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Abstract: A series of novel indole Schiff base derivatives (2a-2t) containing a 1,3,4-thiadiazole scaf-
fold modified with a thioether group were synthesized, and their structures were confirmed using
FT-IR, '"H NMR, ¥C NMR, andHR-MS. In addition, the antifungal activity of synthesized indole
derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum
(F. oxysporum), Fusarium moniliforme (F. moniliforme), Curvularia lunata (C. lunata), and Phytophthora
parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the
synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%,
89%, and 76.5% at a concentration of 500 pg/mL against F. graminearum, F. oxysporum, F. moniliforme,
and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition
rates of 81.9% and 83.7% at a concentration of 500 pg/mL against C. lunata. In addition, compound
2j has been recognized as a potential compound for further investigation in the field of fungicides.
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1. Introduction

Food crop diseases caused by fungi have become one of the concerns in the global
agricultural sector [1]. Fungal diseases directly cause a reduction in crop yield and quality,
which results in a huge economic loss for farmers worldwide [1,2]. Furthermore, some
pathogenic fungi can secrete toxins and metabolites that are harmful to humans and live-
stock [3-6]. For example, F. oxysporum is a soil-borne fungal pathogen widely distributed
throughout the world that can infect more than 100 valuable crops by causing blight and
root rot, seriously affecting plant growth, yield, and quality [7-13]. Similarly, F. gramine-
arum is responsible for fusarium head blight (FHB) disease in barley, rice, and oat, and
stem rot and spike rot in maize, which severely affects the production of these crops on a
global scale [14-18]. Meanwhile, mycotoxins such as trichothecenes and zearelanone pro-
duced by F. graminis are harmful to humans and livestock [19]. The use of fungicides is
the most common and well-known method for controlling these fungal diseases. How-
ever, the excessive or improper use of antifungal agents leads to an increase in the re-
sistance of fungi to fungicides. Thus, the discovery of new antifungal compounds with a
new mechanism of action is of great significance for future development in agriculture.

In recent years, heterocyclic pesticides have become the mainstream of pesticide re-
search because of their flexible structure, low toxicity and high activity. Indole is an im-
portant nitrogen-containing heterocyclic compound. Indole and indole derivatives have a
broad spectrum of biological activities such as antifungal [20-26], antibacterial [27-29], an-
timycobacterial [30], antitubercular [31-33], antioxidant [34], antimalarial [35-37], antiviral
[38-41], anti-leishmanial [42-43], anti-inflammatory [44], anti-tumor [45-47], activities. The
design and synthesis of new indole derivatives with excellent biological activity have been
one of the emerging fields in pharmaceutical chemistry. There are various indole-based
drugs available for the treatment of human death-causing diseases ( I -VI in Figure 1).
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Furthermore, some indole derivatives containing coumarin [48], thiofuran [49], oxazole
[50], imidazole [51] at 3-position of indole ring were found exhibiting obvious fungicidal
activity (VII- X in Figure 1). However, the usage of commercial indole-based pesticides for
the treatment of plant fungal diseases has not yet been explored.

1,3,4-thiadiazole derivatives were widely used as pesticides in agrochemical chemis-
try and studied for years due to their excellent biological activities, including antifungal
[52-53], insecticidal [54], acaricidal [54], antibacterial [55] and herbicidal activities [56].
Heterocyclic thioether compounds also possess high antifungal activities [57], and the thi-
oether-bound 1,3,4-thiadiazole scaffold is an important pharmacophore [58]. Some thi-
oether-bound 1,3,4-thiadiazole derivatives such as bismerthiazol and 2,5-dimercapto-
1,3,4-thiadiazole zinc salts ( I, I in Fig. 2) have been used as commercial fungicides for
plant fungal diseases. Schiff base, a class of compounds with imine groups (-CH=N-), is a
common pharmacological group in many compounds, which has a wide range of antifun-
gal [59-60], antibacterial [61-62] and other biological activities [63]. The introduction of
Schiff bases into 1,3,4-thiadiazoleis an interesting study and the 1,3,4-thiadiazole Schiff
base derivatives also have biological activities [64-65]. For example, Compounds V and VI
in Figure 2 were found exhibiting obvious fungicidal activity [66-67].
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Figure 1. The structures of commercial drugs and antifungal active compounds containing indole.
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Figure 2. The structures of fungicides and antifungal activity compounds containing 1,3,4-thiadiazole.
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Scheme 1. Design of target compounds.

In this research, our aim is to find new antifungal compound to control fungal dis-
eases from farmland. Based on the different advantages of indoles, thiadiazoles, thioethers
and Schiff bases,and in continuation of our long-term research on the heterocyclic deriv-
atives such as 1,3,4-thiadiazole [68], coumarin [69-75], indole [76] and chitosan [77] as ag-
ricultural antifungal agents, herein we designed and synthesized a series of target com-
pounds 2a-2t containing indoles, thioethers modified 1,3,4-thiadiazoles and imines. These
compounds have obvious inhibitory activities against plant pathogenic fungi, which have
not been reported in the literature at home and abroad. The structure-activity relationship
of the new derivatives against fungi was determined. This structure-activity relationship
lays a foundation for the research and development of drugs to control plant fungal dis-
eases in the future. According to the preliminary inhibition experiments results, com-
pound 2j had been recognized as a potential compound for further investigation in the
field of fungicides. The design of target compounds was shown in scheme 1.

2. Results and discussion
2.1. Synthesis

The synthetic pathway used in the preparation of novel indole derivatives 2a-2t con-
taining thioether-modified 1,3,4-thiadiazole is shown in Scheme 2. The (1H)-indole-3-for-
maldehyde was condensed with 2-amino-5-alkylthio-1,3,4-thiadiazole in ethanol or 1,4-
dioxane solvent in the presence of a CHsCOOH catalyst to obtain the target compounds.
The progress of the reaction was monitored using HPLC and TLC. The reaction progress
monitoring revealed that it took approximately 4-6 h to completely consume the 2-amino-
5-alkylthio-1,3,4-thiadiazole, and the target compounds 2a-2i can be obtained with a yield
range of 62-94% after refluxing at 80 °C with ethanol as the solvent. However, compounds
2k-2t showed low yields or no product under the same conditions. After refluxing at 100
°C temperature with 1,4-Dioxane instead of ethanol as solvent, the result was higher
yields of compounds 2k-2t. Conclusively, the formation of compounds 2k-2t required
higher temperatures compared to the formation of compounds 2a-2j.
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Scheme 2. Synthesis route of the target compounds 2a-2t.

The structures of the synthesized compounds 2a-2t were confirmed using different
spectroscopic techniques, such as FT-IR, 'TH NMR, 3C NMR, and HR-MS analyses. FT-IR
spectra of the synthesized compounds 2a-2t showed one or two separate absorption
bands in the 3267-3506 cm™ region, which corresponds to the N—H stretching of the in-
dole ring. The peaks corresponding to aromatic =C—H and C==N stretching bands
were identified at 3040-3097 cm! and 1605-1698 cm™! regions, respectively. The peak was
observed at 1035-1087 cm™ and corresponds to the thioether bond C—S—C stretching. 'H
NMR spectra of compounds 2a-2t showed the pyrrole N—H protons of the indole moiety
as one singlet at d 11.18-12.34 ppm region and the C—H protons of the imine group as
one singlet at 0 8.90-10.68 ppm region. The thioether (SCH2) C—H proton signals of com-
pounds 2j and 2k were observed at 6 3.75 and 4.37 ppm, respectively, as doublet due to
the ortho coupling with the ethylene C—H. In the other compounds, the thioether (SCH>)
C—H protons were found as one singlet in the d 4.29-4.83 ppm region. The 3C NMR
spectrum showed the resonances of C=N, 5—C, 1,3,4-thiadiazole C2, and 1,3,4-thiadia-
zole C5 through the signals at d 152.80-165.56, 19.02-38.09, 170.49-181.65, and 161.88—
170.08 ppm, respectively. HR-MS of compounds 2a-2t was conducted using the elec-
trospray ionization method (ESI). In the HR-MS spectra of compounds 2a-2t, [M + H*], [M
+ Na*] or [M—H?*] peaks were observed, which confirmed their precise molecular weights.

The synthesized compounds 2a-2t had moderate solubility in ethanol and methanol,
and good solubility in DMF, DMSO, acetone and chloroform.The synthetic molecules are
stable in any of the above solvents.
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2.2. In vitro antifungal activity

The results of the preliminary inhibition experiments of the target compounds 2a-2t
against F. graminearum, F. oxysporum, F. moniliforme, C. lunata and P. p. var. nicotianae
were shown in Figure 3 to Figure 7, respectively.
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Figure 3. Antifungal activity of the target compounds (2a-2t)
against F. graminearum
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Figure 4. Antifungal activity of the target compounds(2a-2t)
against F. oxysporum
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Figure 5. Antifungal activity of the synthesized compounds (2a-2t)
against F. moniliforme
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Figure 6. Antifungal activity of the target compounds (2a-2t)
against C. lunata
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Figure 7. Antifungal activity of the synthesized compounds (2a-2t)
against P.p. var. nicotianae

From the experimental results, we found that the target compound 2a-2t has different

inhibitory activities against the experimental fungi. For example, at the concentration of
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500 pg/mL, the inhibitory rate of the target compound 2a-2t against F. graminearum was
within the range of 36.8% to100% (in Figure 3). Among the tested compounds, compounds
2i, 2j, 2m, 2n, 20, 2p, 2q, and 2r exhibited higher inhibition rates than the control reagent
triadimefon (inhibition index: 47.6%). At the same concentration, the inhibitory rate of
compound 2a-2t against F. oxysporum was in the range of 45.2-95.7% (in Figure 4), which
was higher than that of the control drug triadimefon (the inhibitory rate 45.2%). Some
compounds, such as compound 2j and compound 2q, showed a broad spectrum of good
antifungal activity. The inhibition rates of compound 2j against F. Graminearum, F.
oxysporum, F. Moniliforme, C. lunata and P. P. var. nicotianae were 100%, 95.7%, 91.2%,
81.9% and 82.1%, respectively. Compound 2q showed better inhibitory activity against F.
graminearum and C. lunata with inhibition rates of 76.5% and 83.7%, respectively.

The structure-activity relationship indicated that different substituents attached to
the benzene ring of the target compounds would have obvious effects on the inhibitory
activity of the experimental fungi. The introduction of electron-withdrawing
groups —NO2z, —CFs, —F, —Cl on the benzene ring resulted in an increase in the antifungal
activity of compounds such as 2j, 2i, 2k, 2e, 2p, 2q, 2r, 2s and 2t, compared to compound
2a. The higher antifungal activity of those compounds may be due to the electron-
withdrawing group on the benzene ring, which decreases the electron cloud density and
results in an increase in the accessibility of the target molecules toward the fungicide cell.
In addition, different positions of the same substituents have different effects on the
inhibitory activities of different fungi. For example, when —CFs is in different positions
(ortho: 2t, meta:2p, para: 2s), it has little effect on the inhibition rate of compound against
F. Graminearum, F. Oxysporum, F. Moniliforme and C. Lunata, but has great effect on the
inhibition rate of compound against P. P. var. nicotianae. The inhibition rates of meta
compound (2p) and ortho compound(2t) against P. P. var. nicotianae were 53.4% and 33.9%,
respectively. The inhibition rates of 3, 5-di-substituted —CFs compound(2q) against F.
Graminearum and C. lunata were 76.5% and 83.7%, respectively, which were higher than
those of mono-substituted —CFs compounds(2p,2s,2t). However, the inhibition rates of
compound (2q) with 3, 5-di-substituted —CFs against the other three fungi were almost the
same as those of compounds (2p,2s,2t) with mono-substituted —CFs. The products with
different substituted pyridine positions had different inhibitory activities against fungi.
The inhibition rates of 4-position pyridine compound (2m) against F. Graminearum, F.
Moniliforme, C. Lunata and P. P. var. nicotianae were higher than that of 2-position and 3-
position pyridine compounds (2b and 2c). However, the inhibition rate of 2-position
pyridine compound (2b) against F. oxysporum was higher than that of 3-position and 4-
position pyridine products (2c and 2m).

3. Materials and methods.
3.1. Chemicals and instruments

All reagents and chemicals were procured from a commercial supplier (Shanghai
Aladdin Reagent Co., Ltd, China) and used as received. The method described in the lit-
erature was used to synthesize the intermediate 1 (1a-1t, 2-ammino-5-alkylthio-1,3,4-thi-
adiazoles) [68]. Five crop-threatening pathogenic fungi (F. graminearum, F. oxysporum, F.
moniliforme, C. lunata, and P. p. var. nicotianae) were obtained from the College of Plant
Protection of Henan Agricultural University.
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The fourier transformed-infrared (FT-IR) spectra were recorded using a Thermo Sci-
entific Nicolet IS10 FT-IR spectrometer (Nicolet Technologies Co., America) and the fre-
quencies were given in cm-!. The proton nuclear magnetic resonance (‘H NMR) and car-
bon nuclear magnetic resonance (*C NMR) spectra were obtained using a Bruker DPX-
400 spectrometer (Brucker Technologies Co., German) in acetone or dimethyl sulfoxide
(DMSO) solvent with tetramethylsilane (TMS) as an internal standard. Thin-layer chro-
matography (TLC) was performed on silica gel 60 F254 (Shanxi ersai biotechnology Co.,
Ltd, China). High performance liquid chromatography (HPLC) from Thermo Fisher Sci-
ence and Technology Ltd. with C18 chromatographic column was used in the process of
the reaction. The high resolution-mass spectroscopy (HR-MS) was performed using a Ul-
timate 3000RE-Q-Exactive™ Orbitrap, Thermo Fisher-ESI instrument (Thermo Fisher
Technologies Co., German). Melting points were determined using a Taike X-4 melting
point apparatus. The reaction yields, except for compound 2a, were not optimized.

3.2. General procedure for the preparation of compounds 2a-2t

3.6 mmol of 3-indoxformaldehyde and 3 mmol of the intermediate 1a (2-amino-5-S-
benzyl-1,3,4-thiadiazole) were taken in the round bottom flask and dissolved in ethanol,
and then a few drops of acetic acid were added as a catalyst. The resulting mixture was
refluxed for 5 h at 80 °C. Once the reaction was completed according to thin layer chro-
matography (TLC) or high-performance liquid chromatography (HPLC), the reaction so-
lution was cooled and then filtered using vacuum filtration to obtain the crude product
and then crude product was purified using ethanol recrystallization to obtain the desired
product 2a. The preparation method for compounds 2b-2t was the same as for compound
2a.

3.3. Spectral data

(E)-N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2a)

Orange yellow crystal; M. p. 200.5-201.4 °C; yield 72%; IR (v, cm KBr): 3506 (N—H),
3069 (Ar—H), 1630 (C N), 1524, 1513, 1402, 1336, 1204 (thiadiazole ring), 1042
(C—S—C); '"H NMR (400 MHz, DMSO, ds, d, ppm): 12.31 (s, 1H, N—H), 8.92 (s, 1H, HC
=N), 8.30 (d, | = 8.0 Hz, 2H, Ar—H), 7.55 (d, | = 8.0 Hz, 1H, Ar—H), 7.46 (d, | = 8.0 Hz,
2H, Ar—H), 7.35 (t, ] = 8.0 Hz, 2H, Ar—H), 7.29 (t, ] = 8.0 Hz, 3H, Ar—H), 4.56 (s, 2H,
SCHz); 3C NMR (101 MHz, DMSO ds, d, ppm): 176.51, 163.41 (thiadiazole ring), 160.51 (C
=N), 139.14, 138.02, 137.05, 129.56, 129.04, 128.10, 124.93, 124.23, 122.67, 122.38, 114.76,
113.09, 37.83 (SCH2); HR-MS (ESI): calcd. for CisH14NsSz2: [M + Na*] 373.0558; found:
373.0559.

(E)-N-(5-((pyridin-2-ylmethyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)
methanimine (2b)

Yellow needle-shaped crystal; M. p. 209.1-210.5 °C; yield 81%; IR (v, cm~' KBr): 3442
(N—H), 3091(Ar—H), 1619 (C==N), 1596, 1573, 1478, 1429, 1374, 1245 (thiadiazole ring),
1046 (C—S—C); 'H NMR (400 MHz, DMSO ds, d, ppm): 12.29 (s, 1H, N— H), 8.93 (s, 1H,
HC==N), 8.55 (d, ] = 4.0 Hz, 1H, thiadiazole-H), 8.32 (s, 1H, Ar—H), 8.29 (d, ] =4.0 Hz,
1H, Ar—H), 7.78-7.83 (m, 1H, Ar—H), 7.55 (d, ] = 8.0 Hz, 2H, Ar—H), 7.34-7.26 (m, 3H,
Ar—H), 4.67 (s, 2H, SCH2); 3C NMR (101 MHz, DMSO ds, d, ppm): 176.55, 163.50 (thiadi-
azole ring-C), 160.70 (C=N), 156.48, 149.78, 139.19, 138.01, 137.49, 124.91, 124.24, 123.76,
123.21, 122.68, 122.69, 122.37, 114.74, 113.11, 36.26 (SCH2); HR-MS (ESI): calcd. for
Ci7HisNsS2: [M + Na*] 374.0510; found: 374.0509.

(E)-N-(5-((pyridin-3-ylmethyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani-
mine (2c)

Yellow-green needle-shaped crystal; M. p. 207.5-208.4 °C; yield 92%; IR (v, cm-! KBr):
3436 (N—H), 3055 (Ar—H), 1605 (C==N), 1580, 1479, 1431, 1294,1241 (thiadiazole ring),
1059 (C—S—C); 'H NMR (400 MHz, DMSO ds, d, ppm): 12.32 (s, 1H, N—H), 8.92 (s, 1H,
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HC=N), 8.66 (s, 1H, Ar—H), 8.49 (d, ] = 4.0 Hz, 1H, thiadiazole-H), 8.31 (s, 1H, Ar—H),
8.29 (d, ] = 4.0 Hz, 1H, Ar—H), 7.88 (d, ] = 8.0 Hz, 1H, Ar—H), 7.55 (d, ] = 8.0 Hz, 1H,
Ar—H), 7.37-7.40 (m, 1H, Ar—H)), 7.29 (m, 2H, Ar—H), 4.59 (s, 2H, SCH>); 3C NMR (101
MHz, DMSO ds, d, ppm): 176.75, 163.59 (thiadiazole ring-C), 159.83 (C N), 150.48,
149.15, 139.27, 138.02, 137.11, 133.44, 124.92, 124.26, 124.09, 122.71, 122.37, 114.75, 113.12,
34.82 (SCHz); HR-MS (ESI): calcd. for Ci7H1sNsS2: [M + Na*] 374.0510; found: 374.051.

(E)-N-(5-((2,4,5-trifluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-y)metha-
nimine (2d)

Bright yellow needle-shaped crystal; M.p. 206.2-207.5 °C; yield 73%; IR (v, cm KBr):
3277 (N—H), 3091(Ar—H), 1620 (C==N),1519, 1423, 1401, 1320, 1239 (thiadiazole ring),
1065 (C—S5—C); '"H NMR (400 MHz, DMSO ds, d, ppm): 12.32 (s, 1IH,N—H), 8.94 (s, 1H,
HC==N), 8.32 (s, 1H, Ar—H), 8.28 (d, ] = 8.0 Hz, 1H, Ar—H), 7.60-7.68 (m, 2H, Ar—H),
7.54(d, ] =4.0Hz, 1H, Ar—H), 7.26-7.32 (m, 2H, Ar—H), 4.54 (s, 2H,-SCH>); *C NMR (101
MHz, DMSO ds, d, ppm): 177.12, 163.70 (thiadiazole ring-C), 159.12 (C=N), 153.98,
139.39, 138.04, 136.79, 128.86, 127.49, 124.92, 124.27, 122.72, 122.37, 119.75, 119.70, 119.55,
114.75, 113.14, 30.81 (SCHz); HR-MS (ESI): caled. for CisH11FaN4S2: [M + Na*] 427.0275;
found: 427.0276.

(E)-N-(5-((4-chlorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine
(2e)

Beige needle-shaped crystal; M. p. 201.8-202.6 °C; yield 65%; IR (v, cm™ KBr): 3332
(N—H), 3085 (Ar—H), 1616 (C==N), 1513, 1453, 1428, 1373, 1292 (thiadiazole ring), 1035
(C—5—C); '"H NMR (400 MHz, DMSO ds, o, ppm): 12.14 (s, 1H, N—H ), 9.94 (s, 1H, HC
=N), 8.29 (s, 1H, thiadiazole-H), 8.10 (d, ] = 8.0 Hz, 1H, Ar—H), 7.52 (d, ] = 8.0 Hz, 1H,
Ar—H), 7.38 (d, ] =4.0 Hz, 3H, Ar—H), 7.31 (s, 1H, Ar—H), 7.22-7.27 (m, 2H, Ar—H), 4.29
(s, 2H, SCHz2); 13*C NMR (101 MHz, DMSO ds, d, ppm): 170.49, 163.55 (thiadiazole ring-C),
160.17 (C==N), 149.51, 138.00, 136.88, 136.40, 132.50, 128.89, 124.90, 124.28, 122.72, 122.37,
114.74, 113.11, 38.09 (SCHz); HR-MS (ESI): calcd. for CisHisCINsS2: [M + Na*] 407.0168;
found: 407.0167.

(E)-N-(5-(((1H-benzo [dlimidazol-2-yl)methyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-
3-yl)methanimine (2f)

Brown-red needle-shaped crystals; M. p. 245.8-246.5 °C; yield 72%; IR (v, cm-1 KBr):
3307 (N—H), 3073 (Ar—H), 1634 (C==N), 1585, 1504, 1454, 1315, 1298 (thiadiazole ring),
1036 (C—S—C); 'H NMR (400 MHz, DMSO ds, d, ppm): 12.12 (s, 1H, N—H ), 10.68 (s, 1H,
N—H), 8.39 (s, 1H, HC=N), 8.28 (d, ] = 8.0 Hz, 1H, Ar— H), 8.17 (s, 1H, Ar—H), 7.98 (d,
] =8.0 Hz, 1H, Ar—H), 7.80 (s, 1H, Ar—H), 7.75 (d, ] = 8.0 Hz, 1H, Ar—H), 7.53 (d, ] = 8.0
Hz, 1H, Ar—H ), 7.38-7.45 (m, 2H, Ar—H ), 7.20-7.27 (m, 2H, Ar—H), 4.36 (s, 1H, SCH.);
13C NMR (101 MHz, DMSO ds, 9, ppm): 176.03, 170.08 (thiadiazole ring-C), 152.80 (C
N), 149.29, 136.58, 130.17, 129.65, 127.70, 126.98, 123.48, 123.09, 121.30, 118.99, 118.74,
118.61, 114.71, 112.78, 112.03, 111.63, 19.02 (SCHz); HR-MS (ESI): calcd. for CioHisNeSz:
[M—H-+]: 389.0683; found: 389.070.

(E)-N-(5-((2,6-difluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)metha-
nimine (2g)

Light yellow solid powder; M. p. 177.0-177.7 °C; yield 72%; IR (v, cm™ KBr): 3287
(N—H), 3065 (Ar—H), 1622 (C=N), 1580, 1496, 1409, 1384, 1246 (thiadiazole ring),
1045(C—S—C); 'H NMR (400 MHz, DMSO ds, 8, ppm): 11.35 (s, 1H, N—H), 9.08 (s, 1H,
HC==N), 8.48 (s, 1H, Ar—H), 8.28 (d, ] = 4.0 Hz, 1H, Ar—H), 7.58-7.61 (m, 1H, Ar—H)),
7.43-7.48 (m, 1H, Ar—H), 7.30-7.34 (m, 2H, Ar—H), 7.09 (t, ] = 8.0 Hz, 2H, Ar—H), 4.63
(s, 2H, SCHz2); 3C NMR (101 MHz, DMSO ds, d, ppm): 176.99, 162.17 (thiadiazole ring-C),
158.82 (C=N), 137.89, 137.57, 130.42, 124.99, 123.96, 122.43, 122.27,121.33, 115.24, 112.31,
111.70, 111.45, 25.48 (SCH2); HR-MS (ESI): calcd. for CisH12FaN4S2: [M + Na+] 409.0369;
found: 409.0369.
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(E)-N-(5-(((2-chlorothiazol-5-yl) methyl) thio)-1,3,4-thiadiazol-2-yl)-1-(1H-in-dol-3-yl)
methanimine (2h)

Yellow solid powder; M. p.167.6-169.2 °C; yield 65%; IR (v, cm~! KBr): 3267 (N—H),
3084 (Ar—H), 1636 (C N), 1577, 1504, 1462, 1325, 1297 (thiadiazole ring), 1045
(C—S—C); '"H NMR (400 MHz, DMSO ds, o, ppm): 12.31 (s, 1H, N—H ), 8.95 (s, 1H, HC
=N), 8.33 (s, 1H, thiadiazole—H ), 8.29 (d, ] = 4.0 Hz, 1H, Ar—H), 7.66 (s, 1H, Ar—H),
7.55 (d, J =8.0 Hz, 1H, Ar—H), 7.30 (t, ] = 4.0 Hz, ] = 8.0 Hz, 2H, thiadiazole—H), 4.81 (s,
2H, SCH); ¥C NMR (101 MHz, DMSO ds, o, ppm): 177.12, 163.74 (thiadiazole ring-C),
162.28 (C=N), 159.30, 150.89, 141.44, 139.37, 138.69, 138.02, 124.92, 124.28,122.74, 122.38,
114.76, 113.13, 29.51 (SCH2); HR-MS (ESI): calcd. for CisH1oCINsSs: [M + Na*] 413.9685;
found: 413.96824.

(E)-N-(5-((2,4-dichlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani-
mine (2i)

Yellow solid powder; M. p. 182.9-183.8 °C; yield 68%; IR (v, cm~! KBr): 3273 (N—H),
3093 (Ar—H), 1633 (C N), 1572, 1504, 1426, 1325, 1238 (thiadiazole ring), 1045
(C—S5—C); '"H NMR (400 MHz, DMSO ds, o, ppm): 12.31 (s, 1H, N—H ), 8.93 (s, 1H, HC
=N, 8.32 (s, 1H, Ar—H ), 8.29 (d, ] =8.0 Hz, 1H, Ar—H), 7.68 (d, ] = 4.0 Hz, 1H, Ar—H),
7.61 (d,J=8.0Hz, 1H, Ar—H), 7.54 (d, ] = 4.0 Hz, 1H, Ar—H), 7.45-7.42 (m, 1H, Ar—H),
7.31-7.261 (m, 2H, Ar—H), 4.62 (s, 2H, SCH>); *C NMR (101 MHz, DMSO ds, d, ppm):
177.03, 163.68 (thiadiazole ring-C), 159.29 (C=N), 139.33, 138.02, 134.82, 133.88, 133.82,
133.23, 129.38, 128.05, 124.91, 124.27, 122.72, 122.37, 114.75, 113.12, 35.32 (SCH2); HR-MS
(ESI): caled. for CisH12Cl2NaSz: [M—H?*] 416.98022; found: 416.9815

(E)-N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2j
)

Brown solid powder; M. p. 194.8-195.5 °C; yield 75%; IR (v, cm! KBr): 3433 (N—H),
3042 (Ar—H), 1698 (C N), 1580, 1518, 1443, 1345,1244 (thiadiazole ring), 1087
(C—5—C); '"H NMR (400 MHz, DMSO ds, o, ppm): 12.29 (s, 1H, N—H), 8.91 (s, 1H, HC
=N, 8.28 (t, ] = 12.0 Hz, J = 8.0 Hz, 2H, Ar—H ), 8.22 (d, ] = 8.0 Hz, 2H, Ar—H), 7.75 (d,
] = 8.0 Hz, 2H, Ar—H), 7.54 (d, ] = 8.0 Hz, 1H, Ar—H), 7.30-7.27 (m, 2H, Ar—H), 4.70 (s,
2H, SCH2); 3C NMR (101 MHz, DMSO ds, o, ppm): 176.80, 163.55 (thiadiazole ring-C),
159.61(C=N), 147.26, 145.66, 139.26, 138.02, 132.52, 130.80, 124.91, 124.24, 124.11, 122.69,
122.26, 114.74, 113.09, 36.72 (SCH2); HR-MS (ESI): caled. for CisHisNsO2S2: [M—H"]
394.0472; found: 394.0478.

(E)-N-(5-(allylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2k)

Reddish-brown powder; M. p. 190.3-190.7 °C; yield 72%; IR (v, cm™! KBr): 3313
(N—H), 3097 (Ar—H), 1639 (C=N), 1574, 1521, 1445, 1392, 1297 (thiadiazole ring), 1047
(C—S—C); 'TH NMR (400 MHz, Acetone ds, d, ppm): 11.20 (s, 1H, N—H), 10.05 (s, 1H, HC
=N), 8.23 (t, ] = 8.0 Hz, 2H, Ar—H), 7.56 (d, ] = 4.0 Hz, 1H, Ar—H), 7.25-7.29 (m, 1H,
Ar—H), 6.64 (s, 1H, =CH), 5.91-6.01 (m, 1H, =CH), 5.25 (d, ] =12.0 Hz, 1H, =CH),
5.12(d,J=8.0Hz, 1H, =CH ), 3.75(d, ] = 8.0 Hz, 2H, SCH>); 3C NMR (101 MHz, Acetone
ds, O, ppm): 181.65, 170.07 (thiadiazole ring-C), 162.28 (C=N), 150.68, 137.51, 133.41,
124.66, 123.58, 122.15, 121.31, 119.06, 118.63, 118.06, 112.31, 37.48 (SCH2); HR-MS (ESI):
calcd. for C1sH12N4sS2: [M + Nat] 323.0401; found: 323.0401.

(E)-N-(5-((1-phenylallyDthiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (21)

Yellow solid powder; M. p. 217.0-218.3 °C; yield 69%; IR (v, cm~! KBr): 3470 (N—H),
3040 (Ar—H), 1642 (C=N), 1574, 1510, 1457, 1373, 1241 (thiadiazole ring), 1064 (C—S—C);
H NMR (400 MHz, DMSO ds, d, ppm): 12.29 (s, 1H, N—H), 8.92 (s, 1H, HC==N), 8.31 (s,
1H, Ar—H), 8.29 (d, ] = 8.0 Hz, 1H, Ar—H), 7.54 (d, ] = 8.0 Hz, 1H, Ar—H), 7.44 (s, 3H,
Ar—H), 7.29 (d, ] =4.0 Hz, 2H, Ar—H), 6.72 (q, ] = 12.0 Hz, ] = 8.0 Hz, ] = 12.0 Hz, 1H,
Ar—H), 5.83 (d, ] = 20.0 Hz, 1H, Ar—H), 5.26 (d, ] = 12.0 Hz, 1H, =CH), 4.55 (s, 2H, =
CHz), 4.37 (t, ] = 4.0 Hz, 1H, SCH); 3C NMR (101 MHz, DMSO ds, d, ppm): 176.53, 163.46
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(thiadiazole ring-C), 160.42 (C=N), 139.19, 138.01, 136.95, 136.77, 136.64, 129.84, 126.79,
124.92, 122.69, 122.37, 115.02, 114.74, 113.10, 37.62 (SCHz); HR-MS (ESI): calcd. for
C20H16NsS2: [M + Nat] 399.0714; found: 399.0714.

(E)-N-(5-((pyridin-4-ylmethyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani-
mine 2m)

Orange solid powder; M. p. 183.2-184.5 °C; yield 65%; IR (v, cm™! KBr): 3442 (N—H),
3043 (Ar—H), 1633 (C = N), 1577, 1521, 1445, 1396, 1244 (thiadiazole ring), 1087
(C—S—C); 'H NMR (400 MHz, DMSO ds, d, ppm): 12.32 (s, 1H, N—H), 8.92 (s, 1H, HC
=N), 8.66 (s, 1H, Ar—H), 8.49 (d, ] =8.0 Hz, 1H, Ar—H), 8.31 (s, 1H, Ar—H), 8.28 (d, J =
4.0 Hz, 1H, Ar—H), 7.88 (d, ] =8.0 Hz, 1H, Ar—H), 7.55 (d, ] = 8.0 Hz, 1H, Ar—H), 7.38 (q,
J=4.0Hz, 1H, Ar—H), 7.26-7.32 (m, 2H, Ar—H ), 4.59 (s, 2H, SCH3); 3C NMR (101 MHz,
DMSO ds, d, ppm): 172.6, 169.31 (thiadiazole ring-C), 165.56 (C=N), 159.22, 156.40,
155.03, 137.40, 137.16, 124.63, 123.61, 122.12, 121.33, 119.21, 112.09, 35.79 (SCH:); HR-MS
(ESI): caled. for C1i7H1sNsS2: [M + H*] 352.0691; found: 352.0691

(E)-N-(5-((3-bromo-2-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2n)

Yellow solid powder; M. p. 198.0-199.3 °C; yield 76%; IR (v, cm~ KBr): 3439 (N—H),
3053 (Ar—H), 1605 (C N), 1577, 1482, 1459, 1392, 1241 (thiadiazole ring), 1053
(C—S—C); 'H NMR (400 MHz, DMSO ds, 8, ppm): 11.36 (s, 1H, N—H ), 9.05 (s, 1H, HC
=N), 8.46 (d, ] = 8.0 Hz, 1H, Ar—H), 8.27(s, 1H, Ar—H), 7.55-7.60 (m, 2H, Ar—H), 7.42—
7.47 (m, 2H, Ar—H), 7.31-7.34 (m, 2H, Ar—H), 4.60 (s, 2H, SCH2); 13C NMR (101 MHz,
DMSO ds, o, ppm): 177.03, 163.68 (thiadiazole ring-C), 159.29 (C=N), 138.02, 134.82,
133.88, 133.82, 133.23, 129.58, 128.05, 124.91, 124.27, 122.72, 122.37, 114.75, 113.12, 35.32
(SCHz2); HR-MS (ESI): caled. for CisH12BrFNaSz: [M + Na*] 468.9569; found: 468.9575.

(E)-N-(5-((3-methoxybenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-y)methanimine
(20)

Yellow solid powder; M. p. 194.2-195.4 °C; yield 73%; IR (v, cm™ KBr): 3464 (N—H),
3064 (Ar—H), 1636 (C = N), 1577, 1462, 1440, 1389, 1244 (thiadiazole ring), 1050
(C—5—C); 'H NMR (400 MHz, DMSO ds, d, ppm): 11.18 (s, 1H, N—H ), 8.9 (s, 1H, HC=
N), 831 (d, ] = 8.0 Hz, 1H, Ar—H), 8.06-8.12 (m, 2H, Ar—H), 7.44 (d, 1H, ] = 8.0 Hz,
Ar—H), 7.12-7.19 (m, 3H, Ar—H), 6.94 (t, ] = 8.0 Hz, 2H, Ar—H), 4.42 (s, 2H, SCH>), 3.66
(s, 3H, OCHz); *C NMR (101 MHz, DMSO ds, d, ppm): 176.07, 161.88 (thiadiazole ring-C),
159.98 (C=N), 138.28, 137.86, 137.32, 129.62, 129.50, 123.92, 123.61, 122.42, 122.22,122.11,
121.31,115.24, 114.71, 113.20, 112.28, 54.63 (OCHs), 37.52 (SCH2); HR-MS (ESI): calcd. for
C19H16N1OSz2: [M + Na+] 403.0663; found: 403.0667.

(E)-N-(5-((3-(trifluoromethyl) benzyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)
methanimine (2p)

Yellow solid powder; M. p. 201.3-202.2 °C; yield 68%; IR (v, cm~ KBr): 3419 (N—H),
3069 (Ar—H), 1670 (C N), 1577, 1462, 1426, 1328, 1246 (thiadiazole ring), 1064
(C—S—C); 'H NMR (400 MHz, Acetone ds, d, ppm): 11.34 (s, 1H, N—H ), 9.06 (d, ] =20.0
Hz, 1H, HC==N), 8.45 (d, ] =20.0 Hz, 1H, Ar—H), 8.27 (d, ] = 8.0 Hz, 1H, Ar—H), 7.4 (q,
J=8.0 Hz, ] = 12.0 Hz, 2H, Ar—H), 7.59 (d, | = 8.0 Hz, 1H, Ar—H), 7.20-7.46 (m, 4H,
Ar—H), 4.70 (d, ] =12.0 Hz, 2H, SCH2); 3C NMR (101 MHz, Acetone ds, d, ppm): 176.31,
162.05 (thiadiazole ring-C), 159.67 (C=N), 142.10, 137.87, 137.44, 129.91, 125.39, 123.95,
122.41,122.25,115.23, 112.31, 36.54 (SCHz); HR-MS (ESI): caled. for C1sH13FsNaSz: [M + Na*]
441.0431found: 441.0431.

(E)-N-(5-((3,5-bis(trifluoromethyl)benzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-
yl)methanimine (2q)

Yellow solid powder; M. p. 201.3-202.2 °C; yield 72%; IR (v, cm™ KBr): 3456 (N—H),
3066 (Ar—H), 1650 (C N), 1577, 1496, 1437, 1375, 1243 (thiadiazole ring), 1050
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(C—S—C); 'H NMR (400 MHz, Acetone ds, d, ppm): 11.35 (s, 1H, N—H ), 9.03 (s, 1H, HC
=N), 8.45 (d, ] =8.0 Hz, 1H, Ar—H), 8.26 (d, ] =4.0 Hz, 1H, Ar—H), 8.24 (s, 2H, Ar—H),
7.99 (s, 1H, Ar—H), 7.59 (t, ] = 4.0 Hz, 1H, Ar—H), 7.29-7.35 (m, 2H, Ar—H), 4.83 (s, 2H,
SCH2); 3C NMR (101 MHz, Acetone ds, O, ppm): 176.58, 162.18 (thiadiazole ring-C), 159.13
(C=N), 141.31, 137.88, 137.56, 131.36, 131.04, 129.99, 124.97, 123.96, 122.41, 122.28, 121.23,
115.21, 112.32, 35.79 (SCHz); HR-MS (ESI): calcd. for CaHi2FsNaS2: [M—H?*] 487.0486;
found: 487.0486.

(E)-N-(5-((2-chloro-6-fluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2r)

Yellow solid powder; M. p. 194.6-195.5 °C; yield 63%; IR(v, cm-1 KBr): 3489 (N—H),
3063 (Ar—H), 1622 (C N), 1577, 1493, 1431, 1381, 1243 (thiadiazole ring), 1061
(C—S—C); 'H NMR (400 MHz, Acetone ds, d, ppm): 11.34 (s, 1H, N—H ), 9.09 (s, 1H, HC
=N), 847 (d, ] = 8.0 Hz, 1H, Ar—H), 8.28 (d, ] = 4.0 Hz, 1H, Ar—H), 7.60 (t, ] = 4.0 Hz,
1H, Ar—H), 7.39-7.45 (m, 2H, Ar—H), 7.35-7.32 (m, 2H, Ar—H), 7.22 (t, ] = 8.0 Hz, 1H,
Ar—H), 4.73 (s, 2H, SCH2); 3C NMR (101 MHz, Acetone ds, d, ppm): 177.02, 162.14 (thia-
diazole ring-C), 160.16 (C=N), 158.79, 137.88, 137.54, 130.56, 130.46, 125.75, 123.96,
122.43,122.27,117.01,115.26, 114.63, 114.41, 112.30, 37.18 (SCH:); HR-MS (ESI): calcd. for
CisH12CIFN4S2: [M + Na+] 425.0074; found: 425.0071.

(E)-N-(5-((4-(trifluoromethyl) benzyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)
methanimine (2s)

Yellow solid powder; M. p. 198.1-199.0 °C; yield 65%; IR(v, cm~' KBr): 3442 (N—H),
3043 (Ar—H), 1653 (C N), 1574, 1490, 1442, 1389, 1243 (thiadiazole ring), 1081
(C—S—C); 'H NMR (400 MHz, Acetone ds, d, ppm): 12.29 (s, 1H, N—H ), 8.91 (s, 1H, HC
=N), 8.28 (t, ] =12.0 Hz, ] =8.0 Hz, 2H, Ar—H), 8.22 (d, ] =8.0 Hz, 2H, Ar—H), 7.75(d, |
= 8.0 Hz, 2H, Ar—H), 7.54 (d, ] = 8.0 Hz, 1H, Ar—H), 7.28 (s, 2H, Ar—H), 4.70 (s, 2H,
SCHz); 3C NMR (101 MHz, Acetone ds, d, ppm): 176.31, 162.05 (thiadiazole ring-C), 159.67
(C=N), 142.10, 137.87, 137.44, 129.91, 128.91, 125.42, 124.99, 123.95, 122.41, 122.25, 115.23,
112.31, 36.54 (SCHz); HR-MS (ESI): calcd. for CioHisFsNaS2: [M—H~] 417.0456; found:
417.0496.

(E)-N-(5-((2-(trifluoromethyl)benzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-
yl)meth- animine (2t)

Yellow solid powder; M. p. 194.7-195.6 °C; yield 63%; IR (v, cm~'KBr): 3444 (N—H),
3043 (Ar—H), 1636 (C N), 1561, 1496, 1448, 1336, 1246 (thiadiazole ring), 1055
(C—S—C); 'H NMR (400 MHz, Acetone ds, d, ppm): 12.34 (s, 1H, N—H ), 9.03 (d, ] =20.0
Hz, 1H, HC=N), 8.46 (t, ] = 8.0 Hz, 1H, Ar—H), 8.27 (d, ] = 8.0 Hz, 1H, Ar—H), 7.58-7.78
(m, 4H, Ar—H), 7.23-7.39 (m, 3H, Ar—H), 4.71 (d, | =8.0 Hz, 2H, SCH2); 3C NMR (101
MHz, Acetone ds, O, ppm) 0: 176.31, 162.05 (thiadiazole ring-C), 159.67 (C==N), 142.10,
142.10, 137.87, 137.44, 129.91, 128.94, 125.76, 125.42, 124.99, 123.95, 123.06, 122.41, 122.25,
115.23, 112.31, 36.54 (SCHz); HR-MS (ESI): calcd. for CisHisFsNsS2: [M—H?*] 417.0456;
found: 417.0496.

3.4. In vitro antifungal assay

The antifungal activity of the novel compounds 2a-2t was performed based on the
reported method [78]. The synthesized compounds were dissolved in a 20% acetone water
solution. The solution of each compound was added to sterilized potato dextrose agar to
get a final concentration of 500 pg/mL. After the mixture was cooled, the mycelium of
fungi was transferred to the test plate and incubated at 25 °C for 4-7 days. When the my-
celium of fungi reached the edges of the control plate (without the added samples), the
inhibitory index was calculated using the following formula:

Inhibitory index (%) = (1-Da/DDb)
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where Da is the diameter of the growth zone in the test plate, and Db is the diameter of
the growth zone in the control plate. Each experiment was performed three times, and the
data points were averaged. The commercial fungicide triadimefon (100 pg/mL) was used
as a control and tested in the same manner.

4. Conclusion

In the present study, a series of novel indole derivatives containing 1,3,4-thiadiazole
scaffolds modified with thioether groups have been efficiently designed and synthesized.
In addition, their antifungal activities were investigated against F. graminearum, F. ox-
ysporum, F. moniliforme, C. lunata, and P. p. var. nicotianae. The antifungal activity test re-
sults showed that some of the indole analogs exhibited better antifungal activity than the
control reagent triadimefon. Compound 2j was identified as the most active against F.
graminearum, F. oxysporum, F. moniliforme, and P. p. var. nicotianae with the inhibition rates
of 100%, 95.7%, 89%, and 76.5%, respectively. Compounds 2j and 2q exhibited better an-
tifungal activity against C. [unata with inhibition rates of 81.9% and 83.7%, respectively.
Compound 2j, as the representative compound, was used for further mechanistic studies.
The indole derivatives containing modified 1,3,4-thiadiazole with the electron-withdraw-
ing —NO: group on the benzene ring showed better antifungal activity. Conclusively, the
structural optimization of indole derivatives containing modified 1,3,4-thiadiazole with
the electron-withdrawing groups on the benzene ring is a potential strategy to prepare
analogs with improved antifungal activity.
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