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Abstract: Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e. 

they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein 

aggregates that progressively spread through the neuronal network as the symptoms progress. Alz-

heimer's disease is one of these diseases. It is characterized by two lesions, neurofibrillary tangles 

(NFTs) and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors 

ranging from genetic mutations to age-related changes in the cellular context converge in this dis-

ease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to 

elucidate how structural determinants of its precursor (APP) modify Aβ production, and to under-

stand the processes leading to the formation of different Aβ aggregates; e.g. fibrils and oligomers. 

The synthesis proposed in this review indicates that the same motifs can control APP function and 

Aβ production essentially by regulating membrane dimerization, and subsequently Aβ aggregation 

processes. The distinct properties of these motifs and the cellular context regulate the APP confor-

mation to trigger the transition to the amyloid pathology. This concept can be transposed to the 

study of other protein folding disorders, to better decipher the patterns switching protein confor-

mation from physiological to pathological and improve our understanding of these mechanisms 

that devastate neuronal functions. 
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1. Introduction 

Many neurodegenerative diseases are classified into the family of protein folding (or protein conformation) diseases, 

which are characterized by the abnormal accumulation of aberrantly folded proteins [1-3]. About 50 diseases are re-

ferred to as protein folding diseases, including Alzheimer's disease (AD) and the Tauopathies, Parkinson's disease (PD), 

Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and prion diseases such as Creutzfeldt-Jakob disease 

(CJD). For the vast majority if not all of them, abnormal protein folding and aggregation are considered to play a caus-

ative role [1-3] . There is a great variety of disease-causing proteins that can be present alone or in combination, and 

some of them can be found across several diseases [4]. 
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The concept of protein folding disorder has its origins in the mid-19th century, when, in 1854, Rudolf Virchow coined 

the term amyloid, from the Latin word “amylum” (starch), to describe a substance in the starchy brain bodies that 

exhibited a chemical reaction resembling that of cellulose [5]. Indeed, a great number of protein folding diseases are 

associated with the formation of highly organized fibrillar aggregates often described as amyloids [4]. This group of 

protein folding diseases is also known as amyloidoses. However, it is worth noting that some protein folding diseases 

are characterized by protein aggregates that are not amyloid in nature [6]. In most, if not all protein folding diseases, a 

change in three-dimensional folding (conformation) increases the tendency of a specific protein to bind to itself [1]. In 

particular, the disease-causing conformational changes in amyloidoses lead to an enrichment in β-sheet structures, 

which are associated with an increased propensity to form amyloids. These insoluble protein aggregates, regardless of 

the source of the amyloid protein/peptide, share a common fibrillar configuration with a unique structural core [7,8]. 

Each fibril consists of multiple twisted protofilaments which in turn show a so-called cross-β structure, with stacked β-

sheet layers that run perpendicular to the long axis of the fibril. Additionally, the formation of amyloid fibrils is usually 

preceded by the generation of soluble oligomeric intermediates that are believed to be key drivers of cellular toxicity 

[9]. 

Proteins can acquire this fibrillogenic potential through pathological conformational changes, the underlying mecha-

nisms of which are not yet fully understood. Several risk factors have been demonstrated to increase the propensity of 

these vulnerable proteins to self-associate. For example, gene mutations have been linked to the onset of some protein 

folding diseases (HD, inherited forms of AD and PD, Tauopathies like FTDP17) and it has been proven that some of 

them affect the conformational dynamics of the disease-causing proteins [10]. Post-translational modifications (e.g., hy-

perphosphorylation) and changes in environmental conditions, such as temperature, pressure, pH, and concentration 

of organic solvents, can also affect the aggregation propensity of vulnerable proteins [4]. An imbalance in protein pro-

duction or clearing mechanisms can also lead to the accumulation of the amyloidogenic protein/peptide, indicating that 

misfolding processes are protein-concentration dependent [11]. Another key observation emerges from the study of 

these diseases. Although certain factors such as mutations are present in the individual at the outset, these only develop 

over time. Ageing is therefore a key factor that contributes to the context leading to protein misfolding. This is illustrated 

by the progressive build-up of cellular stressors (like reactive oxygen species or toxins) that might perturb the cell pro-

teostasis and therefore increase the accumulation of aberrantly folded proteins [12].  

Among neurodegenerative neuropathies, AD is the most prevalent and the most frequent form of amyloidosis. AD 

produces a progressive loss of memory and other cognitive functions, and it accounts for over 60 percent of dementia 

diagnoses. The clinical symptoms correlate with the gradual appearance of brain dysfunction and neurodegeneration, 

and the disease-defining pathological features consisting in extracellular senile plaques formed by the amyloid beta 

peptide (Aβ) and neurofibrillary tangles (NFT), which are intraneuronal aggregates primarily composed of hyperphos-

phorylated tau proteins. The gradual progression of protein aggregates allowed to set a staging that classifies the degree 

of pathology by correlating the density of lesions and clinical symptoms in specific brain regions [13,14]. From a molec-

ular point of view, our knowledge of the mechanisms underpinning AD pathogeny is mostly rooted in the amyloid 

cascade hypothesis (ACH), which states that an early alteration in Aβ production, clearance or deposition is central in 

the aetiology of AD [15,16]. The debate around ACH has only heated up in recent years [17], mainly because of the 

failure of compounds targeting amyloid pathology to restore cognitive function when tested in clinical trials. Still, the 

correlation between Aβ deposition and the progression of AD is supported by undeniable arguments combining bio-

chemical, anatomopathological and genetic evidence. AD causal mutations (responsible for autosomal-dominant AD 

or ADAD) are located in the genes encoding the Amyloid Precursor Protein (APP) or Presenilin 1 and 2 (PSEN1 and 

PSEN2, respectively) [18]. They trigger the accumulation of the Aβ peptide, which has a high propensity to aggregate, 
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eventually forming the extracellular senile plaques. Like in other protein folding diseases, these insoluble assemblies 

gradually accumulate, explaining the characteristic progressive nature of the neurodegenerative process and the com-

monly late onset of clinical symptoms. In this review, we set to provide a structural perspective on the determinants 

that drive the generation of pathogenic Aβ peptides. 

2. The Amyloid Precursor Protein Family and Aβ production 

The Amyloid Precursor Protein (APP) belongs to the APP protein family which includes APP, APLP1 and APLP2 in 

mammals [19-22], APPa and APPb in zebrafish [23] and APPL in drosophila [24]. The evolution of the APP gene family 

(for a review see [25]) indicate that the functions of APP, APLP1 and APLP2 have diverged to contribute distinctly to 

neuronal processes. After the discovery that Aβ was the main component of AD amyloid fibrils [26] and subsequent 

identification of APP [19,27] and APLPs [22,28,29] genes, extensive studies in knock-out models brought the assumption 

that APP, APLP1 and APLP2 are partially functionally redundant (for a review see [30]). The assumption that APP and 

APLPs have overlapping functions is also supported by the similarities in their expression pattern, biochemical pro-

cessing and structure properties. All members of the APP family possess a large ectodomain composed of the E1 and 

E2 domains. Besides the E2 domain [31-33], the structures of the APP protein family have only partially been solved by 

conventional techniques. Yet, the recent advances in structure prediction algorithm led by AlphaFold [34] allow a rea-

sonable approximation of the respective structures of APP, APLP1 and APLP2. Figure 1 depicts the predicted structures 

of each segment of the APP and APLP proteins. Close analysis reveals that isolated fragments of the extracellular do-

mains are almost identical in structure, with the inter-fragments predicted unstructured. The E1 domain is composed 

of two separate segments, corresponding to the Growth-Factor Like Domain (GFLD) and copper-binding domain 

(CuBD). GFLD is made of two β-sheet separated by an α-helix and the CuBD consists of a three-stranded antiparallel 

β-sheet [35]. The E2 domain is formed by two coiled-coil 𝛼-helices which are conserved in all three members of the APP 

family [33,36] (Figure 1). The Kunitz-type protease inhibitor (KPI) domain is specific to APLP2 and long isoforms of 

APP (APP770 and APP751) and not present in the neuronal isoform (APP695). It is composed of double-stranded β-sheets 

with a small 𝛼-helix [37]. Functionally, the extracellular domain of APP/APLPs binds components of the extracellular 

matrix such as heparin and collagen via the E1 and E2 domain [38,39]. Interaction with heparin plays a role in neurite 

outgrowth [40], APP/APLPs dimerization [36,39,41] and cell-cell adhesion [42]. The E1 and E2 domain are also reported 

to bind zinc and copper [43,44] via the E1 copper/zinc binding domain (Cu/Zn BD) (Figure 1) and less well-defined sites 

of the E2 domain. Binding of zinc and copper regulates APP and APLPs cis and trans-dimerization, possibly by regu-

lating their interaction with heparin [45-48]. Interestingly, the major neuronal isoform of APP (APP695) [49] does not 

contain the KPI domain whereas longer isoforms that contain the KPI are expressed in the periphery and to a significant 

level in platelets, in agreement with the reported role of APP KPI as an inhibitor of multiple coagulation factors [50].  

The transmembrane (TM) domains of APP and APLPs are formed of a single 𝛼-helix and the intracellular domain is 

mostly unfolded with the exception of the C-terminus which is composed of two small 𝛼-helices (Figure 1). The simi-

larity between APP/APLPs and Notch processing (see below) led some authors to hypothesize that the APP and APLPs 

[51] Intracellular C-terminal Domain (AICD) could possess signaling functions (see [52] and [53] for a review). Reporter 

gene assays based on Gal4-fusion constructs suggested that AICD could act as transcriptional regulator [54,55], but the 

controversy about the transcriptional activity of AICD and its target genes has only grown since then [56,57].  
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Figure 1. Structure of the APP proteins family 

Structure of the APP and APLPs proteins predicted by AlphaFold 2.0 [34]. The structure of folded domains of each protein are shown 

as cartoon in red, yellow and blue for APP770, APLP1 and APLP2, respectively. Unstructured regions are not shown. The domains 

corresponding to each structure are detailed with amino acid numbering equivalent to the start and end of each subdomain. The 

YENPTY motif corresponds to the internalization motif conserved in all members of the APP family. HB: Heparin Binding (orange), 

CB: Collagen Binding (green), Cu/Zn BD (blue): Copper/zinc Binding Domain, GLFD: Growth factor-like domain. 

2.1. Sequential processing of the APP and APLPs and production of β-amyloid peptides 

The structural similarities between APP family members goes hand in hand with the overlapping functions of APP, 

APLP1 and APLP2. Yet, APP is the only member of the family giving rise to the formation of pathogenic Aβ aggregates. 

Members of the APP family are processed via two different pathways (Figure 2A). The most common pathway was 

coined non-amyloidogenic or anti-amyloidogenic due to its inability to produce amyloidogenic Aβ fragments [58,59]. 

In the non-amyloidogenic pathway, APP processing begins with the shedding of the ectodomain by a membrane-bound 

𝛼-secretase of the ADAM family [60]. The main 𝛼-secretase for APP is ADAM10 [61] while studies suggest that TACE 

is the preferred 𝛼-secretase of APLP2 [62]. The cleavage by the 𝛼-secretase is sequence independent and occurs at a 

distance of 12-13 residues from the TM domain [63] to release the ectodomain (sAPP𝛼 in the case of APP) and the 

membrane-anchored C83 fragment. In the amyloidogenic pathway, a β-secretase (BACE1) always starts the cleavage a 

few amino acids upstream of the 𝛼-cleavage site to release sAPPβ. BACE1 is an aspartyl protease which possesses some 

level of sequence specificity although large discrepancies do exist between cleavages sites (for a review see [64]). This 

low level of sequence specificity results in two possible β-cleavage sites of APP. The one after Glu682 produces C89 but 
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only the cleavage after Asp672 can generate the C99 that enables production of amyloidogenic Aβ peptides [65]. Muta-

tions responsible for inherited AD are reported to promote the cleavage at Asp672 (i.e. the APP Swedish or APP 

KM670/671NL mutation) by providing a more favorable environment for β-cleavage at Asp672 [66,67]. The two other 

members of the APP family, APLP1 and APLP2 are also processed by the β-secretase to produce C-terminal fragment 

(CTF) of 100 and 104 residues, respectively (Figure 2B). In both the amyloidogenic and non-amyloidogenic pathways, 

CTFs resulting from 𝛼- or β-cleavage are further processed by a 𝛾-secretase complex. After initial 𝜀-cleavage at posi-

tion 48-49 (Aβ numbering in APP) which releases AICD and Aβ48-49 [68], the 𝛾-secretase performs intramembrane suc-

cessive cleavage of three (or four) residues at a time to produce C-terminal Aβ fragments ranging from 36 to 43 amino 

acids [69,70], of which Aβ42 and Aβ43 have strongest oligomerization properties. This highlights the observation that the 

C-terminus of Aβ peptides is key for aggregation. Similarly, APLP1 and APLP2 are processed by 𝛾-secretase complex 

but do not lead to the production of peptides with amyloidogenic properties [71,72], illustrating that Aβ-like oligomer-

ization is a property specific to the APP sequence (i.e transmembrane (TM) and juxtamembrane (JM) sequences) present 

in Aβ peptides. These sequences or motifs provide Aβ with fibrillogenic properties once it has been released upon γ-

cleavage of C99. In addition to a specific C-terminal sequence, the pathologic properties of Aβ are also associated with 

the LVFF motif [73] (see below) present in the Aβ central region, which forms a β-hairpin and also plays a regulatory 

role in 𝛾-secretase processing [74]. This motif is present only in APP and is not restricted to the C99 produced by β-

secretase cleavage (Figure 2B), but also present in C83. To date, the role of the N-terminus of Aβ sequence has been less 

investigated but it may impact the stabilization of Aβ aggregates [75]. In this respect, it is important to note that human 

and murine Aβ only differ by 3 amino acids residues in the N-terminal regions, and that murine Aβ is not amyloido-

genic. Overall, growing evidence indicates that some peculiar motifs, present in the human Aβ sequence (and not in 

related peptides generated by APLP1/APLP2 processing) could play a role in amyloid pathology both (i) by regulating 

Aβ production and (ii) by promoting or preventing the assembly of Aβ building blocks into amyloid fibrils. 
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Figure 2. Processing of the APP protein family 

A. Illustration of APP processing. The sites of 𝛼, β and β’ cleavage are shown with amino acids corresponding to cleavage position. 

Upon cleavage by 𝛼- or β-secretase, fragments called sAPP 𝛼, sAPPβ and sAPPβ’ are released and secreted and C83, C89 or C99 

remain embedded in the membrane, respectively. C99 contains the complete Aß sequence while C89 and C83 have truncated (11-X 

and 17-X, respectively) Aß sequences. The Aß 17-X is also called the P3 fragment. The first cleavage by 𝛾-secretase occurs at the 𝜀 

site to release AICD prior to intramembrane proteolytic cleavage of 3 or 4 amino acids to produce amyloid β (Aβ) peptides from 36 

to 43 amino acids. B. Sequence alignment of APP C99, C89, C83 and APLP1/2 β-CTF. The alignment illustrates sequence differences 

between the members of the APP family. The LVFF motif (red) is present only in APP while the C-terminal fragment is similar 
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between APP and APLP2. The cleavage sites of 𝛾-secretase are mostly conserved between all members of the APP family. The bottom 

chart illustrates the conservation of amino acid per position based on their properties with values ranging from 0 (no conservation) 

to 9 with * representing perfect conservation.  

 

3. Transmembrane interactions and amyloidogenic processing  

The finding that APP forms dimers by homo- and hetero-interactions with other APP family members [42,76] was in-

strumental to the hypothesis that APP dimerization was a regulatory mechanism for its processing and function. Di-

merization of APP was described early in the field and was first associated to its binding to heparin and collagen via 

the ectodomain [77]. Later, it was discovered that APP dimerization promoted the production of Aβ [78]. Homo-dimer-

ization of APP was initially described between different segments of the ectodomain and for its role in cell-cell adhesion 

[42,79]. 

Transmembrane (TM) and juxtamembrane (JM) motifs involved in protein-protein interactions have attracted particular 

interest. Regarding the remarkable conservation of APP and APLPs TM sequences, thes motifs might be involved in 

dimerization between all the members of the family. In addition to their involvement in dimerization, these motifs 

present in APP are found precisely in the Aβ sequence and in the vicinity of the APP cleavage sites releasing Aβ. Such 

motifs are GxxxG and GxxxG-like motifs, also known as Glycine zippers, and were described as key regulators of APP 

amyloidogenic processing [80,81]. GxxxG motifs were initially identified in the glycophorin A TM region [82-85]. The 

groove formed by an amino acid without lateral chain (Gly) in an α-helix context allows close appposition of TM helices 

and packing into dimers by non-covalent interactions formed by amino acids surrounding the GxxxG sequence. Muta-

genesis and structural analyses have revealed numerous examples in which the interaction between TM helices of sin-

gle-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif, where (small) designates amino acid 

residues with short side chains such as alanine. The interaction strength of motif-containing helices depends strongly 

on the sequence context and membrane properties. Several GxxxG-containing TM domains can interact via interfaces 

involving residues (hydrophobic, polar, aromatic) that are not organized in recognizable motifs. Importantly, in multi-

pass membrane proteins, GxxxG motifs can be involved in protein folding, and not just oligomerization [86,87]. GxxxG 

and GxxxG-like motifs are enriched in protein TM regions, and strikingly, APP contains 3 in-register GxxxG motifs in 

its TM/JM region (Figure 3A), with an ADAD mutation (Flemish or A692G) adding a fourth motif in the JM sequence 

[88]. Such an occurence of 3 GxxxG motifs is very rare (Figure 3B) and oberved only in 17 human type I TM proteins 

(22 in mus musculus), and only 1 protein contains 4 GxxxG motifs in the region comprising the TM and 6 surrounding 

residues on each sides. Intriguingly, the prion protein involved in prion disease by the misfolding of the endogenously 

expressed prion protein (PrPC) into an abnormal isoform (PrPSc) that has infectious properties, also contains a string 

of 3 in-register GxxxG motifs in its hydrophobic region [89]. However, main diffrences are that PrPC is a membrane-

anchored and not a TM protein, and that the hydrophobic regions -known as the hydrophic tract- lie outside the α-

helical C-terminal domain, therefore possibly in another conformation than the APP TM region. In the case of APP, 

GxxxG motifs are indeed involved in TM interactions once the bulky ectodomain has been removed by α- or β-secretase 

shedding (Figure 2A) and play key regulatory functions in APP the dimerization and processing of APP CTFs [79,90]. 

An important advance came from solid state Nuclear Magnetic Resonance (NMR) studies and other biophysical ap-

proaches applied to the JM-TM domains of APP. Using peptides resuspended in membrane-like bilayers, like 

dimyristoyl-phosphocholine (DMPC) : dimyristoylphosphoglycerol (DMPG) bilayers, structural data indicated that the 

LVFF motif preceding the first GxxxG motif forms a β-sheet structure, that the GxxxG are likely helical and that the 

helicity of the first GxxxG motif is enhanced by the A21G motif and by cholesterol [91,92]. Earlier NMR studies in 
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detergent or detergent-lipid mixtures [93,94] showed a different picture for LVFF and GxxxG motifs that did not fit with 

processing. Careful titration of detergent by FTIR spectroscopy showed that detergent induced the helical structure of 

LVFF rather than the natural β-sheet. Interestingly, cholesterol appears to bind to the aromatic residues of the LVFF 

motif and influence the downstream structure [92]. Last but not least, introducing the Flemish mutation (A692G or 

A21G in Aβ numbering, see above) and addding cholesterol to the experimental context exerted additive effects on the 

helicity of the first GxxxG motif and on amyloidogenic processing [95]. Thus, APP processing at γ-sites might be con-

troled by specific orientations and interactions of its TM domain, these processes (orientation and intercation) being 

controled by the cellular context and in particular by the lipid composition of the membrane leaflets. 

 

Figure 3. The role of C99 dimerization in Amyloid β generation 

A. Illustration of the role of GxxxG motifs in APP C99 dimerization. The figure illustrates the two dimerization interfaces described 

in [96]. The conformation shown left contains the 25GXXXG29 motif in the interface and was associated with production of SDS-

resistant Aβ hexameric species. The conformation shown right interface contains the 33GXXXG37 motif in the interface and was linked 

to generation of AICD signaling properties and promotion of the Aβ42 processing line [96]. Glycines are shown in red, with the one 

in the interface shown as bubbles. B. Occurrence of GxxxG motif in the TM-JM segments of type I TM proteins in the homo sapiens 

(black) and mus musculus (blue) proteome. Only one human protein contains 4 GXXXG in the TM-JM segments (not visible in the 

graph). 

3.1. Dimeric conformation of C99 regulates γ-secretase processing 

Interest for the dimerization of APP C99 occurred later with the observation that a large proportion of FAD mutations 

occurred in the TM-JM domain where TM interaction motifs are located. The observation that GxxxG motifs and dimer-

ization of APP regulated Aβ production provided strong arguments for an influence of TM dimerization in its pro-

cessing by the 𝛾-secretase. The role of APP/C99 dimerization in the regulation of 𝛾-secretase processing was exten-

sively investigated [81,97-103] but led to two contradicting observations. On one hand, dimerization was found to in-

crease generation of pathogenic Aβ. For example, Scheuermann and colleagues designed stable APP homodimers by 

introducing the K699C mutation (K624C in APP695 numbering) at the extracellular JM-TM section ahead of 𝛾-secretase 

cleavage sites and showed that dimerization dramatically increased Aβ production [78]. In line with these findings, 

compounds that reduced Aβ42 generation were shown to act by interfering with APP TM dimerization [104]. On the 
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other hand, different lines of evidence suggested that forced APP TM dimerization was not compatible with 𝛾-secretase 

processing. Using a system in which dimerization is imposed from the intracellular domain, Eggert and colleagues 

observed that controlled dimerization resulted in decreased Aβ generation [105]. But more recently, the acquisition of 

the cryo-EM structure of 𝛾-secretase in complex with C83 hinted that processing of C-terminal fragments (CTF) could 

indeed not occur in their dimeric form [106], in line with our own observations using a cell-free 𝛾-secretase processing 

assay [96]. A first answer to these apparently contradicting observations was provided by our finding that GxxxG motifs 

were critical in regulating the orientations of TM dimerization and that a specific interface was required for amyloido-

genic processing [90]. Using a system of fusion proteins that force dimerization of TM helices in all possible orientations, 

we demonstrated that precise dimeric orientations of C99 controlled 𝛾-secretase processing by regulating the initial 𝜀-

cleavage and therefore influencing AICD-dependent signaling and generation of Aβ42 [96]. Noteworthy, the dimeric 

orientation resulting in enhanced Aβ42 production and AICD-dependent signaling contained GxxxG motifs in the inter-

face, but unfolding is mandatory for γ-processing since covalently bound APP CTFs are not further processed [96]. 

3.2. APP dimeric conformation controls its intracellular localization and Aβ generation 

In addition to its role in the regulation of processing, multiple lines of evidence indicate that dimerization of C99 is both 

a regulator and a consequence of its subcellular localization. The impact of APP dimerization on its subcellular locali-

zation was only recently investigated. A link between dimerization and subcellular localization was first suggested by 

Ben Khalifa and colleagues who observed that APP dimers were mostly present in the secretory pathway [79]. Using a 

model of forced dimerization of full-length APP, Eggert and collaborators analyzed in more detail the role of APP di-

merization on subcellular localization and observed that APP dimerization resulted in increased localization in the en-

doplasmic reticulum (ER) and in endosomes, where the generation of pathogenic Aβ is believed to occur, by modulating 

its interaction with LRP1 and SorLA [107] (reviewed in [108]). The role of dimerization in intracellular trafficking was 

extended by Perrin and colleagues who observed that different dimeric orientations of C99 resulted in distinct subcel-

lular localization in primary neurons and that the Aβ42 processing line was favored by a dimeric conformation that 

resulted in decreased cell surface and increased intracellular localization [96]. 

To better understand the impact of subcellular localization on amyloidogenic processing (see Figure 4), one must keep 

in mind that 𝛾-secretase is composed of four subunits, namely Nicastrin, Aph1, Pen-2 and Presenilin 1/2 (PS1/2, en-

coded by the PSEN1 and PSEN2 genes, respectively) [109]. The catalytic core of 𝛾-secretase is composed by either PS1 

or PS2 which harbor two aspartate catalytic residues (e.g. Asp287 and Asp387 for PS1) [110,111]. The fact that mutations 

in PSs are the most common cause of FAD highlights their critical role in the pathology (for a review see [112]). The link 

between subcellular localization of APP and PSs was recently investigated by Sannerud and colleagues [113]. Using a 

wide variety of approaches, they elegantly demonstrated that PS1 and PS2 have distinct subcellular localizations which 

impact C99 processing. More specifically, they observed that PS2 was addressed to late endosomes/lysosomes by its N-

terminal dileucine sorting motif E16RTSLM21 via interaction with AP-1 while PS1 was more ubiquitously expressed, 

notably at the plasma membrane. As suggested before [114], secreted Aβ peptides were increased in the absence of PS2 

but intracellular Aβ and Aβ42/Aβ40 ratio was higher in the absence of PS1. They further observed that cleavage of C99 

in late endosomes was associated with the formation of aggregation-prone Aβ peptides that were less efficiency secreted. 

Remarkably, these results correlated with those obtained in two of our recent studies. In Perrin et al., we found that the 

dimeric orientation of C99 that favored the Aβ42 processing line and localized in intracellular compartments was more 

efficiently processed by PS2 [96]. In Vrancx et al., we reported that specific hexameric-like Aβ42 assemblies were majori-

tily produced by PS2 in vesicular compartments [115]. The fact that PS2 favors Aβ42 processing line in late endosomes 

must also be put in perspective with the observation that BACE1, the limiting enzyme of APP amyloidogenic processing, 

is predominantly found in endosomal compartments [116-119]. Together, these observations provide strong arguments 
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for a crosstalk between C99 dimerization, subcellular localization and generation of pathogenic amyloid β. It is also 

interesting to mention that TM interaction motifs discussed above are not restricted to APP but are also found in PSEN1 

and PSEN2 [120], and in the Aph-1 subunit of the γ-secretase [121], and that the hydrophilic loop of PSEN1 together 

with APP GxxxG TM motif regulate γ-secretase function in generating pathogenic Aβ peptides [122]. These observa-

tions indicate that the role of TM interaction in amyloid pathology might not be restricted to the substrate (APP) but 

might act all along the processing line controlling the orientation of APP dimers, the docking and fitting in the γ-secre-

tase complex and eventually the formation of pathogenic Aβ species. 

 

 

Figure 4. The role of C99 dimerization in Aβ generation 

Illustration of the role of C99 dimerization, cholesterol concentration and PSs localization on APP/C99 processing and Aβ generation. 

Initial cleavage by 𝛼- or β-secretase occurs at the plasma membrane or in endosomes, respectively. In addition, low cholesterol 

concentration favors 𝛼-cleavage while high cholesterol content is associated with β-cleavage. After initial cleavage, γ-secretase can 

occur either at the cell surface (preferably by PS1) or in endosomes (preferably by PS). One hypothesis is that medium cholesterol 

concentration favors dimerization in one of the two dimeric orientations with either 25GxxxG29 or 33GxxxG37 motif in the interface. 

Such dimeric concentration targets C99 either to endosomes (33GxxxG37 interface) or to the cell surface (5GxxxG29 interface). When 

concentration of cholesterol increases (like in lipid rafts), dimerization is destabilized to allow processing by PS1 or PS2-dependent 

γ-secretase.  
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3.3. The role of lipids in C99 dimerization and amyloidogenic processing 

Cell membranes are a buoyant environment and are largely heterogeneous in their composition. The link between AD 

and the lipid composition of membranes had already been suggested by Alois Alzheimer who observed “lipoid gran-

ules and “adipose inclusion” as a third hallmark of Alzheimer’s disease [123,124]. A large body of evidence has since 

confirmed that lipid composition was indeed a critical factor influencing AD pathogenesis (reviewed in [125,126]). Cho-

lesterol was early found to be a major risk factor of Late Onset Alzheimer’s Disease (LOAD) [127-129]. This argument 

is reinforced by the identification of the allele 𝜀4 of ApoE, a major lipoprotein involved in cholesterol transport, as the 

most important risk factor of non-familial AD [130-132]. Early studies also indicated that low cholesterol promotes 𝛼-

cleavage and non-amyloidogenic processing [133,134] whereas β-cleavage and amyloidogenic processing is favored by 

high cholesterol content [135] found in lipid rafts [136]. The role of cholesterol in C99 dimerization remains largely 

controversial. Different lines of evidence support the observation that C99 directly interacts with cholesterol [93,137,138]. 

Nuclear Magnetic Resonance (NMR) analyses revealed that interaction between cholesterol and C99 involved essen-

tially the N-terminal loop of C99 and residues Glu693 and Asn698. Interestingly, glycines of the first GxxxG motif also 

seemed to directly bind cholesterol [138]. In line with the observation that GxxxG motifs interact with cholesterol, Song 

and colleagues suggested that cholesterol binding to C99 competed with homodimerization [139] and others showed 

that lowering cholesterol inhibited Aβ production by promoting APP dimerization [140]. These results are intriguing 

since a large body of evidence linked C99 dimerization to amyloid β production. Yet, other investigations tend to show 

that rather than preventing dimerization, cholesterol modulates the conformation of C99 dimers. Studies from Tang 

and colleagues indicated that the 25GxxxG29 motif was in fact stabilized by cholesterol [92] and others suggested that the 

membrane micro-environment and cholesterol, rather than competing with homodimerization of C99, had a role in the 

regulation of C99 dimeric conformation [141-143]. These studies differ notably by the composition of the membrane 

environment used, not only in percentage of cholesterol but also in other lipids that may impact C99 dimerization. One 

plausible scenario is that a moderately increased level of cholesterol promotes C99 dimerization in a particular confor-

mation related to increase amyloidogenic processing. This conformation may target C99 dimers to lipid raft where the 

very high cholesterol content induces destabilization of C99 dimers thereby allowing processing by the 𝛾-secretase and 

generation of Aβ peptides (Figure 4). 

An important question concerns the thickness of the membrane; directly related to lipid composition. A thicker mem-

brane will embed more residues in the juxtamembrane region and change tilt and ionization of the residues bordering 

the TM domain. The same sequence can also fold as an 𝛼-helix, random coil or β-strands in different environments. 

The use of lipid formulations close to that of the cell membrane allowed the conclusion that the GxxxG motifs are helical 

[92], yet in less physiological environments they form other structures [94], which is relevant for post-cleavage events 

and formation of oligomers. Moreover, prediction by replica-exchange molecular dynamics simulations of wild-type 

(WT) and mutant APP dimer conformations in which Gly residues from GxxxG motifs were changed to Leu illustrated 

large conformational differences in a membrane context. Dimerization of the WT (GxxxG) is due to two hydrogen bonds 

between two APP fragments, whereas dimerization of the mutant (LxxxL) is due to hydrophobic interactions. In the 

mutant, each APP fragment is more tilted, and the 𝛾-cleavage site is shifted toward the center of the membrane. This 

position produces a mismatch between the active site of γ-secretase and the γ-cleavage site of APP that might impair 

Aβ production [144]. 

3.4. Impact of familial AD mutations on APP TM dimerization: a link with Aβ production? 

The fact that over 20 FAD mutations are located in APP TM domain illustrates the importance of this region for patho-

genic Aβ generation. Yet, their influence on Aβ production through C99 dimerization remains quite elusive. Using 

synthetic peptides, Gorman and colleagues found that the V717G, V717F (Indiana) and T714I (Austrian) mutations all 
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decreased TM dimerization and concluded that TM dimerization was negatively associated with pathogenic Aβ gener-

ation [145]. Likewise, others concluded that FAD mutations in the 714TVIV717 TM segments induced lower dimerization 

[146]. Conversely, So and collaborators analyzed dimerization of full-length APP FAD mutants with techniques includ-

ing biomolecular fluorescence complementation (BiFC) and live cell crosslinking and found that FAD mutations did 

not significantly affect the overall level of dimerization [147]. These observations might suggest that APP FAD muta-

tions do not act by increasing C99 dimerization levels but may rather induce modulation of C99 dimeric interface. Con-

sistently, we observed that the APP Flemish mutation (A692G) promotes dimerization in a conformation that puts the 

GxxxG motif in the interface and increases Aβ42 production [95]. But strikingly, results obtained with split protein assays 

indicated that mutations of Gly residues present in APP GxxxxG motifs did not affect the number of dimers formed, 

but rather generated specific Aβ assemblies [99]. This led to a new hypothesis. The TM interaction motifs (i.e. GxxxG or 

GxxxG-like) might indeed not only control dimerization and processing, but also the processes involved in Aβ assembly 

that leads to toxic aggregates. This hypothesis was reinforced by our most recent findings showing that forcing the 

25GxxxG29 interface in dimeric Aβ42 and Aβ43 assemblies resulted in the generation of SDS-resistant hexameric Aβ species 

while forcing dimerization in the 33GxxxG37 interface did not allow generation of such oligomers, even in the context of 

highly amyloidogenic Aβ42 and Aβ43 [96]. 

3.5. JM/TM determinants drive aggregation steps (nucleation) leading to pathological Aβ seeds  

When the soluble Aβ (sAβ) peptides accumulate they tend to spontaneously self-aggregate, eventually leading to the 

formation of fibrillar amyloid lesions. Over the past decades, a growing body of evidence indicated that Aβ intermedi-

ates, in particular soluble oligomers, are the primary cause of synaptic dysfunction and Aβ toxicity observed in AD. 

Indeed, while Aβ fibrils are large, insoluble materials aggregating into plaques, Aβ oligomers are soluble and may easily 

spread throughout the brain. Many oligomeric structures seem to play an important role in Aβ assembly and to have 

deleterious effects that could explain its related toxicity. For instance, dimers and trimers of Aβ have been consistently 

linked to long-term potentiation impairments [148-150]. Understanding the process of Aβ aggregation is crucial for 

identifying assembly steps that may be targeted by disease-modifying drugs. 

Unlike the Tau protein for instance, in which post-translational modifications (and especially phosphorylation) are 

tightly associated with abnormal folding and aggregation, few post-translational modifications (PTMs) are described 

on Aβ and their possible role in Aβ aggregation remains uncertain. The Aβ peptide has been demonstrated to undergo 

several types of posttranslational modification, such as pyroglutamylation, N-terminal truncation, oxidation, glycosyl-

ation, nitration, isomerization, racemization and phosphorylation [151,152]. However, whilst modified forms of Aβ are 

further investigated as potential markers of AD progression [153], such modifications are known to not be necessary 

for the induction of Aβ aggregation and subsequent deleterious effects. 

One exception might be the phosphorylation of serine residue at position 8 and 26 (Aβ numbering) that has been re-

ported to promote the formation of oligomeric Aβ assemblies or to stabilize them, respectively [154,155]. Thus, intrinsic 

determinants much more than PTMs are likely to be at hold for aggregation. This might be highly regulated both (i) by 

the nature of the C-terminal end and (ii) by the presence of peculiar motifs that promote the folding and packaging of 

Aβ into oligomers and fibrils. The length of the Aβ peptide is correlated to its aggregation properties, with the longest 

forms (Aβ42 and Aβ43) being more hydrophobic and prone to assemble into oligomers and further elongate into fibrils. 

A faster rate of aggregation of Aβ42 in comparison to Aβ40 and a stable set of oligomers with a diameter distribution of 

~7 to 9 nm was prevalently observed uniquely for Aβ42 even after fibril appearance [156]. Aβ assembly relies on a process 

called "nucleated polymerization", involving three distinct phases: (i) a nucleation phase -or lag phase- during which 

several unfolded or partially folded monomers of Aβ come together to form an oligomeric nucleus, (ii) an elongation 

phase -or growth phase- in which the nuclei rapidly grow by further addition of monomers, giving rise to prefibrillar 
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structures then ordered protofibrils , and (iii) a stationary phase -or equilibrium- where the concentration of monomers 

is low and constant, the assembly process reaches saturation and protofibrils assemble into mature fibrils (Figure 5). 

The nucleation phase relies on Aβ monomers undergoing conformational changes and misfolding, which renders it 

thermodynamically unfavorable, whereas the elongation phase is much more favorable and occurs rapidly. In primary 

nucleation, the initial formation of amyloidogenic nuclei occurs without contribution of pre-formed oligomers and con-

stitutes the rate-limiting step. Amyloid fibril formation may also be seeded by the presence of preformed aggregates -

oligomers, protofibrils or fibrils- [157]. As a consequence, a whole set of Aβ assemblies intermediate in Aβ fibril for-

mation are present in the brain parenchyma. Some of them were shown to be readily formed in cells and having seeding 

properties when monomeric Aβ42 is available [115,158] 

Peculiar motifs present in the Aβ sequence largely contribute to its complex aggregation properties. Strikingly, TM 

interaction motifs appear to play a key role not only in Aβ dimerization but also in aggregation. In particular, the GxxxG 

motifs described above, which acquire aggregation properties after the transition from the α-helical structure found in 

the TM context to the β-sheet structure present in Aβ peptides. Glycines from GxxxG allow the turn in the β-helix and 

form a rigide and groove structure in the β-sheet that allows stacking of amyloid fibrils [159]. It is tempting here to draw 

a parallel between GxxxG motifs involved in TM dimerization and their role in Aβ assembly by raising some key ques-

tions. Could Aβ stubs initially folded in an α-helical structure (corresponding to APP TM structure) assemble into di-

mers that would initiate the nucleation process and promote the conversion to larger Aβ nuclei (Figure 5)? Some recent 

work supports this exciting hypothesis. First, specific orientations of APP TM orientations engaging a GxxxG interface 

lead to the production of specific (hexameric-like) Aβ assemblies. Remarkably, forcing a specific 𝛼-helical orientation 

of Aβ42 and Aβ43-like peptide dictates their ability to form oligomeric species [96]. Additionally, it has been recently 

reported that modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers, result-

ing high local concentration of tethered amyloidogenic segments within these 𝛼-oligomers facilitates transition to a β-

oligomer population that ultimately generates mature amyloid [160]. Motifs located in the Aβ N-terminal segment are 

also involved in Aβ agegation. This is partiluraly sound, since the N-terminal region of Aβ is present in the JM regions 

of its precusor (APP), that shows poor conservation across the APP family members. It makes therefore sense that in-

trinsic aggregation properties of Aβ directly relate to its N-terminal/central region. The LVFF motif (see above) plays a 

critical role in the Aβ assembly process. This LVFF sequence was initially proposed as an 𝛼-helix region, that acts as a 

cholesterol sensor regulating APP processing [161,162]. Incorporation of cholesterol into model membranes enhances 

the structural changes induced by FAD mutations, suggesting a common link between familial mutations and the cel-

lular environment. However, the LVFF motif was more recently shown to be predominantly β-sheet in membrane bi-

layers that, when disrupted by changing lipid composition, increase Aβ production. In this β-sheet conformation, it can 

match hydrophobic motifs in Tau repeats and accelerate their aggregation via polymorphic states, appearing thus as a 

major interactor in both types of AD protein folding disorders [163]. 
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Figure 5. Steps of amyloid β aggregation 

Illustration of putative nucleation steps of Aβ adapted from [164]. γ-secretase cleaves monomers of C99 (see above) but released Aβ 

peptides may rapidly re-form dimers centered on the GxxxG motifs. In the nucleation phase, dimer formation is the initial step 

leading to the formation of higher-order species (hexamers are represented) whose nucleation is mediated by Aβ C-terminus. These 

oligomers are usually forming β-sheets but may go through a transient step to form 𝛼-oligomers that rapidly switch to more stable 

to β-oligomers initiated by the LVFF motif. Elongation occurs by assembly of β-sheet oligomers into fibrils. 

4. Conclusion and future directions 

Alzheimer’s disease is the first cause of dementia and global aging of the population is set to cause a dramatic rise in an 

already very high number of cases. Despite recent controversy, the amyloid cascade hypothesis remains the most widely 

accepted in the scientific community given the robustness of its genetic and biochemical arguments. Yet, clinical trials 

targeting amyloid plaques have all failed to provide the expected benefits. These failures might be rooted in the fact 

that most trials have focused on targeting amyloid deposits rather than circulating Aβ oligomers, which are more be-

lieved to be the toxic species associated the cognitive decline, although this hypothesis is also fiercely debated. In the 

end, the involvement of amyloid pathology in AD has been the subject of as much debate -if not more- as recent ad-

vances in knowledge. 

Still, in recent years, important observations have advanced our understanding of the structural determinants that lead 

to the formation of toxic oligomers. The discovery that C99 dimerization and its dimeric orientations regulate its pro-

cessing to generate pathogenic Aβ species was instrumental to understand how amyloidogenic processing occurs. Re-

cent advances highlight how different factors modulate the conformation of C99 dimers that in turn regulates amyloi-

dogenic processing. Amongst them, membrane composition and in particular cholesterol content seems to play a key 

role in the development of sporadic AD. The allele 𝜀4 of ApoE, the main apolipoprotein involved in cholesterol home-

ostasis in the brain, is the principal risk factor for sporadic AD [130,165]. In addition, hypercholesterolemia was found 

to increase the production of Aβ oligomers in the brain of mouse models [166] and post-mortem analysis of the brain of 

AD patients demonstrated increased levels of cholesterol [167]. Despite this observation, the understanding of the role 

of membrane composition in the modulation of C99 dimeric conformations and generation of toxic amyloid species has 

been slowed and complicated by the heterogeneity of the methods used to recapitulate biological membranes.  

Another critical question is whether the same motifs that regulate C99 processing and localization are also involved in 

the initial steps of Aβ oligomerization. Recent studies from two independent groups strongly suggest that early 
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nucleation of Aβ could occur in a transient helical conformation and that modulation of the dimeric orientation of helical 

Aβ-like peptides dictates the generation of Aβ oligomers [96,160]. This contrasts with the previous idea that Aβ oligo-

mers are essentially formed of closely packed β-sheet. If this scenario holds true in future research, this would give 

additional weight to the role of GxxxG motifs and of membrane composition in the generation of toxic Aβ oligomers 

and the onset of Alzheimer’s disease. We propose that future studies should elaborate on these recent findings and 

assess how changes in membrane compositions of the ageing brain affect not only dimerization of C99 but also of Aβ 

peptides and how this correlates with generation of toxic Aβ oligomers. Critically, it would be of major interest to assess 

how changes in lipid composition associated with ageing [168] affect the structural determinants of C99 processing and 

amyloid β oligomerization. We believe that understanding how the natural changes in membrane properties of ageing 

individuals associate with amyloidosis could indeed pave the way for a new array of therapeutic perspectives. 
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