
Article 

Synthesis of Novel Indole Schiff Base Compounds and Their 

Antifungal Activities 

1Caixia Wang, Liangxin Fan, Zhenliang Pan, Sufang Fan, Lijun Shi, Xu Li, Jinfang Zhao and Wu Lulu, Guoyu 

Yang* and Cuilian Xu* 

                College of Sciences, Henan Agricultural University, Zhengzhou 450002, P. R. of China 

*Correspondence: wcx670815@163.com; (Xu C.L.; Yang G.Y.) 

Abstract: A series of novel indole Schiff base derivatives (2a–2t) containing a 1,3,4-thiadiazole scaf-

fold modified with a thioether group were synthesized, and their structures were confirmed  using 

FT-IR, 1H NMR, 13C NMR, andHR-MS. In addition, the antifungal activity of synthesized indole 

derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum 

(F. oxysporum), Fusarium moniliforme (F. moniliforme), Curvularia lunata (C. lunata), and Phytophthora 

parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the 

synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 

89%, and 76.5% at a concentration of 500 μg/mL against F. graminearum, F. oxysporum, F. moniliforme, 

and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition 

rates of 81.9% and 83.7% at a concentration of 500 μg/mL against C. lunata. In addition, compound 

2j has been recognized as a potential compound for further investigation in the field of fungicides. 

Keywords: Antifungal activities; synthesis; indole Schiff base derivatives; 1,3,4-thiadiazole; F. gra-

minearum; F. oxysporum; F. moniliforme; C. lunata; P. p. var. nicotianae 

 

1. Introduction 

Food crop diseases caused by fungi have become one of the concerns in the global 

agricultural sector [1]. Fungal diseases directly cause a reduction in crop yield and quality, 

which results in a huge economic loss for farmers worldwide [1,2]. Furthermore, some 

pathogenic fungi can secrete toxins and metabolites that are harmful to humans and live-

stock [3-6]. For example, F. oxysporum is a soil-borne fungal pathogen widely distributed 

throughout the world that can infect more than 100 valuable crops by causing blight and 

root rot, seriously affecting plant growth, yield, and quality [7-13]. Similarly, F. gramine-

arum is responsible for fusarium head blight (FHB) disease in barley, rice, and oat, and 

stem rot and spike rot in maize, which severely affects the production of these crops on a 

global scale [14-18]. Meanwhile, mycotoxins such as trichothecenes and zearelanone pro-

duced by F. graminis are harmful to humans and livestock [19]. The use of fungicides is 

the most common and well-known method for controlling these fungal diseases. How-

ever, the excessive or improper use of antifungal agents leads to an increase in the re-

sistance of fungi to fungicides. Thus, the discovery of new antifungal compounds with a 

new mechanism of action is of great significance for future development in agriculture.  

In recent years, heterocyclic pesticides have become the mainstream of pesticide re-

search because of their flexible structure, low toxicity and high activity. Indole is an im-

portant nitrogen-containing heterocyclic compound. Indole and indole derivatives have a 

broad spectrum of biological activities such as antifungal [20-26], antibacterial [27-29], an-

timycobacterial [30], antitubercular [31-33], antioxidant [34], antimalarial [35-37], antiviral 

[38-41], anti-leishmanial [42-43], anti-inflammatory [44], anti-tumor [45-47], activities. The 

design and synthesis of new indole derivatives with excellent biological activity have been 

one of the emerging fields in pharmaceutical chemistry. There are various indole-based 

drugs available for the treatment of human death-causing diseases (Ⅰ-Ⅵ in Figure 1). 
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Furthermore, some indole derivatives containing coumarin [48], thiofuran [49], oxazole 

[50], imidazole [51] at 3-position of indole ring were found exhibiting obvious fungicidal 

activity (Ⅶ-Ⅹ in Figure 1). However, the usage of commercial indole-based pesticides for 

the treatment of plant fungal diseases has not yet been explored.  

1,3,4-thiadiazole derivatives were widely used as pesticides in agrochemical chemis-

try and studied for years due to their excellent biological activities, including antifungal 

[52-53], insecticidal [54], acaricidal [54], antibacterial [55] and herbicidal activities [56]. 

Heterocyclic thioether compounds also possess high antifungal activities [57], and the thi-

oether-bound 1,3,4-thiadiazole scaffold is an important pharmacophore [58]. Some thi-

oether-bound 1,3,4-thiadiazole derivatives such as bismerthiazol and 2,5-dimercapto-

1,3,4-thiadiazole zinc salts (Ⅰ, Ⅱ in Fig. 2) have been used as commercial fungicides for 

plant fungal diseases. Schiff base, a class of compounds with imine groups (-CH=N-), is a 

common pharmacological group in many compounds, which has a wide range of antifun-

gal [59-60], antibacterial [61-62] and other biological activities [63]. The introduction of 

Schiff bases into 1,3,4-thiadiazoleis an interesting study and the 1,3,4-thiadiazole Schiff 

base derivatives also have biological activities [64-65]. For example, Compounds Ⅴand Ⅵ 

in Figure 2 were found exhibiting obvious fungicidal activity [66-67]. 

 

                        

                     Figure 1. The structures of commercial drugs and antifungal active compounds containing indole. 
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                      Figure 2. The structures of fungicides and antifungal activity compounds containing 1,3,4-thiadiazole. 

 

                           

Scheme 1. Design of target compounds. 

 

 In this research, our aim is to find new antifungal compound to control fungal dis-

eases from farmland. Based on the different advantages of indoles, thiadiazoles, thioethers 

and Schiff bases,and in continuation of our long-term research on the heterocyclic deriv-

atives such as 1,3,4-thiadiazole [68], coumarin [69-75], indole [76] and chitosan [77] as ag-

ricultural antifungal agents, herein we designed and synthesized a series of target com-

pounds 2a-2t containing indoles, thioethers modified 1,3,4-thiadiazoles and imines. These 

compounds have obvious inhibitory activities against plant pathogenic fungi, which have 

not been reported in the literature at home and abroad. The structure-activity relationship 

of the new derivatives against fungi was determined. This structure-activity relationship 

lays a foundation for the research and development of drugs to control plant fungal dis-

eases in the future. According to the preliminary inhibition experiments results, com-

pound 2j had been recognized as a potential compound for further investigation in the 

field of fungicides. The design of target compounds was shown in scheme 1.  

2. Results and discussion 

2.1. Synthesis  

The synthetic pathway used in the preparation of novel indole derivatives 2a-2t con-

taining thioether-modified 1,3,4-thiadiazole is shown in Scheme 2. The (1H)-indole-3-for-

maldehyde was condensed with 2-amino-5-alkylthio-1,3,4-thiadiazole in ethanol or 1,4-

dioxane solvent in the presence of a CH3COOH catalyst to obtain the target compounds. 

The progress of the reaction was monitored using HPLC and TLC. The reaction progress 

monitoring revealed that it took approximately 4–6 h to completely consume the 2-amino-

5-alkylthio-1,3,4-thiadiazole, and the target compounds 2a-2i can be obtained with a yield 

range of 62–94% after refluxing at 80 °C with ethanol as the solvent. However, compounds 

2k-2t showed low yields or no product under the same conditions. After refluxing at 100 

°C temperature with 1,4-Dioxane instead of ethanol as solvent, the result was higher 

yields of compounds 2k-2t. Conclusively, the formation of compounds 2k-2t required 

higher temperatures compared to the formation of compounds 2a-2j.  
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Scheme 2. Synthesis route of the target compounds 2a-2t.  

 

The structures of the synthesized compounds 2a–2t were confirmed using different 

spectroscopic techniques, such as FT-IR, 1H NMR, 13C NMR, and HR-MS analyses. FT-IR 

spectra of the synthesized compounds 2a–2t showed one or two separate absorption 

bands in the 3267–3506 cm−1 region, which corresponds to the N―H stretching of the in-

dole ring. The peaks corresponding to aromatic C―H and C N stretching bands 

were identified at 3040–3097 cm−1 and 1605–1698 cm−1 regions, respectively. The peak was 

observed at 1035–1087 cm−1 and corresponds to the thioether bond C―S―C stretching. 1H 

NMR spectra of compounds 2a–2t showed the pyrrole N―H protons of the indole moiety 

as one singlet at δ 11.18–12.34 ppm region and the C―H protons of the imine group as 

one singlet at δ 8.90–10.68 ppm region. The thioether (SCH2) C―H proton signals of com-

pounds 2j and 2k were observed at δ 3.75 and 4.37 ppm, respectively, as doublet due to 

the ortho coupling with the ethylene C―H. In the other compounds, the thioether (SCH2) 

C―H protons were found as one singlet in the δ 4.29–4.83 ppm region. The 13C NMR 

spectrum showed the resonances of C N, S―C, 1,3,4-thiadiazole C2, and 1,3,4-thiadia-

zole C5 through the signals at δ 152.80–165.56, 19.02–38.09, 170.49–181.65, and 161.88–

170.08 ppm, respectively. HR-MS of compounds 2a-2t was conducted using the elec-

trospray ionization method (ESI). In the HR-MS spectra of compounds 2a-2t, [M + H+], [M 

+ Na+] or [M―H+] peaks were observed, which confirmed their precise molecular weights. 

The synthesized compounds 2a-2t had moderate solubility in ethanol and methanol, 

and good solubility in DMF, DMSO, acetone and chloroform.The synthetic molecules are 

stable in any of the above solvents. 
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2.2. In vitro antifungal activity 

The results of the preliminary inhibition experiments of the target compounds 2a-2t 

against F. graminearum, F. oxysporum，F. moniliforme，C. lunata and P. p. var. nicotianae 

were shown in Figure 3 to Figure 7, respectively. 
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Figure 3. Antifungal activity of the target compounds (2a-2t) 

against  F. graminearum  
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Figure 4. Antifungal activity of the target compounds(2a-2t)

against F. oxysporum 
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From the experimental results, we found that the target compound 2a-2t has different 

inhibitory activities against the experimental fungi. For example, at the concentration of 
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Figure 5. Antifungal activity of the synthesized compounds (2a-2t)

against  F. moniliforme
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Figure 6. Antifungal activity of the target compounds (2a-2t) 

against  C. lunata

0

10

20

30

40

50

60

70

80

90

2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l

2m 2n 2o 2p 2q 2r 2s 2t

tr
ia

d
im

ef
o

n

In
h

ib
it

io
n

 r
at

e（
%
）

Figure 7. Antifungal activity of the synthesized compounds (2a-2t)  

against  P.p. var. nicotianae 
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500 µg/mL, the inhibitory rate of the target compound 2a-2t against F. graminearum was 

within the range of 36.8% to100% (in Figure 3). Among the tested compounds, compounds 

2i, 2j, 2m, 2n, 2o, 2p, 2q, and 2r exhibited higher inhibition rates than the control reagent 

triadimefon (inhibition index: 47.6%). At the same concentration, the inhibitory rate of 

compound 2a-2t against F. oxysporum was in the range of 45.2-95.7% (in Figure 4), which 

was higher than that of the control drug triadimefon (the inhibitory rate 45.2%). Some 

compounds, such as compound 2j and compound 2q, showed a broad spectrum of good 

antifungal activity. The inhibition rates of compound 2j against F. Graminearum, F. 

oxysporum, F. Moniliforme, C. lunata and P. P. var. nicotianae were 100%, 95.7%, 91.2%, 

81.9% and 82.1%, respectively. Compound 2q showed better inhibitory activity against F. 

graminearum and C. lunata with inhibition rates of 76.5% and 83.7%, respectively. 

The structure-activity relationship indicated that different substituents attached to 

the benzene ring of the target compounds would have obvious effects on the inhibitory 

activity of the experimental fungi. The introduction of electron-withdrawing 

groups ―NO2, ―CF3, ―F, ―Cl on the benzene ring resulted in an increase in the antifungal 

activity of compounds such as 2j, 2i, 2k, 2e, 2p, 2q, 2r, 2s and 2t, compared to compound 

2a. The higher antifungal activity of those compounds may be due to the electron-

withdrawing group on the benzene ring, which decreases the electron cloud density and 

results in an increase in the accessibility of the target molecules toward the fungicide cell. 

In addition, different positions of the same substituents have different effects on the 

inhibitory activities of different fungi. For example, when ―CF3 is in different positions 

(ortho: 2t, meta:2p, para: 2s), it has little effect on the inhibition rate of compound against 

F. Graminearum, F. Oxysporum, F. Moniliforme and C. Lunata, but has great effect on the 

inhibition rate of compound against P. P. var. nicotianae. The inhibition rates of meta 

compound (2p) and ortho compound(2t) against P. P. var. nicotianae were 53.4% and 33.9%, 

respectively. The inhibition rates of 3, 5-di-substituted ―CF3 compound(2q) against F. 

Graminearum and C. lunata were 76.5% and 83.7%, respectively, which were higher than 

those of mono-substituted ―CF3 compounds(2p,2s,2t). However, the inhibition rates of 

compound (2q) with 3, 5-di-substituted ―CF3 against the other three fungi were almost the 

same as those of compounds (2p,2s,2t) with mono-substituted ―CF3. The products with 

different substituted pyridine positions had different inhibitory activities against fungi. 

The inhibition rates of 4-position pyridine compound (2m) against F. Graminearum, F. 

Moniliforme, C. Lunata and P. P. var. nicotianae were higher than that of 2-position and 3-

position pyridine compounds (2b and 2c). However, the inhibition rate of 2-position 

pyridine compound (2b) against F. oxysporum was higher than that of 3-position and 4-

position pyridine products (2c and 2m). 

3. Materials and methods. 

3.1. Chemicals and instruments    

All reagents and chemicals were procured from a commercial supplier (Shanghai 

Aladdin Reagent Co., Ltd, China) and used as received. The method described in the lit-

erature was used to synthesize the intermediate 1（1a-1t, 2-ammino-5-alkylthio-1,3,4-thi-

adiazoles）[68]. Five crop-threatening pathogenic fungi (F. graminearum, F. oxysporum, F. 

moniliforme, C. lunata, and P. p. var. nicotianae) were obtained from the College of Plant 

Protection of Henan Agricultural University. 
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The fourier transformed-infrared (FT-IR) spectra were recorded using a Thermo Sci-

entific Nicolet IS10 FT-IR spectrometer (Nicolet Technologies Co., America) and the fre-

quencies were given in cm–1. The proton nuclear magnetic resonance (1H NMR) and car-

bon nuclear magnetic resonance (13C NMR) spectra were obtained using a Bruker DPX-

400 spectrometer (Brucker Technologies Co., German) in acetone or dimethyl sulfoxide 

(DMSO) solvent with tetramethylsilane (TMS) as an internal standard. Thin-layer chro-

matography (TLC) was performed on silica gel 60 F254 (Shanxi ersai biotechnology Co., 

Ltd, China). High performance liquid chromatography (HPLC) from Thermo Fisher Sci-

ence and Technology Ltd. with C18 chromatographic column was used in the process of 

the reaction. The high resolution-mass spectroscopy (HR-MS) was performed using a Ul-

timate 3000RE-Q-ExactiveTM Orbitrap, Thermo Fisher-ESI instrument (Thermo Fisher 

Technologies Co., German). Melting points were determined using a Taike X-4 melting 

point apparatus. The reaction yields, except for compound 2a, were not optimized. 

3.2. General procedure for the preparation of compounds 2a-2t 

3.6 mmol of 3-indoxformaldehyde and 3 mmol of the intermediate 1a (2-amino-5-S-

benzyl-1,3,4-thiadiazole) were taken in the round bottom flask and dissolved in ethanol, 

and then a few drops of acetic acid were added as a catalyst. The resulting mixture was 

refluxed for 5 h at 80 °C. Once the reaction was completed according to thin layer chro-

matography (TLC) or high-performance liquid chromatography (HPLC), the reaction so-

lution was cooled and then filtered using vacuum filtration to obtain the crude product 

and then crude product was purified using ethanol recrystallization to obtain the desired 

product 2a. The preparation method for compounds 2b-2t was the same as for compound 

2a. 

3.3. Spectral data 

(E)-N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2a) 

Orange yellow crystal; M. p. 200.5–201.4 °C; yield 72%; IR (ν, cm–1 KBr): 3506 (N―H), 

3069 (Ar―H), 1630 (C N), 1524, 1513, 1402, 1336, 1204 (thiadiazole ring), 1042 

(C―S―C); 1H NMR (400 MHz, DMSO, d6, δ, ppm): 12.31 (s, 1H, N－H), 8.92 (s, 1H, HC

N), 8.30 (d, J = 8.0 Hz, 2H, Ar―H), 7.55 (d, J = 8.0 Hz, 1H, Ar―H), 7.46 (d, J = 8.0 Hz, 

2H, Ar―H), 7.35 (t, J = 8.0 Hz, 2H, Ar―H), 7.29 (t, J = 8.0 Hz, 3H, Ar―H), 4.56 (s, 2H, 

SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.51, 163.41 (thiadiazole ring), 160.51 (C

N), 139.14, 138.02, 137.05, 129.56, 129.04, 128.10, 124.93, 124.23, 122.67, 122.38, 114.76, 

113.09, 37.83 (SCH2); HR-MS (ESI): calcd. for C18H14N4S2: [M + Na+] 373.0558; found: 

373.0559.  

(E)-N-(5-((pyridin-2-ylmethyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) 

methanimine (2b)  

Yellow needle-shaped crystal; M. p. 209.1–210.5 °C; yield 81%; IR (ν, cm–1 KBr): 3442 

(N―H), 3091(Ar―H), 1619 (C N), 1596, 1573, 1478, 1429, 1374, 1245 (thiadiazole ring), 

1046 (C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N― H), 8.93 (s, 1H, 

HC N), 8.55 (d, J = 4.0 Hz, 1H, thiadiazole-H), 8.32 (s, 1H, Ar―H), 8.29 (d, J = 4.0 Hz, 

1H, Ar―H), 7.78–7.83 (m, 1H, Ar―H), 7.55 (d, J = 8.0 Hz, 2H, Ar―H), 7.34–7.26 (m, 3H, 

Ar―H), 4.67 (s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.55, 163.50 (thiadi-

azole ring-C), 160.70 (C N), 156.48, 149.78, 139.19, 138.01, 137.49, 124.91, 124.24, 123.76, 

123.21, 122.68, 122.69, 122.37, 114.74, 113.11, 36.26 (SCH2); HR-MS (ESI): calcd. for 

C17H13N5S2: [M + Na+] 374.0510; found: 374.0509. 

(E)-N-(5-((pyridin-3-ylmethyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani- 

mine (2c) 

Yellow-green needle-shaped crystal; M. p. 207.5–208.4 °C; yield 92%; IR (ν, cm–1 KBr): 

3436 (N―H), 3055 (Ar―H), 1605 (C N), 1580, 1479, 1431, 1294,1241 (thiadiazole ring), 

1059 (C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H, N－H), 8.92 (s, 1H, 
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HC N), 8.66 (s, 1H, Ar―H), 8.49 (d, J = 4.0 Hz, 1H, thiadiazole-H), 8.31 (s, 1H, Ar―H), 

8.29 (d, J = 4.0 Hz, 1H, Ar―H), 7.88 (d, J = 8.0 Hz, 1H, Ar―H), 7.55 (d, J = 8.0 Hz, 1H, 

Ar―H), 7.37–7.40 (m, 1H, Ar―H ), 7.29 (m, 2H, Ar―H), 4.59 (s, 2H, SCH2); 13C NMR (101 

MHz, DMSO d6, δ, ppm): 176.75, 163.59 (thiadiazole ring-C), 159.83 (C N), 150.48, 

149.15, 139.27, 138.02, 137.11, 133.44, 124.92, 124.26, 124.09, 122.71, 122.37, 114.75, 113.12, 

34.82 (SCH2); HR-MS (ESI): calcd. for C17H13N5S2: [M + Na+] 374.0510; found: 374.051. 

(E)-N-(5-((2,4,5-trifluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)metha- 

nimine (2d)  

Bright yellow needle-shaped crystal; M.p. 206.2–207.5 °C; yield 73%; IR (ν, cm–1 KBr): 

3277 (N―H), 3091(Ar―H), 1620 (C N),1519, 1423, 1401, 1320, 1239 (thiadiazole ring), 

1065 (C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H,N－H), 8.94 (s, 1H, 

HC N), 8.32 (s, 1H, Ar―H), 8.28 (d, J = 8.0 Hz, 1H, Ar―H), 7.60–7.68 (m, 2H, Ar―H), 

7.54 (d, J = 4.0 Hz, 1H, Ar―H), 7.26–7.32 (m, 2H, Ar―H), 4.54 (s, 2H,-SCH2); 13C NMR (101 

MHz, DMSO d6, δ, ppm): 177.12, 163.70 (thiadiazole ring-C), 159.12 (C N), 153.98, 

139.39, 138.04, 136.79, 128.86, 127.49, 124.92, 124.27, 122.72, 122.37, 119.75, 119.70, 119.55, 

114.75, 113.14, 30.81 (SCH2); HR-MS (ESI): calcd. for C18H11F3N4S2: [M + Na+] 427.0275; 

found: 427.0276. 

(E)-N-(5-((4-chlorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine 

(2e) 

Beige needle-shaped crystal; M. p. 201.8–202.6 °C; yield 65%; IR (ν, cm–1 KBr): 3332 

(N―H), 3085 (Ar―H), 1616 (C N), 1513, 1453, 1428, 1373, 1292 (thiadiazole ring), 1035 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.14 (s, 1H, N－H ), 9.94 (s, 1H, HC

N), 8.29 (s, 1H, thiadiazole-H), 8.10 (d, J = 8.0 Hz, 1H, Ar―H), 7.52 (d, J = 8.0 Hz, 1H, 

Ar―H), 7.38 (d, J = 4.0 Hz, 3H, Ar―H), 7.31 (s, 1H, Ar―H), 7.22–7.27 (m, 2H, Ar―H), 4.29 

(s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 170.49, 163.55 (thiadiazole ring-C), 

160.17 (C N), 149.51, 138.00, 136.88, 136.40, 132.50, 128.89, 124.90, 124.28, 122.72, 122.37, 

114.74, 113.11, 38.09 (SCH2); HR-MS (ESI): calcd. for C18H13ClN4S2: [M + Na+] 407.0168; 

found: 407.0167. 

(E)-N-(5-(((1H-benzo [d]imidazol-2-yl)methyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-

3-yl)methanimine (2f) 

Brown-red needle-shaped crystals; M. p. 245.8–246.5 °C; yield 72%; IR (ν, cm–1 KBr): 

3307 (N―H), 3073 (Ar―H), 1634 (C N), 1585, 1504, 1454, 1315, 1298 (thiadiazole ring), 

1036 (C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.12 (s, 1H, N―H ), 10.68 (s, 1H, 

N―H), 8.39 (s, 1H, HC N), 8.28 (d, J = 8.0 Hz, 1H, Ar― H), 8.17 (s, 1H, Ar―H), 7.98 (d, 

J = 8.0 Hz, 1H, Ar―H), 7.80 (s, 1H, Ar―H), 7.75 (d, J = 8.0 Hz, 1H, Ar―H), 7.53 (d, J = 8.0 

Hz, 1H, Ar―H ), 7.38–7.45 (m, 2H, Ar―H ), 7.20–7.27 (m, 2H, Ar―H), 4.36 (s, 1H, SCH2); 
13C NMR (101 MHz, DMSO d6, δ, ppm): 176.03, 170.08 (thiadiazole ring-C), 152.80 (C

N), 149.29, 136.58, 130.17, 129.65, 127.70, 126.98, 123.48, 123.09, 121.30, 118.99, 118.74, 

118.61, 114.71, 112.78, 112.03, 111.63, 19.02 (SCH2); HR-MS (ESI): calcd. for C19H14N6S2: 

[M―H+]: 389.0683; found: 389.070. 

(E)-N-(5-((2,6-difluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)metha- 

nimine (2g) 

Light yellow solid powder; M. p. 177.0–177.7 °C; yield 72%; IR (ν, cm–1 KBr): 3287 

(N―H), 3065 (Ar―H), 1622 (C N), 1580, 1496, 1409, 1384, 1246 (thiadiazole ring), 

1045(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 11.35 (s, 1H, N―H), 9.08 (s, 1H, 

HC N), 8.48 (s, 1H, Ar―H), 8.28 (d, J = 4.0 Hz, 1H, Ar―H), 7.58–7.61 (m, 1H, Ar―H), 

7.43–7.48 (m, 1H, Ar―H), 7.30–7.34 (m, 2H, Ar―H), 7.09 (t, J = 8.0 Hz, 2H, Ar―H), 4.63 

(s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.99, 162.17 (thiadiazole ring-C), 

158.82 (C N), 137.89, 137.57, 130.42, 124.99, 123.96, 122.43, 122.27, 121.33, 115.24, 112.31, 

111.70, 111.45, 25.48 (SCH2); HR-MS (ESI): calcd. for C18H12F2N4S2: [M + Na+] 409.0369; 

found: 409.0369. 
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(E)-N-(5-(((2-chlorothiazol-5-yl) methyl) thio)-1,3,4-thiadiazol-2-yl)-1-(1H-in-dol-3-yl) 

methanimine (2h)  

Yellow solid powder; M. p.167.6–169.2 °C; yield 65%; IR (ν, cm–1 KBr): 3267 (N―H), 

3084 (Ar―H), 1636 (C N), 1577, 1504, 1462, 1325, 1297 (thiadiazole ring), 1045 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.31 (s, 1H, N―H ), 8.95 (s, 1H, HC

N), 8.33 (s, 1H, thiadiazole―H ), 8.29 (d, J = 4.0 Hz, 1H, Ar―H), 7.66 (s, 1H, Ar―H), 

7.55 (d, J = 8.0 Hz, 1H, Ar―H), 7.30 (t, J = 4.0 Hz, J = 8.0 Hz, 2H, thiadiazole―H), 4.81 (s, 

2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 177.12, 163.74 (thiadiazole ring-C), 

162.28 (C N), 159.30, 150.89, 141.44, 139.37, 138.69, 138.02, 124.92, 124.28,122.74, 122.38, 

114.76, 113.13, 29.51 (SCH2); HR-MS (ESI): calcd. for C15H10ClN5S3: [M + Na+] 413.9685; 

found: 413.96824. 

(E)-N-(5-((2,4-dichlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani- 

mine (2i) 

Yellow solid powder; M. p. 182.9–183.8 °C; yield 68%; IR (ν, cm–1 KBr): 3273 (N―H), 

3093 (Ar―H), 1633 (C N), 1572, 1504, 1426, 1325, 1238 (thiadiazole ring), 1045 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.31 (s, 1H, N―H ), 8.93 (s, 1H, HC

N ), 8.32 (s, 1H, Ar―H ), 8.29 (d, J = 8.0 Hz, 1H, Ar―H), 7.68 (d, J = 4.0 Hz, 1H, Ar―H), 

7.61 (d, J = 8.0 Hz, 1H, Ar―H), 7.54 (d, J = 4.0 Hz, 1H, Ar―H), 7.45–7.42 (m, 1H, Ar―H), 

7.31–7.261 (m, 2H, Ar―H), 4.62 (s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 

177.03, 163.68 (thiadiazole ring-C), 159.29 (C N), 139.33, 138.02, 134.82, 133.88, 133.82, 

133.23, 129.38, 128.05, 124.91, 124.27, 122.72, 122.37, 114.75, 113.12, 35.32 (SCH2); HR-MS 

(ESI): calcd. for C18H12Cl2N4S2: [M―H+] 416.98022; found: 416.9815 

(E)-N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine（2j
） 

Brown solid powder; M. p. 194.8–195.5 °C; yield 75%; IR (ν, cm–1 KBr): 3433 (N―H), 

3042 (Ar―H), 1698 (C N), 1580, 1518, 1443, 1345,1244 (thiadiazole ring), 1087   

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N―H), 8.91 (s, 1H, HC

N), 8.28 (t, J = 12.0 Hz, J = 8.0 Hz, 2H, Ar―H ), 8.22 (d, J = 8.0 Hz, 2H, Ar―H), 7.75 (d, 

J = 8.0 Hz, 2H, Ar―H), 7.54 (d, J = 8.0 Hz, 1H, Ar―H), 7.30–7.27 (m, 2H, Ar―H), 4.70 (s, 

2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.80, 163.55 (thiadiazole ring-C), 

159.61(C N), 147.26, 145.66, 139.26, 138.02, 132.52, 130.80, 124.91, 124.24, 124.11, 122.69, 

122.26, 114.74, 113.09, 36.72 (SCH2); HR-MS (ESI): calcd. for C18H13N5O2S2: [M―H+] 

394.0472; found: 394.0478. 

(E)-N-(5-(allylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2k) 

Reddish-brown powder; M. p. 190.3–190.7 °C; yield 72%; IR (ν, cm–1 KBr): 3313 

(N―H), 3097 (Ar―H), 1639 (C N), 1574, 1521, 1445, 1392, 1297 (thiadiazole ring), 1047 

(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 11.20 (s, 1H, N―H), 10.05 (s, 1H, HC

N), 8.23 (t, J = 8.0 Hz, 2H, Ar―H), 7.56 (d, J = 4.0 Hz, 1H, Ar―H), 7.25–7.29 (m, 1H, 

Ar―H), 6.64 (s, 1H, CH), 5.91–6.01 (m, 1H, CH), 5.25 (d, J = 12.0 Hz, 1H, CH), 

5.12 (d, J = 8.0 Hz, 1H, CH ), 3.75 (d, J = 8.0 Hz, 2H, SCH2); 13C NMR (101 MHz, Acetone 

d6, δ, ppm): 181.65, 170.07 (thiadiazole ring-C), 162.28 (C N), 150.68, 137.51, 133.41, 

124.66, 123.58, 122.15, 121.31, 119.06, 118.63, 118.06, 112.31, 37.48 (SCH2); HR-MS (ESI): 

calcd. for C14H12N4S2: [M + Na+] 323.0401; found: 323.0401. 

(E)-N-(5-((1-phenylallyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2l)  

Yellow solid powder; M. p. 217.0–218.3 °C; yield 69%; IR (ν, cm–1 KBr): 3470 (N―H), 

3040 (Ar―H), 1642 (C=N), 1574, 1510, 1457, 1373, 1241 (thiadiazole ring), 1064 (C―S―C); 
1H NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N―H), 8.92 (s, 1H, HC N), 8.31 (s, 

1H, Ar―H), 8.29 (d, J = 8.0 Hz, 1H, Ar―H), 7.54 (d, J = 8.0 Hz, 1H, Ar―H), 7.44 (s, 3H, 

Ar―H), 7.29 (d, J = 4.0 Hz, 2H, Ar―H), 6.72 (q, J = 12.0 Hz, J = 8.0 Hz, J = 12.0 Hz, 1H, 

Ar―H), 5.83 (d, J = 20.0 Hz, 1H, Ar―H), 5.26 (d, J = 12.0 Hz, 1H, =CH), 4.55 (s, 2H, 

CH2), 4.37 (t, J = 4.0 Hz, 1H, SCH); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.53, 163.46 
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(thiadiazole ring-C), 160.42 (C N), 139.19, 138.01, 136.95, 136.77, 136.64, 129.84, 126.79, 

124.92, 122.69, 122.37, 115.02, 114.74, 113.10, 37.62 (SCH2); HR-MS (ESI): calcd. for 

C20H16N4S2: [M + Na+] 399.0714; found: 399.0714. 

(E)-N-(5-((pyridin-4-ylmethyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methani- 

mine (2m) 

Orange solid powder; M. p. 183.2–184.5 °C; yield 65%; IR (ν, cm–1 KBr): 3442 (N―H), 

3043 (Ar―H), 1633 (C N), 1577, 1521, 1445, 1396, 1244 (thiadiazole ring), 1087 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H, N―H), 8.92 (s, 1H, HC

N), 8.66 (s, 1H, Ar―H), 8.49 (d, J = 8.0 Hz, 1H, Ar―H), 8.31 (s, 1H, Ar―H), 8.28 (d, J = 

4.0 Hz, 1H, Ar―H), 7.88 (d, J = 8.0 Hz, 1H, Ar―H), 7.55 (d, J = 8.0 Hz, 1H, Ar―H), 7.38 (q, 

J = 4.0 Hz, 1H, Ar―H ), 7.26–7.32 (m, 2H, Ar―H ), 4.59 (s, 2H, SCH2); 13C NMR (101 MHz, 

DMSO d6, δ, ppm): 172.6, 169.31 (thiadiazole ring-C), 165.56 (C N), 159.22, 156.40, 

155.03, 137.40, 137.16, 124.63, 123.61, 122.12, 121.33, 119.21, 112.09, 35.79 (SCH2); HR-MS 

(ESI): calcd. for C17H13N5S2: [M + H+] 352.0691; found: 352.0691 

(E)-N-(5-((3-bromo-2-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth- 

animine (2n) 

Yellow solid powder; M. p. 198.0–199.3 °C; yield 76%; IR (ν, cm–1 KBr): 3439 (N―H), 

3053 (Ar―H), 1605 (C N), 1577, 1482, 1459, 1392, 1241 (thiadiazole ring), 1053 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 11.36 (s, 1H, N－H ), 9.05 (s, 1H, HC

N), 8.46 (d, J = 8.0 Hz, 1H, Ar―H), 8.27(s, 1H, Ar―H), 7.55–7.60 (m, 2H, Ar―H), 7.42–

7.47 (m, 2H, Ar―H), 7.31–7.34 (m, 2H, Ar―H), 4.60 (s, 2H, SCH2); 13C NMR (101 MHz, 

DMSO d6, δ, ppm): 177.03, 163.68 (thiadiazole ring-C), 159.29 (C N), 138.02, 134.82, 

133.88, 133.82, 133.23, 129.58, 128.05, 124.91, 124.27, 122.72, 122.37, 114.75, 113.12, 35.32 

(SCH2); HR-MS (ESI): calcd. for C18H12BrFN4S2: [M + Na+] 468.9569; found: 468.9575. 

(E)-N-(5-((3-methoxybenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine

（2o）  

Yellow solid powder; M. p. 194.2–195.4 °C; yield 73%; IR (ν, cm–1 KBr): 3464 (N―H), 

3064 (Ar―H), 1636 (C N), 1577, 1462, 1440, 1389, 1244 (thiadiazole ring), 1050 

(C―S―C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 11.18 (s, 1H, N－H ), 8.9 (s, 1H, HC

N), 8.31 (d, J = 8.0 Hz, 1H, Ar―H), 8.06–8.12 (m, 2H, Ar―H), 7.44 (d, 1H, J = 8.0 Hz, 

Ar―H), 7.12–7.19 (m, 3H, Ar―H), 6.94 (t, J = 8.0 Hz, 2H, Ar―H), 4.42 (s, 2H, SCH2), 3.66 

(s, 3H, OCH3); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.07, 161.88 (thiadiazole ring-C), 

159.98 (C N), 138.28, 137.86, 137.32, 129.62, 129.50, 123.92, 123.61, 122.42, 122.22, 122.11, 

121.31, 115.24, 114.71, 113.20, 112.28,  54.63 (OCH3), 37.52 (SCH2); HR-MS (ESI): calcd. for 

C19H16N4OS2: [M + Na+] 403.0663; found: 403.0667. 

(E)-N-(5-((3-(trifluoromethyl) benzyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) 

methanimine (2p) 

Yellow solid powder; M. p. 201.3–202.2 °C; yield 68%; IR (ν, cm–1 KBr): 3419 (N―H), 

3069 (Ar―H), 1670 (C N), 1577, 1462, 1426, 1328, 1246 (thiadiazole ring), 1064 

(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 11.34 (s, 1H, N－H ), 9.06 (d, J = 20.0 

Hz, 1H, HC N), 8.45 (d, J = 20.0 Hz, 1H, Ar―H), 8.27 (d, J = 8.0 Hz, 1H, Ar―H), 7.4 (q, 

J = 8.0 Hz, J = 12.0 Hz, 2H, Ar―H), 7.59 (d, J = 8.0 Hz, 1H, Ar―H), 7.20–7.46 (m, 4H, 

Ar―H), 4.70 (d, J = 12.0 Hz, 2H, SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 176.31, 

162.05 (thiadiazole ring-C), 159.67 (C N), 142.10, 137.87, 137.44, 129.91, 125.39, 123.95, 

122.41, 122.25, 115.23, 112.31, 36.54 (SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M + Na+] 

441.0431found: 441.0431. 

(E)-N-(5-((3,5-bis(trifluoromethyl)benzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-

yl)methanimine (2q) 

Yellow solid powder; M. p. 201.3–202.2 °C; yield 72%; IR (ν, cm–1 KBr): 3456 (N―H), 

3066 (Ar―H), 1650 (C N), 1577, 1496, 1437, 1375, 1243 (thiadiazole ring), 1050 
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(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 11.35 (s, 1H, N－H ), 9.03 (s, 1H, HC

N), 8.45 (d, J = 8.0 Hz, 1H, Ar―H), 8.26 (d, J = 4.0 Hz, 1H, Ar―H), 8.24 (s, 2H, Ar―H), 

7.99 (s, 1H, Ar―H), 7.59 (t, J = 4.0 Hz, 1H, Ar―H), 7.29–7.35 (m, 2H, Ar―H), 4.83 (s, 2H, 

SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 176.58, 162.18 (thiadiazole ring-C), 159.13 

(C N), 141.31, 137.88, 137.56, 131.36, 131.04, 129.99, 124.97, 123.96, 122.41, 122.28, 121.23, 

115.21, 112.32, 35.79 (SCH2); HR-MS (ESI): calcd. for C20H12F6N4S2: [M―H+] 487.0486; 

found: 487.0486. 

(E)-N-(5-((2-chloro-6-fluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth- 

animine (2r) 

Yellow solid powder; M. p. 194.6–195.5 °C; yield 63%; IR(ν, cm–1 KBr): 3489 (N―H), 

3063 (Ar―H), 1622 (C N), 1577, 1493, 1431, 1381, 1243 (thiadiazole ring), 1061 

(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 11.34 (s, 1H, N－H ), 9.09 (s, 1H, HC

N), 8.47 (d, J = 8.0 Hz, 1H, Ar―H), 8.28 (d, J = 4.0 Hz, 1H, Ar―H), 7.60 (t, J = 4.0 Hz, 

1H, Ar―H), 7.39–7.45 (m, 2H, Ar―H), 7.35–7.32 (m, 2H, Ar―H), 7.22 (t, J = 8.0 Hz, 1H, 

Ar―H), 4.73 (s, 2H, SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 177.02, 162.14 (thia-

diazole ring-C), 160.16 (C N), 158.79, 137.88, 137.54, 130.56, 130.46, 125.75, 123.96, 

122.43, 122.27, 117.01, 115.26, 114.63, 114.41, 112.30,  37.18 (SCH2); HR-MS (ESI): calcd. for 

C18H12ClFN4S2: [M + Na+] 425.0074; found: 425.0071. 

(E)-N-(5-((4-(trifluoromethyl) benzyl) thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) 

methanimine (2s) 

Yellow solid powder; M. p. 198.1–199.0 °C; yield 65%; IR(ν, cm–1 KBr): 3442 (N―H), 

3043 (Ar―H), 1653 (C N), 1574, 1490, 1442, 1389, 1243 (thiadiazole ring), 1081 

(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 12.29 (s, 1H, N―H ), 8.91 (s, 1H, HC

N), 8.28 (t, J = 12.0 Hz, J = 8.0 Hz, 2H, Ar―H), 8.22 (d, J = 8.0 Hz, 2H, Ar―H), 7.75 (d, J 

= 8.0 Hz, 2H, Ar―H), 7.54 (d, J = 8.0 Hz, 1H, Ar―H), 7.28 (s, 2H, Ar―H), 4.70 (s, 2H, 

SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 176.31, 162.05 (thiadiazole ring-C), 159.67 

(C N), 142.10, 137.87, 137.44, 129.91, 128.91, 125.42, 124.99, 123.95, 122.41, 122.25, 115.23, 

112.31, 36.54 (SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M―H+] 417.0456; found: 

417.0496. 

(E)-N-(5-((2-(trifluoromethyl)benzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-

yl)meth- animine (2t) 

Yellow solid powder; M. p. 194.7–195.6 °C; yield 63%; IR (ν, cm–1KBr): 3444 (N―H), 

3043 (Ar―H), 1636 (C N), 1561, 1496, 1448, 1336, 1246 (thiadiazole ring), 1055 

(C―S―C); 1H NMR (400 MHz, Acetone d6, δ, ppm): 12.34 (s, 1H, N－H ), 9.03 (d, J = 20.0 

Hz, 1H, HC N), 8.46 (t, J = 8.0 Hz, 1H, Ar―H), 8.27 (d, J = 8.0 Hz, 1H, Ar―H), 7.58–7.78 

(m, 4H, Ar―H), 7.23–7.39 (m, 3H, Ar―H), 4.71 (d, J = 8.0 Hz, 2H, SCH2); 13C NMR (101 

MHz, Acetone d6, δ, ppm) δ: 176.31, 162.05 (thiadiazole ring-C), 159.67 (C N), 142.10, 

142.10, 137.87, 137.44, 129.91, 128.94, 125.76, 125.42, 124.99, 123.95, 123.06, 122.41, 122.25, 

115.23, 112.31, 36.54 (SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M―H+] 417.0456; 

found: 417.0496. 

3.4. In vitro antifungal assay  

The antifungal activity of the novel compounds 2a-2t was performed based on the 

reported method [78]. The synthesized compounds were dissolved in a 20% acetone water 

solution. The solution of each compound was added to sterilized potato dextrose agar to 

get a final concentration of 500 μg/mL. After the mixture was cooled, the mycelium of 

fungi was transferred to the test plate and incubated at 25 °C for 4–7 days. When the my-

celium of fungi reached the edges of the control plate (without the added samples), the 

inhibitory index was calculated using the following formula:  

Inhibitory index (%) = (1-Da/Db) 
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where Da is the diameter of the growth zone in the test plate, and Db is the diameter of 

the growth zone in the control plate. Each experiment was performed three times, and the 

data points were averaged. The commercial fungicide triadimefon (100 μg/mL) was used 

as a control and tested in the same manner. 

4. Conclusion 

In the present study, a series of novel indole derivatives containing 1,3,4-thiadiazole 

scaffolds modified with thioether groups have been efficiently designed and synthesized. 

In addition, their antifungal activities were investigated against F. graminearum, F. ox-

ysporum, F. moniliforme, C. lunata, and P. p. var. nicotianae. The antifungal activity test re-

sults showed that some of the indole analogs exhibited better antifungal activity than the 

control reagent triadimefon. Compound 2j was identified as the most active against F. 

graminearum, F. oxysporum, F. moniliforme, and P. p. var. nicotianae with the inhibition rates 

of 100%, 95.7%, 89%, and 76.5%, respectively. Compounds 2j and 2q exhibited better an-

tifungal activity against C. lunata with inhibition rates of 81.9% and 83.7%, respectively. 

Compound 2j, as the representative compound, was used for further mechanistic studies. 

The indole derivatives containing modified 1,3,4-thiadiazole with the electron-withdraw-

ing ―NO2 group on the benzene ring showed better antifungal activity. Conclusively, the 

structural optimization of indole derivatives containing modified 1,3,4-thiadiazole with 

the electron-withdrawing groups on the benzene ring is a potential strategy to prepare 

analogs with improved antifungal activity.  
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