string matching. 

II. BACKGROUND STUDY 

A. Approximate Matching 

A common and widely used approach for approximate 
string matching in record linkage where strings are 
decomposed into sets of n-grams and then a set similarity 
metric applied between two strings. If n = 2 we call it 
bigrams. In our proposed method we have used bigram 
decomposition. We have used _ as a special character to 
create special bigrams representing the beginning and the 
end of a string. 

The set of bigrams of a x-character long string S is 
defined as 

BIGRAMS(S) = {b(1)b(2),…,b(x)b(x+1)} 

For example, 

 BIGRAMS(ALGORITHM)= {_A, AL, LG, GO, OR, RI, 
IT, TH, HM, M_} 

B. Set Similarity 

Given two sets p, q. The similarity of two strings can be 
defined as 

                        

For an example let p = BIGRAMS(JAMAL) and q = 
BIGRAMS(KAMAL) 

                          

So we have to set a threshold t then we are interested in 

computing the set similarity of two strings and check if 

approximate matching is possible or not. More specifically 

we are interested in the given function: 

 

          

C. Secure Approximate Matching 

Record linkage is defined between two parties PA and PB. 
Their main goal is to identify all records that referring to the 
same entity securely. PA and PB hold a list of names 
respectively. 

A = [a1,…,an] and B  = [b1,…,bn] 

For each ai ϵ A and bj ϵ B 
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Let ai ← BIGRAMS(ai), bj ← BIGRAMS(bj) 

Let dij ← ThresDice(ai, bj, t) 

If dij = 1 then it’s means that they are same. 

III. RELATED WORK 

Secure hash encoding [18] was the first technique for 
privacy-preserving record linkage. It is one way hash 
encoding function where a string converted into a hash value. 
It is converted into a hash value such that it is nearly 
impossible for current technology to know the original string 
value. Most popular algorithms for secure hashing are MD5, 
SHA-1, SHA-2. It can be applied for exact matching. 

Bloom Filter [16] is the most popular methods for 
approximate string matching. In this method party runs 
strings through a type of locality-preserving hash function 
where similar strings produce similar hashes. It can be 
applied for multiple attributes matching. Relative to other 
methods it is fast but does not provide any formal security 
guarantees. 

Damgard, Geisler, Kroigard proposed a Homomorphic 
encryption based technique called DGK Cryptosystem for 
secure integer comparison [6]. It provides formal security 
guarantees but it is not applicable for string comparison. 

Aleksander Essex extended the DGK Cryptosystem for 
secure string comparison [2]. But it is applicable for only 
single attribute matching. 

 

IV. DEFINITIONS AND NOTATIONS 

Definition 1 (Quadratic Residuosity). An integer x is a 
quadratic residuo modulo p if there exists some integer y 
such that y

2 
= x mod p, where x ϵ  

It can be defined as follows: 

             

Definition 2 (Threshold Function). For a threshold t ϵ Z
+ 

 let 

τt be a threshold function which can be defined as follows: 

 

                         

Definition 3 (d-approximation of τt).  Let s be a prime and f 

be an offset where 0 < f < (s + 1) [2] such that  

  

                            For 0 ≤ x ≤ d  

Then we can say that the quadratic residuosity function QRs 

d-approximates threshold function τt  at offset f. 

TABLE 1 

Example: 6-approximation of τ2(x) in Z59 at 23 

 

 

Definition 4 (Minimum Set Intersection Cardinality).  

Minimum set intersection cardinality is the minimum 

matched required to exceed the given threshold.  

For example if two strings are a = “NUMBER” b = 

“DIGIT”  

 

Len(BIGRAMS(a)) = 7, Len(BIGRAMS(b)) = 6, if the 

given threshold is 0.9 the MSIC will be = 6, because if the 

set-intersection of the two inputs less than 6 then their 

threshold value will be less than 0.9 

 

V. ENCRYPTION SCHEME 

A. Key Generation 

For a given security parameter select two x-bit primes p 

and q and select two y-bit primes u, v. x and y bit are chosen 

such that prime factorization is impossible. Then compute n 

= pq such that su | (p-1) and sv | (q-1). Let Zn
*
 denote the set 

of relative primes of n and let Gsub denote the unique 

subgroup of Zn
* 

which has order sv in Zq
* 

and su in Zp
*
. Let 

Guv  is the unique subgroup which has order uv in Zn
*
. For 

simplicity let assumes that g is the generator of Gsub and h is 

the generator of Guv. We have to select a prime s and offset f 

such that 
 

So our public key is P-key = (n, g, h, d, y, d, f, s, t), 

where d is the domain bound 

Let μ = (uv)
-1

 then our private key is S-key = uvμ 

  

B. Encryption 

For a message m in the range 0 ≤ m ≤ d select a uniform 
random element r from [1,…,2

y-1
] and compute 

              C =  

So C is the computed ciphertext for a message. The 
Encryption function will take message m and P-key as a 
parameter and output ciphertext C. 

C. Decryption 

For the decryption of the ciphertext C using our private 

key S-key compute 

Cuvµ = (gm)uvµ (hr)uvµ 

           = (gm)uv(uv)-1 

         = gm 

We have to compute m by applying discrete logarithm 

logs(g
m
) then QRs(m) is our final output 

 

VI. METHODOLOGY 

A. Multiple Attributes Matching (MAM1) 

For single attribute matching proposed solution [2] by 

Aleksander Essex works fine for smaller string. the group 

order s increase rapidly if we increase the Maximum set 

size. So it will take more time and computation will be 

difficult. For example for string size 20 the group order s is 

148139 and the offset is 74050. These values can be 

computed by brute force method. 

x 0 1 2 3 4 5 6 

QR59(x + 23) 0 0 1 1 1 1 1 

 0 0 1 1 1 1 1 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2022                   doi:10.20944/preprints202210.0064.v1

https://doi.org/10.20944/preprints202210.0064.v1


 To match single attributes our job is very simple. But it is 

challenging when we have to match multiple attributes 

because string length cannot exceeds the certain limit. 

Fig 1. Basic work flow 

We have proposed two different methods for multiple 

attributes matching. The first solution is simple, we have 

concatenated all attributes together. The functionality is 

defined as follows: 

Multiple Attributes Matching I:  

 Public Parameters: Public Key 

 Private Inputs: Party A holds a list of strings A = 

[a1, a2,…,an] and Party B holds a list of strings B = 

[b1, b2,…, bn] 

 Functionality:  

1) Party A and Party B pre-process their own 

datasets independently and each party 

concatenates their attributes independently.  

2) For each ai ϵ A, Party A computes 

Ciphertext Ci ← EncryptedBigrams(ai) and 

send each Ciphertext Ci to Party B   

3) For each Ciphertext Ci  and for each bj ϵ B 

Party B computes Set Intersection 

Cardinality. Let’s denotes the function as 

SIC(plaintext, ciphertext). So Party B 

computes set intersection cardinality for Ci 

and bj. 

rij ← SIC(bj, Ci) 

4) For each rij Party A and Party B privately 

computes the threshold dice coefficient dij 

5)  For each dij Party B send dij and i to party 

A. 

 Output: If Decrypt(dij) = 1, then Party A outputs 

i’th entry 

So this is the basic functionality of Multiple Attributes 

Matching I (MAM1). The main limitation of this approach is 

that the concatenated string length should be smaller 

otherwise it will be more complex. So this is one of the 

solution for Multiple Attributes Matching. 

B. Multiple Attributes Matching II 

As we stated earlier previous method (MAM1) have 

some limitations. In case of two same name, same age but 

different gender it can show matched in case of approximate 

matching. For example, if a patient is shahin, age 27 and 

gender Male in dataset A and other patient name shahin, age 

27 and gender Female exists in dataset B. After 

concatenation it will be SHAHINBAM in dataset A and 

SHAHINBAF in dataset B. Surely it will match. But in real 

life these two patients are not same so to resolve this problem 

we have proposed another method for Multiple Attributes 

Matching. The main procedure of this method is given 

below: 

1) Sort attributes according to their priority i.e. 

more important attribute comes earlier than less 

important attributes. 

2) Set threshold for each attributes. As priority of 

each attributes are not same so the threshold for 

each attributes may not be the same. So we have 

to set threshold for each attributes. 

3) If match possible for each attributes for a patient 

then record it as match. 

The functionality of this method is defined as follows: 

 

Multiple Attributes Matching II:  

 Public Parameters: Public Key 

 Private Inputs: Party A holds a list of strings A = 

[a1, a2,…,an] and Party B holds a list of strings B = 

[b1, b2,…, bn] 

 Functionality:  

1)   Party A and Party B pre-process their own     

datasets independently.  

2) Both Party sort their attributes according to 

the same rules. 

3) For each attributes and for each ai ϵ A, Party 

A computes Ciphertext Ci ← 

EncryptedBigrams(ai) and send each 

Ciphertext Ci  to Party B. 

4) For each attributes and for each Ciphertext 

Ci  and for each bj ϵ B of same attribute 

Party B computes Set Intersection 

Cardinality. Let’s denotes the function as 

SIC(plaintext, ciphertext). So Party B 

computes set intersection cardinality for Ci 

and bj. 

rij ← SIC(bj, Ci) 

5) For each rij Party A and Party B privately 

computes the threshold dice coefficient dij 

6)  For each dij Party B send dij and i to party 

A. 

7) If Decrypt(dij) ≠ 1 then stop the process 
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 Output: If Decrypt(dij) = 1, for all attribute then 

Party A outputs i’th entry 

 

So this is the basic functionality of Mulitple Attributes 

Matching II (MAM2) compare to the first proposed method 

it is more complex and it will take more time but it is more 

efficient than first proposed method. 

 

VII. IMPLEMENTATION AND RESULT 

A. Implementation 

We have implemented our proposed algorithm in Python 

3 and we have used the python gmpy2 library for prime 

generation, find generator and modular exponentiation. We 

have pre-computed some values for faster encryption and 

decryption. We implemented our algorithm in an HP brand 

computer, which has Intel Core i3 2.60 GHz processor and 

4GM RAM runs on Windows 10. The program processed 

1000 patient names in an average of 11 minutes to generated 

262MB ciphertext data and homomorphic matching 

generated 202MB ciphertext data. 

 

B. Result 

We have implemented single attribute matching to 
compare our proposed method. 

 Unique Match for 100 

Records 

 0.8 0.9 1.0 

Single Attribute Matching 38 26 20 

Multiple Attributes Matching I 32 11 10 

Multiple Attributes Matching II 19 10 10 

TABLE 2: Number Unique Match for three different 
thresholds 

TABLE 2 shows the number of unique match of three 

proposed method for three different thresholds. From the 

Table 4.1 we can see that number match increases if we 

decreases threshold value. For the same threshold the 

number of mach for MAM2 is less than MAM1. 

C. Matching Accuracy 

Unlike bloom filter encoding there is no chance of collision. 

As we implemented our algorithm using threshold based 

comparison there are no matching errors. Because its 

implements its own functionality.  

Therefore we are concerned only how often distinct records 

in dataset A trigger a match. That means we are interested 

only on the rate of false positives.  

For each ai ϵ PartyA compared each bj ϵ PartyB, if ai was 

matched with bj then a FP recorded. 

 

Method Accuracy Precision Recall F1 Score 

SAM 0.98 0.92 1.0 0.95 

MAM1 0.97 0.78 1.0 0.87 

MAM2 0.99 0.91 1.0 0.95 

TABLE 3: Matching accuracy of each method 

False Positive Rate: 

              

Fig 2. Comparison between MAM1 and MAM2 

 Fig 2. describes the comparison of False Positive 

Rate of our two proposed method (MAM1 and MAM2) we 

can see that MAM2 shows better performance compare to 

MAM1  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Comparison with 1000-bit bloom filter 

Fig 3 shows the comparison of our proposed method with 

1000-bit Bloom Filter. So we can see that the False Positive 

Rate is almost same when threshold is greater than or equal 

0.9 but if we decrease the threshold value then the False 

Positive Rate of Bloom Filter increases compare to our 

proposed method. So our proposed method shows better 

performance compare to Bloom Filter. 

 

D. Running Time Analysis 

TABLE 4: Running time of each proposed method 

 

From Table 4 We can see that MAM2 takes more time than 

MAM1 but the accuracy for threshold 0.9 for MAM2 is 

better than MAM1. MAM2 will show better performance 

for threshold less than 0.9. Times are given in second. 

 

VIII. LIMITATIONS 

In this paper we have extended the DGK Cryptosystem [6]
 
 

for secure approximate string matching. Relative to other 

Method For 100 data Accuracy For 

Threshold 0.9 
0.8 0.9 

MAM1 86.5s 75.7s 0.97 

MAM2 163.42s 153.47s 0.99 
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methods the False Positive Rate of our method is very low, 

but we have some limitations in this method 

Larger String Length:  In extended version of DGK 

Cryptosystem
[2] 

 the group order s increases rapidly if we 

increase the string length. We have allowed maximum 20 

characters in string field. But in real world data string can be 

very large. So it is one of the challenging tasks in this 

method.  

Reducing Encryption Time: One of the most popular 

method for approximate string matching is Bloom Filter, 

which is very fast. Though our proposed method offers more 

formal security guarantees and greater matching accuracy 

compare to Bloom Filter Encoding our proposed method is 

not fast enough. So it is another challenging task. 

 

IX. CONCLUSION 

In the result section we have seen that there is great 

difference between our method and Bloom Filter in case of 

False Positive Rate, which means that our proposed method 

has greater matching accuracy. We just applied multiple 

attributes matching on three attributes for simplicity, but we 

can apply our proposed method Multiple Attributes 

Matching II (MAM2) for greater than three attributes and 

we can set different threshold value for each attribute. 

So we think our proposed method can be applied on those 

areas where data security is very important and where two 

organizations do not want to share their data directly. It can 

be applied to build national data warehouse linking different 

datasets securely. We hope that it will contribute in the field 

secure approximate string matching. 
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