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Abstract: We examine here characteristics of electromagnetic waves that propagate through an un-

bounded space filled with a homogeneous isotropic chiral medium. Resulting characters are com-

pared to those of the electromagnetic waves propagating through an achiral free space. To this goal, 

we form energy conservation laws for key bilinear parameters in a chiral case. Due to a nonzero 

medium chirality, conservation laws turn out to contain extra terms that are linked to the spin-orbit 

coupling, which is absent for an achiral case. As an example, we take a plane wave for achiral case 

to evaluate those bilinear parameters. Resultantly, the conservation laws for a chiral case are found 

to reveal inconsistencies among them, thereby prompting us to establish partial remedies for for-

mulating proper wave-propagation problems. 

Keywords: electromagnetic wave; medium chirality; bilinear parameter; conservation law; spin-or-

bit coupling; plane wave; inconsistency; wave-propagation problem; light-matter interaction; circu-
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1. Introduction 

Chiral molecules receive an increasing attention in recent days because of their im-

portance in biology and chemistry. Suppose that chiral molecules or nano-scale chiral ob-

jects are dispersed in a base dielectric, say, a liquid or air [1]. From the viewpoint of effec-

tive-medium theories, a base dielectric uniformly dispersed with an ensemble of chiral 

objects can be considered as a chiral medium. For instance, various solution-like chiral 

(gyrational) media are considered by [2]. It is assumed that those chiral nano-objects are 

sufficiently small in comparison to the wavelength of electromagnetic (EM) waves under 

consideration [3,4]. 

EM waves propagating through chiral dielectric media carry distinct characteristics 

in comparison to those exhibited by EM waves propagating through achiral dielectric me-

dia. One is an optical rotatory dispersion (ORD) [1,4], where two different values of effec-

tive refractive indices are manifested. The other is a circular dichroism (CD) [5], where the 

chirality parameter of a chiral medium contain a dissipative component. 

A sphere immersed in a chiral medium could be considered as a prototypical config-

uration of a sensor probing the chiral content of a chiral medium. For instance, the Mie 

scattering off a dielectric sphere placed within a chiral medium requires careful analysis 

of a pertinent boundary-value problem [2,3,6,7]. The resulting analytical results are nor-

mally obtained for the field variables and energy fluxes. For instance, the scattering coef-

ficients obtained for the Mie scattering represent essentially the Poynting vector [3,6]. Ad-

ditional aspects of chiral media are discussed by us [8] with recent references.  

Although chiral metamaterials refer often to chiral metasurfaces [5,9,10], their rele-

vant physics is largely common to that exhibited by the chiral media under this study. In 

case with EM waves propagating across a planar interface between an achiral dielectric 

and a chiral dielectric [11], both reflection and transmission coefficients are sought as with 

generic interface problems [5]. Although this interface problem looks like a standard text-

book matter, the attendant algebraic manipulations are excessively complicated, mainly 
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because of the two distinct characteristic speeds for a simple pair of constitutive relations 

for a chiral medium. Even with spatially homogeneous chiral media, relevant EM prob-

lems are harder to solve for multiple spatial domains. 

Based on the variables of electric and magnetic fields of a certain EM wave, several 

key parameters can be formed for further analysis. Such a bilinear parameter can be 

formed either for an electric field or for a magnetic field [12]. To be fair, an average pa-

rameter can be further constructed based an electric-magnetic duality [13-15]. In this re-

gard, the conventional well-known parameters are here called active parameters. For in-

stance, we recall an active field intensity, an active Poynting vector (or a linear momen-

tum), an active spin linear momentum, an active orbital linear momentum, etc. 

Of course, these active parameters are interrelated among them in a relatively 

straightforward manner for the EM waves through an achiral medium (often called here 

an ‘achiral case’). Notwithstanding, those interrelations become unbearably complicated 

for the EM waves propagating through a chiral medium (often called here a ‘chiral case’). 

A rough sketch of this distinction is presented on Figure 1.  

A distinguishing feature of a chiral case is that the key parameters are interwoven by 

various forms of either spin-orbit coupling (SOC), spin-orbit conversion (SOC), or spin-

orbit interaction (SOI) [10,16]. Figure 1b marks where SOCs might take place. The other 

aspect of the chiral case is that a well-organized hierarchy found for the achiral case is 

destroyed and everything gets mixed up among them. Still another aspect of the chiral 

case is that conservation laws become fuzzier because of the difficulty in finding suitable 

flux parameters. 

 

Figure 1. Relationships among key active parameters constructed from the field variables  ,E H  

of electromagnetic waves propagating through (a) an achiral medium with 0 =  and (b) a chiral 

medium with 0  . Overall, a nonzero medium chirality render everything interrelated, while an 

achiral medium gives rise to an orderly hierarchy. The presented parameters include the energy 

density avgI→
, the Poynting vector →P , the linear momenta  ,avg avg

→ →
O S  (orbital and spin por-

tions), and the spin angular momentum density avg

→
M . These parameters are the time-averaged for 

time-oscillatory fields in an unbounded space. On (b) for a chiral medium, extra terms appear that 

characterize spin-orbit coupling (SOC), whereas there is a clear separation between  ,avg avg

→ →
O S  on 

(a) for an achiral medium due to the absence of SOC. The symbol ( )?  with a downward arrow 

attached denotes a vector potential ( )? , whence ( )? 0  =   . 

To each of these active parameters, we can associate a reactive parameter such as a 

reactive field intensity, a reactive Poynting vector, a reactive spin linear momentum, a 

reactive orbital linear momentum, etc. This set of reactive parameters has received less 
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attention than the set of active parameters. See [15] for a recent review on reactive param-

eters from the viewpoint of conservation laws. There are other parameters that do not 

distinguish between active and reactive properties, for instance, the Stokes parameters. It 

is well-known that reactive parameters are more significant in the near field than in the 

far field [5,7]. In comparison, active parameters are dominant in the far field. 

Basics of the conservation laws involving both active and reactive properties have 

been presented in our recent study [8] on the EM waves in chiral media. We have thus 

recognized several unconventional terms that arise from nonzero medium chirality, while 

investigating obliquely propagating two plane waves. Notwithstanding, we have missed 

in [8] properly recognizing various interrelationships among those chirality-associated 

terms arising from nonzero medium chirality. 

Therefore, we focus in this study on the EM waves established in chiral dielectric 

media in a spatially unbounded domain. For simplicity, the chiral media are assumed 

loss-free so that the circular dichroism is not under consideration. Both active and reactive 

parameters are examined for their conservation laws while assuming temporally oscilla-

tory EM fields. We will test the validity of our conservation laws with a plane wave of 

circular polarizations. By this way, we have identified in this study the implications of 

those extra chirality-associated terms in view of the interchange between the afore-men-

tioned spin and orbital linear momenta (viz., SOC). Such a SOC is known to take place 

across the interface between two different media if it ever took place [13]. In comparison, 

we discovered in this study that a SOC can takes place in an unbounded chiral medium 

as well. 

Our chiral case is one example of light-matter interactions [10,16]. If a material re-

sponse to illuminated light exhibits sign changes for certain parameters, we can then sus-

pect that something like our medium chirality is involved either in the constitutive rela-

tions of an average material or in the structure of constituent molecules. For instance, a 

material response could be different depending on the sign of the circular polarizations 

(clockwise versus counterclockwise) of incident light. Such handedness-dependent re-

sponses lead often to diverse forms of Hall effects [10,16]. 

 

 

This paper is thus structured as follows. Section 2 provides basic formulation. Section 

3 handles conservation laws focusing on a chiral case. Section 4 deals with the Poynting 

vector and the spin angular momentum for a chiral case, thus illustrating spin-orbit cou-

pling. Section 5 provides an example of a plane wave for achiral case, thus pointing out 

several inconsistencies in the conservation laws for a chiral case. Section 6 offers discus-

sions on the possible causes and implications of those inconsistencies together with addi-

tional minor topics. Section 7 concludes our findings. We intend to make this paper self-

contained so that we placed some details in Appendices. 

2. Formulation 

The way of achieving dimensionless variables and parameters has already been pre-

sented in [8]. One exception is to make the temporal frequency explicit in this study [1]. 

We employ the overbar  to denote dimensional parameters and variables. Let  0 0,   

be the dimensional electric permittivity and magnetic permeability in vacuum. Further-

more,  , 1ref ref reft   are the reference frequency and reference time. In addition, we 

define the reference magnitude refE  for the electric field. We stress that only  ,ref refE  

are arbitrary reference parameters at our disposal. Let us summarize the following set of 

reference parameters. 
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Here,  0 0,c Z  are the light speed and impedance in vacuum. Besides,  0,refL k  are 

the reference length and reference wave number in vacuum. Employing the above set of 

reference parameters in Equation (1), relevant dimensionless parameters and variables are 

defined below. 
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Therefore, the temporal oscillation factor ( )exp t−i  for all field variables becomes 

( )exp t−i , after the dimensional frequency and time  , t  become respectively the di-

mensionless ones  , t . The spatial gradient is analogously made dimensionless from   

to  . In addition,  ,   are the dimensionless or relative electric permittivity and mag-

netic permeability. For the base dielectric, 1

Dc −  denotes hance a refractive index. 

The dimensional chirality parameter   is made dimensionless to what is called a ‘chiral-

ity parameter’  .  

Bold letters denote vectors. The dimensionless variables  ,E H  denote the electric 

and magnetic fields. Likewise,  ,D B  are dimensionless electric displacement and mag-

netic induction, respectively. Consequently, the Maxwell equations are cast into the fol-

lowing dimensionless forms. 

0
, ,

0

  

  

 =  = = +  
  
 = −  = = −  

E B D D E H

H D B B H E

i i

i i
. (3) 

Here, the first pair consists of the Faraday law  =E Bi  and the Ampère law 

 = −H Di . The second pair consists of two divergence-free conditions. The third pair 

consists of the Tellegen constitutive relations [2,9,11]. By an achiral medium, we mean 

0 =  in Equation (3) so that  , = =D E B H  is obtained. We assume in this study a 

chiral dielectric to be loss-free such that , 0    and  . 

Meanwhile, there is another pair of the constitutive relations by the name of Drude-

Born-Fedorov, which consists of ( ) = + D E E  and ( ) = + B H H  with   be-

ing another kind of a chirality parameter [2]. This pair of constitutive relations has been 

exclusively employed in [6] (pp. 181-194). Notwithstanding, our recent analysis with both 

types of the constitutive relations in [8] confirms that both sets of constitutive relations 

lead to almost identical results when both  ,   are much smaller in magnitudes than 

unity. For this reason, we handle in this study only the constitutive relations provided in 

Equation (3). 

To solve the Maxwell equations in Equation (3), we introduce a pair Q  of circular 

vectors. The present pair of subscripts  ,+ −  replaces the conventional pair of  ,L R , 

where a ‘left’ and a ‘right’ waves are respectively implied [3,6]. Let us introduce the fol-

lowing set of intermediaries. 
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Here, the subscript ‘D’ signifies a base dielectric medium [2]. This pair  ,+ −  of no-

tations turns out to greatly facilitate our ensuing formulations. 

It is well-established that the circular vectors Q  satisfy three conditions: (i) the di-

vergence-free condition 0 =Q , (ii) the curl condition k   = Q Q , and (iii) the 

Helmholtz equations 
2 2k   + =Q Q 0 . See [3] and Supplementary Material of [8] for de-

tails. In this regard, it is often overlooked that  ,+ −Q Q  are in general neither parallel 

(co-polarized) nor perpendicular (cross-polarized) to each other [10,16]. In brief, 

2 20, ,k k       =  =   + =Q Q Q Q Q 0 . (5) 

We assume in this study that the chirality parameter is sufficiently small such that 

0c   as stated in the last item of the third line of Equation (4). Therefore, both of k  are 

assumed positive even if   is allowed to take any sign.  

Under such a boundedness property   , 0k   implies from 

k   = Q Q  the physical circumstance that  ,+ −Q Q  are accompanied respectively 

by a positive vortex and a negative one. Such a pair of counter-rotating vortices is a hall-

mark of the EM waves prevailing through a chiral medium. Because of ( )k       

in Equation (4), the vortex strength is linearly proportional to  , while being directly 

proportional to  . Therefore, an optically denser medium with a larger refractive index 

of   is associated with a larger vortex strength for a given  . 

Once Q  are obtained, the EM fields are constructed by DZ+ −= −E Q Qi and 
1

DZ −

+ −= − +H Q Qi  [3,6]. Here, 
DZ    is the impedance that represents the base die-

lectric like ( )
1 2

Dc 
−

  defined in Equation (4). In summary, 

1
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+ −
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= −
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i

i
. (6) 

 

3. Conservation Laws 

With the help of an arbitrary pair of once-differentiable vectors 3, A B , let us col-

lect several vector identities that are essential to the further developments. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0

0

  =  −  =  − 


  =  − 

  =  −    =  =

=    =

A B A B B A B A A B

A B A B A B

A B B A A B A B

A B A

. 
(7) 

Both the first and the second vector identities do not demand the divergence-free 

constraints, whereas the third identity holds true under the additional constraints 

0 = =A B . Let  ˆ,i ix e  denote a generic pair of the Cartesian coordinate and its unit 

vector. By the Einstein summation notation for repeated indices, the convective derivative 
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reads ( ) ( ) ˆj i j iA B x   A B e , whereas the orbital derivative reads 

( ) ( ) ˆj j i iA B x   A B e . From physical perspectives, ( )B A  reads vector A  being 

transported by B , whereas ( )A B  reads vector B  being transported by A . 

Besides, the last identity of Equation (7) states that a solenoidal (divergence-free, in-

compressible) field A  is expressible as a vortex of a potential vector B . The converse 

also holds true as indicated by the double-head arrow ‘ ’. This fundamental identity 

will be employed for a couple of times in this study [2]. 

On the other hand, we can prove the following identity. 

( )
( )

( )
**

2* *1 1 1

2 2 2
ˆ ˆRe Re Re

j jj j

j j i i

i j i

A AA A
A A

x x x

   
    = + =            

A A e e A . (8) 

Therefore, ( ) ( )* *1

2
Re  = A A A A  means that the orbital-like parameter is pro-

portional to the spatial gradient of half the intensity. In contrast, ( )*Im  A A  does not 

lend itself to such a neat formula. 

Let us introduce below the pair  ,avg avgI I→   of the active and reactive energy densities 

together with the pair  ,avg avg

 M M  of the active and reactive spin angular momentum 

(AM) densities [8,15]. 

( )
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( )
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* * * *1 1

2 2
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H H
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 

   

   

→

→

→ →

→ 

    
 

    

  +   +  
 

 −   +   

M E EE E

H H M H H

E E H H M E E H H

E E H H M E E H H

. (9) 

Henceforth, we omit the factor of half that arises from time averaging. Operationally 

speaking, the cancellation ( ) ( )exp exp 1t t − =i i  applies to all bilinear (‘quadratic’ inclu-

sive) parameters in Equation (9). Besides, these parameters are now real since , 0    

are assumed for a base dielectric throughout this study. Resultantly, 0avgI→  . In addition, 

 ,avg avgI J→ →  are the active energy-sum (‘energy’, simply) density and the active energy-dif-

ference density, respectively. Both reactive energy densities  ,avg avgI J   do not exist at all. 

The subscripts  ,→   in Equation (9) stand for ‘active’ and ‘reactive’, respectively. 

This pair  ,→   is better readable than the symmetric pair  ,  , which we have 

worked with in [12]. Instead of ‘active’, we have employed ‘electromagnetic (EM)’ in our 

recent paper [8]. Ordinary readers will be familiar with   ,avg avgI→ →
M , whereas 

 ,avg avgJ→ M  are less discussed. 

The subscripts  ,E H  in Equation (9) denote respectively the electric and magnetic 

portions, while the subscript ‘ avg ’ implies an average of the two. The three parameters 

 , ,avg avg avgI→ → M M  in Equation (9) are placed in forms of the electric-magnetic duality 

[13,14]. In addition, most of key parameters are expressed in terms of the modified pair 

 , E H  instead of the pair  ,E H . Notice that avg

→
M  signifies the states of polariza-

tion [5,10,12]. 

We further define the pair  ,→ 
P P  of the active and reactive Poynting vectors 

(a.k.a. energy flow) and the pair  ,→ C C  of the active and reactive helicities [5,15]. 
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Instead of ( )*Re→  P E H  as previously defined in [8], we have now an explicit 

frequency dependence by ( )1 *Re→ − P E H  in conformance to the formulas in [14]. 

Both pairs  ,→ 
P P  and  ,→ C C  are already placed in the electric-magnetic dual 

forms. 

Notice in Equation (9) that  ,avg avgI J→ →  are complementary in one sense that 
*

avg avgI J → →+ = E E  and *

avg avgI J → →− = H H . In comparison, we define below the complex 

parameters  , ,avgM P C  based on Equations (9) and (10), 

, ,

avg avg avg

avg avg avg

I I J→ →

 → →   →

 +

 +  +  +M M M P P P

i

i i iC C C
. (11) 

We thus learn that the pair  ,→   implies the real and imaginary parts (or vice 

versa) of a pertinent complex property. 

Let us form the dot products ( ) * =E B Ei  and ( ) * = −H D Hi  respectively 

for the Faraday and Ampère law in Equation (3). Taking the difference and the sum of the 

resulting two relations, we obtain the following pair of energy conservation laws [8]. 
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+
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−
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+ −



 +  + = −


+ − = −

+  + + = − +

   
 

P

P

P

E H H E

i i

i i

i i i

C

C

C C . (12) 

Here, we have utilized suitable vector identities in Equation (7). In the last line of 

Equation (12), we encounter another complex parameter g g+ −+i , while the combined he-

licity avg avg

→ +C C  does not fit neither to the expected complex helicity avg avg

→ + iC C  nor to 
 → +iC C C  in Equation (11).  

We can easily separate the two leading lines of Equation (12) into the following two 

pairs after some shuffling [15]. 

( )

( )

( )

( )

1 1

2 2

1 1
2 2

Re 0 Im
,

Im 0 Re

avg

avg

g I g

J g g





→ → →

+ +

→  

− −

 + = + = 
 

+ + = =  

P

P

C

C
. (13) 

The most distinguishing feature in this set of conservation laws obtained for a chiral 

medium is the interactions among the two active energy densities  ,avg avgI J→ → , the Poyn-

ting vectors ,→ 
P P , and the helicities  ,→ C C  [15]. In addition, Equation (13) shows 

that the two members  ,avg avg → C C  carry the respective multiplier  , which means in 

turn that  ,avg avg

→ C C  are respectively odd in  . This is the reason why both (active and 

reactive) helicities  ,avg avg

→ C C  are sometimes called the (active and reactive) field chiral-

ity parameters [8]. 

Let us evaluate g  in Equation (12) for an achiral medium, for which  =E Hi  

and  = −H Ei . Resultantly, we obtain    , 2 ,avg avgg g I J→ →

+ − = i  for 0 = . Accord-

ingly, Equation (13) is reduced to the following simpler set for an achiral medium with 

0 = . 
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0
0 : ,

2 0 0 0

avg avg

avg

I I

J


→ → →

→ 

 =  = 
=  

+ = = 

P

P
. (14) 

In the first pair of Equation (14), 0→ =P  is the familiar energy conservation law. 

In comparison, 2 0avgJ → + =P  has been explicitly derived in [8] for the first time, alt-

hough its variants have been presented elsewhere [15]. Meanwhile, the second pair of 

Equation (14) is trivially satisfied. The extra terms in Equation (13) in comparison to Equa-

tion (14) have been identified also by [2]. 

Conservations laws for time-oscillatory field variables can be symbolically put into a 

generic form ( ) ( ) 0 +  =  for time-oscillatory fields. Here, the leaning term ( )  re-

fers to something to be conserved, whereas the second term ( )   means the spatial di-

vergence of a flux ( ) . As an example, consider Equation (14) for an achiral medium with 

0 = . The relation 0→ =P  in Equation (14) is an extreme case where ( ) 0 = . On the 

other hand, the other relation 2 0avgJ → + =P  in Equation (14) fits perfectly into 

( ) ( ) 0 +  = . This is another reason why the pair  2 ,avgJ→ 
P  of the active energy-

difference density and the reactive Poynting vector is endowed with a legitimate physical 

importance [15]. 

Consider Equation (13) for a chiral medium with 0  . The two relations 

( )1

2
Re 0+ + =A P  and ( )1

2
Im 0avgJ g→

−+ + =R  in Equation (13) still fit into the generic 

form ( ) ( ) 0 +  = . In comparison, the two relations ( )1

2
ImavgI g → →

+= − C  and 

( )1

2
Re g − = K  in the second pair of Equation (13) do not fit into ( ) ( ) 0 +  = . In-

stead, these two relations offer couplings between the conserved parameters in the first 

pair of Equation (13) to the two helicity parameters  ,→ C C . 

It is well-known for an achiral medium that the active helicity →C  serves as the 

conserved parameter ( ) , whereas the average spin angular momentum (AM) density 

avg

→
M  defined in Equation (9) served as the flux ( )  [15]. In other words, the pair 

 , avg

→ →MC  constitutes what is called the ‘chirality (or helicity) conservation law’. The 

four relations in Equation (13) obtained for a chiral medium show complicated interrela-

tionships among various participating parameters  , , , , , ,avg avgI J g→ → →  → 

P P C C . This 

delicate picture leads us to looking into the spin AM avgM  in depth. 

4. Spins and Breakdown of Energy Flows 

With both electric and magnetic portions  ,E H

→ →
M M  defined in Equation (9), let us 

take the divergence of the spin AM ( )1

2avg E H

→ → → +M M M . 

2
0

2

E

avg

H





→ 

→

→ 

 = −
  =

 =

M
M

M

C

C
. (15) 

Here, we have made use of the Maxwell equations in Equation (3) along with the 

vector identities in Equation (7). See Appendix A for the derivation of Equation (15). From 

a physical point of view, 0avg

→ =M  signifies a conservation of avg

→
M , for which we could 

find its potential according to the last vector identity in Equation (7). The self-cancelling 

feature 0avg

→ =M  between  ,E H

→ → M M  has been fully discussed with a proper ex-

ample with the EM fields induced by electric point dipoles [12]. Notice hence that Equa-

tion (15) holds true not only to a achiral case but also to a chiral case. 

Setting *=A B  in the first vector identity of Equation (7) and taking the imaginary 

parts leads to ( ) ( )* *1

2
Im Im     = − 

   
B B B B . This vector identity is then applied to 
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form the curl avg

→M  of the average spin AM ( )1

2avg E H

→ → → +M M M  in the following 

manner by consulting  ,E H

→ →
M M  defined in Equation (9). 

( ) ( )

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( )

* *1

2

* *1

2

* *1 1

2 2

* *1

2

Im Im
,

Im Im

Im

Re

E E E

H H H

avg avg

avg

 

 

 

 

→ → 

→ → 

→ →



     = −    − 
     

 
    = −    −      

   −  +   
  


  −  +   

M E E S S E E

M H H S S H H

S E E H H M

S E E H H

. (16) 

In this way, the average spin linear momentum avg

→
S  is defined as half the curl of 

avgM . The idea behind this definition ( )1

2 avg avg

→ → =M S  is that avg

→
S   is divergence-free, 

namely, 0avg

→ =S . In other words, 1

2 avg

→
M  serves as a vector potential for avg

→
S . 

As a counterpart of  ,avg avg

→ S S , the average orbital linear momenta  ,avg avg

→ O O  are 

defined below. 

( )

( )

( )

( )

( ) ( )

( ) ( )

* *

* *

* *1

2

* *1

2

Im Re
,

Im Re

Im

Re

E E

H H

avg

avg

 

 

 

 

→ 

→ 

→



            
 

           

    +   


   +   

O E E O E E

O H H O H H

O E E H H

O E E H H

. (17) 

Therefore, we can exploit Equation (8) in defining the following pair of average reac-

tive orbital linear momenta  ,avg avg

 
O V . 

( ) ( ) ( )
( ) ( ) ( )

2 2* *1 1 1 1 1

2 2 2 2 2

2 2* *1 1 1 1 1

2 2 2 2 2

Re

Re

avg avg

avg avg

I

J

   

   

 →

 →

    +  =  +   


   −  =  −    

O E E H H E H

V E E H H E H
. (18) 

By the way, we invert the constitutive relations in Equation (3) to express  ,E H  in 

terms of their curls  , E H  in the following fashion. 

2

1  

   

    
=    

− −    

E E

H H

ii

i
. (19) 

Furthermore, we introduce the following intermediaries. 

( ) ( ) ( ) ( )* * * *


   −    − 
 

T H E H E E H E H . (20) 

Recall the complex Poynting vector 1 *→  − +  P P P E Hi  defined previously in 

Equation (11). 

Because both  ,E H  show up in P , there are two ways of treating →P  by use of 

Equation (19). One way is to replace H  with its pair of curls in ( )1 *Re→ − P E H , 

whereas the other way is to replace E  with its pair of curls in ( )1 *Re→ − P E H . We 

then take the real and imaginary parts of P  to find both  ,→ 
P P  as follows. 

( ) ( )

( ) ( )

2 1

2

2 1

2

Re

Im

avg avg

avg avg

c c

c c





→ → →

+ − −+ +

 → →

+ − −+ −

 = + + 


= + + 

P O S T

P O S T
. (21) 

Here, we made use of Equations (17), (18), and (20). Besides,  ,c c+ −  and the mean 

speed difference −+  are defined before in Equation (4) [1]. This finding in Equation (21) 
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makes a key contribution of this study. It is noteworthy that our SOCs take place inside a 

single uniform chiral medium. 

It is useful to examine Equation (21) for an achiral medium with 0 = . 

2 2

2 2
0 :

D avg avg

D avg avg

k

k

 


 

→ → → →

   

  = +
= 

 = +

P P O S

P P O S
. (22) 

Therefore, the active and reactive Poynting vectors is completely separable into its 

spin and orbital portions. Such an achiral case has already been investigated for the free-

space EM fields induced by electric point dipoles [12]. The two terms 

( ) ( ) 1 1

2 2
Re , Im−+ + −+ − T T  in Equation (21) signify the spin-orbit couplings (SOCs) (or 

conversions) respectively in the active and reactive EM fields. In comparison, an SOC tak-

ing place across an interface between two dissimilar media is discussed in [13]. 

Consider next the active spin AM density avg

→
M  by averaging its constituents 

 ,E H

→ →
M M  defined in Equation (9), while by expressing  ,E H  in terms of their curls 

 , E H  according to Equation (19). Resultantly, we obtain the following set. 

( ) ( )

( ) ( )

1

22

1 1

2 22

Re

Re

avg avg avg

D

avg avg avg

D

c c

c

c c

c





→ → → + −
−+ +

→ → → + −
−+ +

= − + − 

 = − + −
 

M O S T

M O M T

. (23) 

This relation is reduced to ( )2 1

2
Reavg Dc c c → −

+ − += −M T  for the achiral medium with 

0c c + −  = , thereby being not linked to avg avg

→ →+O S . Consequently, a medium chirality 

gives rise to another kind of SOC, which is the term ( )2 1

2
ReDc c c−

+ − +T  in Equation (23). 

Meanwhile, we have shown in Equation (16) that ( )1

2avg avg

→ →=S M  holds true re-

gardless of the medium chirality. We can think of the relation ( )1

2avg avg

→ →=S M  as sort 

of a hierarchy since avg

→
S  serving as a child is a spatial derivative of avg

→
M  serving as a 

parent. The second relation in Equation (23) indicates essentially a recursive relation in 

avg

→
M  since avg

→
M  appears both as a child and as a parent. Such a mixed or confused hier-

archy has already appeared in Equation (21). The last relation of Equation (23) tells that 

the member of the triplet  , ,avg avg avg

→ → →M O S  now occupy the same hierarchy or level. This 

hierarchy issue has been discussed in our recent paper [12] for achiral medium. We have 

thus extended this hierarchy structure to the chiral case in this study, thereby constituting 

another key contribution of this study. 

 

5. Example by a Plane Wave 

For the achiral case with 0 = , consider a plane wave of a linear polarization being 

denoted by the subscript ‘ lin ’. 

( )
ˆ

, exp ,
ˆ

lin lin D

D D D

D lin lin DD

Q
k k z

Z Qc


 

= 
    

= 

E x

H y
i

i i
. (24) 

Here,  , ,x y z  and  ˆ ˆ ˆ, ,x y z  denote the Cartesian coordinates and the correspond-

ing unit vectors. Recall from Equation (4) that D Dk c    , which represents the 

base dielectric with 0 = . Although the magnetic field is given by 1 ˆ
lin D D DZ Q−= H y , it is 

written as ˆ
D lin lin DZ Q= H yi i  in Equation (24) for easier comparison with others in the fol-

lowing. The complex magnitude parameter linQ  is completely at our disposal. 
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Along the same line of reasoning, consider a single plane wave of circular polariza-

tion being denoted by the subscript ‘ cir ’. For instance, one of its solutions is given by the 

following. 

( )

( )

ˆ ˆ2

ˆ ˆ2

cir cir D

D cir cir D

Q

Z Q

 = + 


= + 

E x y

H x y

i

i i
. (25) 

Once again, we are left with single complex magnitude parameter cirQ  as the sole 

undetermined coefficient. 

Both solutions in Equations (24) and (25) should satisfy the Faraday law 

 =E Hi  and the Ampère law  = −H Ei  reduced from Equation (3) for 0 = . 

Although we have done such proofs, they are not presented here for simplicity. Mean-

while, both divergence-free conditions 0 = =E H  are almost trivial to prove. Like-

wise, both Helmholtz equations 
2 2 2 2 0D Dk k + = + =E E H H  are satisfied by looking into 

the phase factor ( )expD Dk z  i  that is common to both Equations (24) and (25). 

From physical perspectives, comparison of the solutions presented in Equations (24) 

and (25) is rewarding. Firstly, the fields  ,lin linE H  from Equation (24) are perpendicular 

to each other, while the fields  ,cir cirE H  from Equation (25) are parallel to each other. 

Secondly, the fields  ,lin linE H  are in-phase with each other, while the fields  ,cir cirE H  

are out-of-phase (or in quadrature) to each other. Thirdly, both  ,lin linE H  and 

 ,cir cirE H  are transverse to the wave-propagation z -direction. Fourthly, both 

 ,lin linE H  and  ,cir cirE H  admit a single specifiable complex magnitude, namely, linQ  

or cirQ . 

With the above backgrounds obtained for the achiral case, we turn now to the chiral 

case with 0  . Consider a plane wave of circular polarization inherent in the represen-

tation by the circular vector Q  as follows [2,3,6].  

( ) ( )1

2
ˆ ˆ expQ k z  = Q x yi i . (26) 

Besides, the two distinct parameters  ,Q Q+ −  are complex scalars, i.e., Q  . Un-

like Equation (24), it is stressed that no linearly polarized EM fields are meaningful for 

this chiral case. The circular vectors in Equation (26) satisfy all three constraints presented 

in Equation (5). Especially, the curl condition k   = Q Q  requires a bit of more care, 

whence its proof is provided in Appendix B. In view of Equation (25), our circular vector 

is endowed with distinct wave numbers  ,k k+ − . We take , 0k k+ −   for simplicity, which 

translates from ( )k       in Equation (4) to the constraint on the not-quite-large 

chirality parameter, namely,   . 

The fields for this chiral case are correspondingly evaluated by use of Equation (6) as 

follows. 

( ) ( ) ( )

( ) ( )

exp ˆ ˆ2
,

ˆ ˆ2

D D

D D D D

k z Q Z Q Q Z Q

Z Z Q Z Q Q Z Q 

  + + − − + + − −

+ + − − + + − −

  =  −  +  +  
 

 =  +  +  −   

E x y

H x y

i i i i

i i i i
. (27) 

Both field components are transverse to the wave-propagation z -direction in con-

sideration of the full phase factor ( )exp k z t −  i . We find that only a basis pair 

DQ Z Q+ + − −  i  underlies all components in Equation (27), which will be fully exploited 

for various evaluations performed in Appendix C. Notice additionally that  ,E H  in 

Equation (27) are neither parallel nor perpendicular to each other, which stands in sharp 

contrast to those in Equations (24) and (25). 
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Recall that the sole pair of undetermined parameters employed for making things 

dimensionless is  ,ref refE  as regards Equations (1) and (2). Since the dimensional fre-

quency 
ref  is specifiable for our time-oscillatory fields, we are left with a single reference 

magnitude refE  at our disposal. In terms of the dimensionless field variables, we are thus 

left with a single complex variable at our disposal. Because both field variables  ,E H  

are expressed in terms of the pair  ,Q Q+ −  of complex variables, we need to specify an 

additional complex constraint or two real constraints. In brief, 

( )
( )

( )

Re , 0
, 0

Im , 0

const

const

const

f Q Q
f Q Q

f Q Q

+ −

+ −

+ −

 =   
=  

=   

. (28) 

One additional complex constraint has been easily implemented in case with the Mie 

scattering off a single dielectric sphere immersed in a uniform surrounding achiral dielec-

tric in the process of determining two scattering coefficients [6,7]. Closer to our situation 

in Equation (28) is the case with the Mie scattering off a single dielectric sphere immersed 

in a uniform surrounding chiral dielectric, where one complex ratio between  ,Q Q+ −  is 

fixed in the process of determining four scattering coefficients [3,6]. This identification of 

an additional constraint in Equation (28) for the chiral case has never been explicitly stated 

before.  

We now put the predictions made in Sections 3 and 4 to the test. To this goal, we 

evaluate key bilinear parameters introduced so far according to Appendix C. Let us list 

them below. 

( )

( )

2 22 2

2 22 2

2 2

ˆ
,

0

ˆ
,

0

ˆ
,

avgavg

avg avg

D

avg avg

avgavg

Q QI Q Q

J

Q QQ Q

k

k Q k Q

  

  



 

→→
+ −+ −

→ 

+ −→+ −→

 

→ →

+ + − −



 = −= + 
 

=  = 

 −+
= −= −

 
 

= = 

 = + = 
 

= = 

M z

M 0

P z

P 0

O z S 0

S 0O 0

C

C

. (29) 

We see that the active Poynting vector is directed in the negative propagating direc-

tion of an EM wave, whereas the reactive Poynting vector vanishes. A feature common to 

all parameters in Equation (29) is that only magnitudes  ,Q Q+ −
 are involved in the 

absence of any interference parameters  * *,Q Q Q Q+ − − +
. See [7] and [16] for a relevant issue 

of symmetry and anti-symmetry. This feature is sort of disappointing in view of the utility 

of interference effects [1,15]. In fact, it is found that ( )*Re x xE H→ C  according to Ap-

pendix C. However, the relationship between in  ,Q Q+ −  and  ,E H  given by Equation 

(27) made the effect of the apparent interference *

x xE H  to be replaced by  ,Q Q+ −
. 

As we have discussed in the paragraph immediately following Equation (13), both 

 ,avg avg

→ C C  carry   so that both  ,E H

→ → M M  are also odd in   according to Equa-

tion (15). That is why we have mentioned that  ,E H

→ → M M  are linked to the states of 

polarization respectively for the electric and magnetic fields. Nevertheless, the electric-

magnetic dual parameter avg

→ M  is  -independent thanks to the perfect cancellation. 

We expect that both  ,E H

→ →
M M  are respectively even in  , according to the generic 

evaluation in Equation (15). 
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In this respect, the actual evaluation of ( )2 2
ˆ

avg Q Q →

+ −= −M z  given in Equation 

(29) shows that avg

→
M  is indeed  -independent. Meanwhile, its constituents  ,E H

→ →
M M  

are found from Equation (C3) in Appendix C to be respectively half of avg

→
M . In other 

words, both  ,E H

→ →
M M  are  -independent as well. Therefore, our plane wave is rather 

special in the sense that the spin AM densities are not properly representative of the states 

of polarization. 

Based on Equation (29), we can thus establish the following relationships for one pair 

 ,avgI→ →
P  and for another pair  ,avg

→ →M C . 

1
ˆ ˆ ˆ, avg

D Davg k cI


→ →
→ →

→
= − = − = −

P
z M z z

C
C . (30) 

The first relation stands for the energy conservation law, whereas the second relation 

stands for the chirality conservation law [15]. The first relation indicates the role of the 

phase speed D Dc k  in the base dielectric. In other words, the active Poynting vector 

is transported by the speed D Dc k  evaluated for the base dielectric although two 

phase speeds c k   in Equation (4) are underlying the circular vectors. The average 

active Poynting vector plays a role of a mixer between the left and right waves. The second 

relation also corroborate the role of the speed D Dc k  prevailing for the helicity prop-

agation. 

As seen from Equation (29), a crucial difference between  , avg

→ →
P M  lies in that →P  

remains invariant to the sign of the difference 
2 2

Q Q + −− , whereas avg

→
M  depends on 

2 2
Q Q + −− . In this respect, the direction for a part of photocurrents induced within a 

chiral Weyl semimetal depends on the handedness of an incident circularly polarized light 

[16]. In some sense, the EM-energy current →P  of photons act thus like bosons, while the 

chirality current avg

→
M  acts like fermions as do the fermions of photocurrents. 

Additional parameters of T  in Equation (20) and of g  in Equation (12) are eval-

uated from Appendix C as follows. 

( ) ( ) ( )2 22
Re Im 0, 0,

D

g g k Q k Q
k

 + − + − + + − −= = = = +T T
i

. (31) 

In view of  , , ,avg avg avg avgI J→ → → M M ,   , , ,→  → 
P P C C , and  , , ,avg avg avg avg

→  → O O S S  

listed in Equation (29) together with  ,g g+ −  listed in the above Equation (31), let us see 

how the four conservation laws in Equation (13) read. 

( )

( )

( )

( )

1

2 2 2

1

2

2 2

2 21

2

1

2

0 0 0
Re 0

Im 0 0 0 0

Im 0

Re
0 0

avg

D

avg

g
k Q k Q

J g
k

Q Q
I g Q Q

g

 

 
   




→

+

+ + − −→ 

−

→ → + −
+ + −



−

+ =
 + = 

 + 
+ + = + +  



 −
 + = + − 

 
= 

=

P

P

C

C

. (32) 

Here, ( )k       from Equation (4). Therefore, the two conservation laws 

( )1

2
Im 0avgJ g→ 

−+ + =P  and ( )1

2
ImavgI g→ →

++ =C  are not generally satisfied by the 

plane wave of circular vectors described by Equations (26) and (27). In more detail, 

( )1

2
Im 0avgJ g→ 

−+ + =P  is never satisfied from a simple observation. 
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In comparison, let us check ( )1

2
ImavgI g→ →

++ =C  in more detail, whence we obtain 

the following constraint. 

2 2 2

2 2

2

1

1

D

D

Q Q Q c
Q Q

cQ

  
  

 

+ − +

+ −

−

− +
+ =  = −

−
. (33) 

Recall that we have taken , 0k k+ −   for simplicity in our analysis, which translates 

from ( )k       in Equation (4) to 1 0Dc    with ( )
1 2

Dc 
−

 . Consequently, 

the requirement 1Dc    in Equation (33) is hard to be satisfied in view of a usually small 

chirality parameter. Under such a rarely satisfiable constraint 1Dc   , the magnitude 

ratio between  ,Q Q+ −
 is then determined. For instance, the boundary-value problems 

for the Mie scattering offer such constraints that lead to determining the Mie coefficients 

[3,6,7]. 

Since the sum avg avg

→ →+O S  appears in both the first relation of Equation (21) and Equa-

tion (23), it can be eliminated to produce the following formula. 

( ) ( )1

2
Re 0avg  → →

++ + =P M T . (34) 

Therefore, it is interesting that the active Poynting vector →P  is related to the aver-

age spin AM density avg

→
M , but with an additional interference term ( )1

2
Re +T . This rela-

tion represents a destruction of a well-organized hierarchy that can be seen for an achiral 

case. See Figure 1a. 

From Equations (29) and ( )Re 0+ =T  in Equation (31), the constraint in Equation (34) 

winds up with the following. 

2

2

1
0

1

D
avg

D

Q c

cQ




 

+→ →

−

+
+ =  =

−
P M . (35) 

This condition in Equation (35) is the negative of that in Equation (33). Otherwise put, 

both Equations (33) and (35) are incompatible to each other. 

 

6. Discussions 

The reflection-transmission across a single planar interface between an achiral die-

lectric and a chiral dielectric is also handled in an analogous way [11]. Both across an 

achiral-chiral interface in [11] and across an achiral-achiral interface in [5] with induced 

surface polarizations, we find that a transverse-magnetic (TM) mode is coupled with a 

transverse-electric (TE) mode [5,9,11]. In comparison, the coupling between  ,E H  as 

seen from Equation (27) stems from the coupling between  ,Q Q+ − , thereby being of a 

different nature since only two components appear on the xy -plane. Such a TM-TE cou-

pling leads frequently to a spin-orbit coupling (SOC) as seen on Equations (13) and (21). 

See ‘SOC’ on the bottom of Figure 1b. 

The formulas presented in Sections 3 and 4 are largely generic to the EM waves prop-

agating through a chiral medium. In comparison, the plane-wave EM fields in Equations 

(26) and (27) constitute just one possible set of solutions to the Maxwell equations sum-

marized in Equation (3). We have not searched for all possible solutions to Equation (3). 

However, it turns out that the plane-wave EM fields in Equations (26) and (27) do not 

satisfy several conservation laws involving bilinear forms of the field variables, for in-

stance, as seen in Equations (32), (33), ad (35).  

To see what kind of difficulties might occur if bilinear parameters are handled instead 

of the original linear parameters, consider the following series of equations. 
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( )( )

( )
( )

* * * * * *

2 2

2 2 2 2* * *

*

0

2 Im
Im 0

a b a b a a b b a b b a

a b
a b b a a b a b b a

b a

= − + = − − +

 =
= − + − = − +  

=

i
. (36) 

Here, ,a b , namely, complex scalars and 
2 *a a a  are the magnitude squared 

or intensity. Solutions to Equation (36) can be alternatively expressed below. 

* *

a b a b

a ba b

= = 
 

= −= − 
. (37) 

Of course, the bilinear equation ( )( )* * 0a b a b− + =  admits two solutions a b=  . 

Suppose that a b=  is the sole physically meaning solution, whereas a b= −  is physi-

cally meaningless. Notice that a b=   is a pair of special solutions of 
2 2

a b= , where 

( )expa b = i  with   . Only a special pair  =   corresponds to a b=  . Therefore, 

selecting  =   from the continuous set    is one difficulty. In addition, choosing 

 = +  between  =   makes another difficulty, as we have encountered between 

Equations (33) and (35). 

With the discussions on Equations (36) and (37) at hand, let us revisit Equations (26) 

and (27). We then take an achiral limit 0 →  for the chiral case, thereby obtaining 

( ) ( )exp expD Dk z k z   → i i  since Dk k →  according to Equation (4). Correspond-

ingly, Equations (26) and (27) approach the following. 

( ) ( )

( ) ( )

( ) ( )

0 exp exp

ˆ ˆ2

ˆ ˆ2

D D D

D D D

D D D D

k k k z k z

Q Z Q Q Z Q

Z Q Z Q Q Z Q

   

+ − + −

+ − + −

→  →    → 

 → − + +    


→ + + −    

E x y

H x y

i i

i i i

i i i i

. (38) 

Still, we do not recover either of Equations (24) and (25), where we have only a single 

magnitude parameter out of  ,cir cirQ Q . Let us take a pair of further special cases 

 ,Q Q Q Q+ − + −= = −  in the following manner. 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 exp

ˆ ˆ2 1 1
:

ˆ ˆ2 1 1

ˆ ˆ2 1 1
:

ˆ ˆ2 1 1

D D

D D D

D D D D

D D D

D D D D

k z

Q Z Z
Q Q

Z Q Z Z

Q Z Z
Q Q

Z Q Z Z



+

+ −

+

+

+ −

+

→   

  → − + +     = + 
 → + + −     


 → + + −     
= − 

→ − + +     

E x y

H x y

E x y

H x y

i

i i i

i i i i

i i i

i i i i

. (39) 

Still, either of these special forms cannot be reconciled with either of Equations (24) 

and (25). Both Equations (38) and (39) confirm once again that the solutions in Equations 

(26) and (27) for the chiral case are specially constructed such that they are not reduceable 

to any for the achiral case. 

Instead, respectively taking 0Q− =  and 0Q+ =  in Equation (38) gives rise to the fol-

lowing co-propagating waves [8,17]. 
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( )

( )

( )

( )

( )

21

21

0 exp

ˆ ˆ2
0 :

ˆ ˆ2 0

ˆ ˆ2
0 :

ˆ ˆ2 0

D D

D D

D D

D D D

D D D

k z

Q Z Q
Q

Z Q

Z Q Z Q
Q

Z Z Q



→ −
+ +

−


+

→ −
− −

+


−

→   

  → +  = − 
 =  
 → +  =  


 → − −  = − 
=   

→ −  =  

E x y

H x y

E x y

H x y

i

i

i i

i i

i i i

C

C

C

C

. (40) 

It is interesting enough that we essentially recover the circular vector in Equation (25) 

solely with this very special choice of either 0Q− =  or 0Q+ = . The choices in Equation 

(40) denote either clockwise or counterclockwise rotation. Moreover,  ,E H  in Equation 

(40) are parallel to each other [17,18]. Besides, there exists a nonzero active helicity in both 

cases as written above. Nonetheless, notice that  ,E H  are out of phase with each other. 

One significant difference lies in that the EM waves in Equation (40) are valid for 

propagating wavs in an unbounded domain, whereas the EM waves under consideration 

by [17] and [18] handle standing waves in an enclosed region, for instance, in a cavity 

resonator. Hence, boundary conditions are incorporated by [17] and [18]. In brief, we have 

shown a necessity of contriving an additional condition so that only a single complex 

magnitude parameter is left undetermined. 

Recall from Equation (4) that we are dealing with two characteristics (a.k.a. bicharac-

teristics) Dc      for the chiral case with 0  . It is well-founded that com-

pressible inviscid fluid flows admit bicharacteristics that consist of the reference sound 

speed plus and minus the fluid speed [8,19,20]. In this respect, it is illustrative to draw an 

analogy between our chiral case and our earlier work on fluid mechanics [21]. 

Meanwhile, the bi-characteristics in this study are transverse in the realm of the Max-

well equations, whereas the bi-characteristics in [21] are longitudinal in the realm of the 

Euler equations. Recall in this respect that compressible inviscid fluids support only lon-

gitudinal waves. Another difference is that our chiral case involves plane waves while the 

detonation waves examined in [21] involve spatially structured waves. Structured lights 

in optics may occur, for instance, in surface plasmon waves. 

For the detonation flow in [21], one characteristic out of bicharacteristics [21] refers 

to a downstream propagation of signals, whereas another characteristic refers to an up-

stream propagation of signals. By applying a causality requirement [16,21], we were able 

in [21] to eliminate the unphysical upstream (or backward) signals, which amounts to let-

ting one of  ,Q Q+ −  in Equations (26) and (27) vanish. This additional condition is related 

to the fact that the number of multiple characteristics is greater than the number of inde-

pendent information entities by one [19]. 

It is worthwhile stressing that the elimination of the backward signals in [21] was 

performed only in the far downstream location, i.e., at one of the boundaries of the semi-

infinite problem domain. When interpreted for our chiral case, boundary conditions 

would play a key role in determining one of the complex magnitude parameters. Unfor-

tunately, there are no proper boundary conditions for our plane waves so that we encoun-

tered difficulties in Equations (32), (33), and (35). 

Finding a meaningful solution to EM waves for a given problem domain and/or a 

specified set of boundary conditions depends on a particular wave configuration. A gen-

eral theory is not yet available. With the arguments made so far in this section taken to-

gether, the validity of the plane-wave EM fields provided by Equations (26) and (27) is 

questionable. As a possible way out of this dilemma, we will try a suitable boundary-

value problem in the future while consulting [3,5,6,11].  

These difficulties with the conservation laws discussed in this study are corroborated 

by an analogous difficulty in finding suitable reference papers related to the conservation 

laws dedicated to the electromagnetic fields propagating through chiral media. Instead, 

various point-like particles with magneto-electric polarizabilities have been extensively 
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examined in the settings of conservation laws for both active and reactive parameters 

through achiral media [15]. 

Concerning Equations (15) and (29), we have discussed either evenness or oddness 

of  ,avg avg

→ C C  and/or  ,E H

→ →
M M  with respect to the chirality parameter  . In sum-

mary, the  -dependence of any bilinear parameter as predicted by the generic theory in 

Sections 3 and 4 cannot be ascertained until a specific example is thoroughly examined as 

in Section 5 [15]. That is why we have examined  ,avg avg

→ C C  and/or  ,E H

→ →
M M  for an-

other chiral case with counter-propagating waves in [8]. It is noteworthy that  ,avg avg

→ C C  

and/or  ,E H

→ →
M M  are generally nonzero even for achiral cases as we have recently ex-

amined in [7] and [12]. Consequently, each wave configuration needs to be closely inves-

tigated for the behaviors of  ,avg avg

→ C C  and/or  ,E H

→ →
M M . In this aspect, we plan to ex-

amine both  ,avg avg

→ C C  and/or  ,E H

→ →
M M  for the chiral case involving evanescent 

waves, which will be published elsewhere. Notice that the achiral cases with evanescent 

waves have already been examined by a variety of authors [13,15]. 

In addition, we have come to some questions. Both active parameters of the Poynting 

vector and average spin AM density are solenoidal, namely, 0avg

→ → =  =P M . What 

are then their respective vector potentials? We need to be careful in this respect since 

0→ =P  solely in the achiral case as seen Equations (13) and (14), whereas 0avg

→ =M  

in both achiral and chiral cases as discussed in Equation (15). Consequently, we suppose 

that the vector potential to avg

→
M  for the chiral case will be much harder to find than that 

for the achiral case [2]. On both Figures 1a and 1b, the symbol ( )?  with a downward 

arrow attached denotes such a vector potential ( )? , whence ( )? 0  =   . 

 

7. Conclusions 

We have made a thorough analysis on the electromagnetic waves propagating 

through loss-free and homogeneous chiral media in an unbounded space. By our choice 

of conservation laws, we have thus identified spin-orbit couplings that make the conser-

vation laws rather complicated and ridden with extra terms that are not present for an 

achiral case. By testing the validity of those conservation laws with a simple plane wave 

of coupled circular waves, we have encountered some inconsistencies in the conservation 

laws, thus necessitating further serious studies. By considering appropriate boundary 

conditions, we have found ways out of such inconsistencies. However, the roles of the 

reactive parameters turn out very useful in addition to the traditional active parameters. 
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With the help of the Maxwell equations in Equation (3), let us derive 0avg

→ =M  in 

Equation (15) based on Equation (9). 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

* * *

* * *

*

* * *

* *

Im Im

Im

2 Re 2

Im Im

Im

E

H

 

 

 

    

 

 

   

→



→

 = +
  =  −   

 = − +

    =   =  − 
   

 = − − +
 

= −  −

    =   =  − 
   

= + − −

E E H
A B A B B A

H E H

M E E E E E E

E H E E H E

E H

M H H H H H H

E H H E

i

i

i i

i i

C

( )

( )

*

*2 Re 2 0avg



   →

 +
 

=    =

H H

E H MC

. 
(A1) 

Furthermore, we start with Equation (19) in handling the complex Poynting vector 
1 *→  − +  P P P E Hi  defined previously in Equation (11). Because both  ,E H  

show up in P , there are two ways of treating →P  by use of Equation (19). One way is 

to replace H  with Equation (19) in ( )1 *Re→ − P E H , whereas the other way is to re-

place E  with Equation (19) in ( )1 *Re→ − P E H . Hence, there are two expressions as 

follows. 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * *

2 2

* * *

   
  

   

  −  −  =   −     
− = 

−  +   =   −    

E E H E E E H
P

E H H H E H H

i i

i i
. (A2) 

We then apply the second vector identity given in Equation (7) to the above equa-

tions, whence an average of the two is taken. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 * * * *1 1

2 2

* * * *1

2

      



  − =  −  −  −    

 +  −  −  + 
 

P E E H H E E H H

H E H E E H E H

i i
. (A3) 

We then take the real and imaginary parts of P  to find both  ,→ 
P P  as follows 

with the help of the definitions in Equations (16), (17), and (20). 

( ) ( )

( ) ( )

2 2 1

2

2 2 1

2

Re

Im

avg avg

avg avg

   

   

→ → →

+

  

−

 − = + +


− = + +

P O S T

P O S T
. (A4) 

By employing various auxiliary relations in Equation (4), Equation (A4) is recast into 

Equation (21). 

Likewise, consider the average spin AM density avg

→
M  introduced in Equation (9). 

We can handle its constituents  ,E H

→ →
M M  defined in Equation (9) separately by express-

ing  ,E H  in terms of their curls  , E H  according to Equation (19). Resultantly, 

we obtain the following set. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 * * * *

2 * * * *

2 1

2

Im Re

Re Im

Re

E

H

avg avg avg

    

    

    

→

→

→ → →

+

    − = −  −  +  − 
    


   − = −  −  −  −     

 − = − + −

M E E E E E H E H

M H E H E H H H H

M O S T

. (A5) 

Here, we have implemented the second vector identity in Equation (7) as well. By employing vari-

ous auxiliary relations in Equation (4), Equation (A5) is recast into Equation (23). 
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Appendix B 

It is worth stressing that all bilinear parameters handled in this study happen not to 

carry the propagation factor ( )exp k zi  because of the cancellation 

( ) ( )
*

exp exp 1k z k z  =  i i . 

It is helpful to recognize 2

DZ −   and to formally define the propagation phase fac-

tor as follows. 

( )

( )
2

*

exp
,

exp
D

k z d
Z k

dzk z


  



 − 
 

 

  
 =  = 

  −

i
i

i
. (B1) 

Let us prove that ( ) ( )1

2
ˆ ˆ expQ k z  = Q x yi i  in Equation (26) satisfies indeed the 

curl condition k   = Q Q  given in Equation (5). 

( ) ( ) ( )

( ) ( )

( )( ) ( )( )

1

2

2
ˆ ˆ ˆ ˆ ˆ ˆexp

2
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ1

x y

y yx xz z

y x

y x

Q k z Q Q
Q

Q QQ QQ Q

Q y z z x x y

Q Q
k Q k Q

z z

k k k


     



    



 

   

   

=   =    +

        
= − + − + −                

 
= − + = − +

 

= −  +  =   

Q
Q x y x y x y

Q
x y z

x y x y

x y

i i i

i i

i i i ( )
2

ˆ ˆ k
Q


 



   
Q

x yi

 (B2) 

We have thus proved k   = Q Q . In addition, we have found the usefulness of 

the ‘tilde’-ed components  , ,x y zQ Q Q  
, where it happens that 0zQ = . 

Appendix C 

The following proof make use of the ‘tilde’-ed notation  , , , , ,x y z x y zE E E H H H  for 

the field variables, which turned out quite convenient for our ensuing proofs. We rely on 

Equation (B1) whenever necessary. We are now to provide derivations of key parameters 

for the EM field associated with the pair of plane wave with the circular vectors 

( ) ( )1

2
ˆ ˆ expQ k z  = Q x yi i  in Equation (26). The associated fields in Equation (27) are re-

written as follows with the help of the tilde-ed variables  ,x xE H , for which the remain-

ing quartet  , , ,y z y zE E H H  is no longer necessary. 

( )

( )

ˆ ˆ ˆ ˆ2
,

ˆ ˆ ˆ ˆ2

x y x xx D

x D D x y x x

E E E HE z Q Z Q

H z Q Z Q Z H H H E

+ + − −

+ + − −

  + = +=  −  
 

=  +   + = +  

E x y x y

H x y x y

ii

i i i
. (C1) 

Notice that ( )
*

* * * *

x D xE Q Z Q H+ + − −=  +  i . Likewise, ( )
*

* * * *

x D xH Q Z Q E+ + − −=  −  i . 

Equally important is the fact that ( ) ( ) ,x xE z H z  carry a pair of distinct propagation 

phase factors   ( ) ( ) , exp ,expk z k z+ − + −   i i as defined before in (B1). This feature of 

two distinct propagation speeds renders rather difficult the algebra involved in the chiral 

case. 

Let us evaluate below the energy densities with the help of 2

DZ − = . 
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( ) ( ) ( )

( ) ( )

( )

* * * * 2 * *1 1 1

2 4 4

2 2* *1 1

2 4

2 2 2 22

avg x x x x D x x x x

x x x x D D

D

I E E H H Z H H E E

E E H H Q Z Q Q Z Q

Q Z Q Q Q

   

 

  

→ −

+ + − − + + − −

+ − + −

 + = − + −

= + =  −  +  + 

= + = +

E E H H i i i i

i i . (C2) 

The active energy density is hence constant since all  , , ,DZ Q Q + −  are assignable 

constants. Interestingly, it is found that * * =E E H H  during the above process, 

thereby signifying a perfect electric-magnetic duality. This duality leads naturally to 

( )* *1

2
0avgJ  →  − =E E H H  for Equation (9). Hence, any hypothetical fields with 

* * E E H H  mean an off-duality state. 

The spin AM densities in Equation (9) are also evaluated as follows. 

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

* *1

2

* *
1

4

* * * * *1

4

* * *1

2

* *1

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ Re

ˆIm Re

Re

avg

x x x x x x x x

x x x x x x x x x x

avg x x

avg

E H E H H E H E

E H H E H E E H E H

E H

 



 

  

 

→



  + 

 = +  + + +  +
  

= + + + =

   +  =


  +  =

M E E H H

x y x y x y x y

z

M E E H H z

M E E H H 0

i i i i

i i i i i . (C3) 

We need one further step to evaluate ( )* ˆReavg x xE H→ =M z  by Equation (C1) as fol-

lows. 

( ) ( )

( )( )

( )

( )

( ) ( )

*

* * * *

2 22 * * * *

2 22 * *

2 2 2 22

ˆRe

ˆRe

ˆRe

ˆRe 2Re

ˆ ˆ

avg D D

D D

D D

D D

D

Q Z Q Q Z Q

Q Z Q Q Z Q

Q Z Q Z Q Q Q Q

Q Z Q Z Q Q

Q Z Q Q Q









  

→

+ + − − + + − −

+ + − − + + − −

+ − + + − − + + − −

+ − + + − −

+ − + −

 =  −   + 
 

 =  +   + 
 

 = − +   +  
 

 = − +  
 

= − = −

M z

z

z

z

z z

i i

i i

i

i

. (C4) 

We thus obtained a symmetric-antisymmetric form since the pair  2 2
,Q Q + −  is 

symmetric but the sign between them ( )−  is anti-symmetric [8]. 

Next, we go on to the complex Poynting vectors. 

( ) ( ) ( ) ( )

( ) ( )

*

*
* *

2 2

* * * *

2 2 2 2**

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2

2 1
ˆ ˆ2

2 2

D D

x x x x x x x x

x x x x x x x x

D

D D D

Z Z

E H H E E H H E

Q Q
E E H H E E H H

Q Q Q QZ

Z Z Z



 



   

     

+ −

+ − + −

 

= +  + = +  −

+
 = − − = − + = −
 

 + +
  = = − = −
 
 

P E H

x y x y x y x y

z z z

E HE H
P z

i i

i i i i

i i i i

i
i

i i

( )
2 2 2 2

ˆ ˆRe
D D

Q Q Q Q

Z k

   

 

+ − + −→
+ +

  = − = −

z

P P z z

. 

(C5) 

Here, we have employed ( ) 2 2* *1

2 x x x xE E H H Q Q  + −+ = +  obtained during the de-

velopment in Equation (C2). It is trivially found that ( )Im  =P P 0 . 
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Field helicities are straightforwardly evaluated as follows. 

( ) ( ) ( ) ( )

( )
( )

( ) ( )( )

( )( )

*
* * *

*

* * * *

**

* * * *

* 2 *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

Re
2Re

Re Re

Re

Re

D x x x x x x x x

x x

x x x x x x

D

x x D D

D D

D

Z E H H E E H H E

E H
E H H E E H

Z

E H Q Z Q Q Z Q

Q Z Q Q Z Q

Q Q Z Q

+ + − − + + − −

+ + − − + + − −

+ + −

= + + = + −

= + =  = −

 =  −   + 
 

 =  −   − 
 

= −

E H x y x y x y x y

E H

i i i i i

i

i i

i i

( )

( )

( )

* * * *

2 2* 2 * * * 2

2 2 2 2 2 22

*

Re 2 Re

Im

D

D D D

D

D D

Q Z Q Q Q Q

Q Q Z Q Q Z Q Q Q Z Q

Q Z Q Q Q Q Q

Z Z

   

 

− − + − + + − + −

+ + − − − + − + + −

+ − + − + −→

 −   +  
 

 = − −   = −
 

− − −
 = − = − = −E H

i

i

C

. (C6) 

It is trivial to find that ( )*Re 0  =E HC . 

Based on Equation (C1), let us consider several orbital and spin operators by utilizing 

the fact that field variables are dependent only on the z -coordinate and field variables 

are absent in the z -direction. 

( )

( )

( )

* * * * *

* * * *

* * *

* * *

ˆ ˆ0 0

ˆ ˆ0

ˆ

ˆ0

y yx xz z
x y x y

y yx xz
x y x y

yx

x y

x x x

x y

E EE EE E
E E E E

x x x y y y

E EE EE
E E E E

z z z z z

HH
H H

z z

E E E
E E

x y z

      
  + + + + +   

        

     
+ + + = +    

       

 
 = + 

  

   
  + + 

   

E E x y

z z

H H z

E E x

( )

* *

* * *

ˆ0

ˆ0

y y y

x y

z z z
x y

E E E
E E

x y z

E E E
E E

x y z

   
+ + + 

   

   
+ + + =   = 

   

y

z 0 H H 0

. (C7) 

Therefore, the orbital portions are greatly simplified, whereas the spin portions van-

ish identically. Hence, avg avg

→ = =S S 0  for Equation (16). We are now ready to evaluate the 

desired orbital parameters again by utilizing the tilde-ed variables. 

( ) ( )* *

* * * *

* * * *

2

* * *

2

ˆ

ˆ4

avg

y yx x

x y x y

y yx x

avg x y x y

D

x x x

x x x

E HE H
E E H H

z z z z

E HE H
E E H H

z z z zZ

E H H
E H H

z z z

 

 






  + 

       
= + + +    

        

      
= + + +    

           

  
= − + −

  

O E E H H

z

O z

i
i i * * *ˆ ˆ2x x x

x x x

E E H
E E H

z z z


     
= +   

     
z z

i

. (C8) 

By use of Equation (C1), we revert to the circular vectors 
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( )( )

( )( )

( ) ( )

( )

1 * *

* * * *

* * * *

2 22 * * * *

* * * *

ˆ2

ˆ

2

x x

avg x x

D D

D D

D D

D

E H
E H

z z

Q Z Q Q k Z Q k

Q Z Q Q k Z Q k

k Q Z k Q Z Q Q k Q Q k

Z Q Q k Q Q k

 −

+ + − − + + + − − −

+ + − − + + + − − −

+ + − − − − + + + + + − − −

− − + + + + + − − −

  
= + 

  

  +   − 
 =
 +  −   + 
 

 + +   −  
=

−   −  


O z

z
i i i i

i i i i

i i i i

i i i

( ) ( )2 2 2 22

ˆ

ˆ ˆ2 D avgk Q Z k Q k Q k Q + + − − + + − −


 
 



= +  = +

z

z O zi i

. (C9) 

Here, we stress that we have employed ( )d dz k   = i  in Equation (B1). 

We then take the real and imaginary parts in Equation (C9) to obtain the following 

according to Equation (17). Therefore, the average orbital linear momentum is found be-

low. 

( ) ( ) ( )2 2* *1

2
ˆImavg k Q k Q   →

+ + − −
   +  = + O E E H H z . (C10) 

In analogous way, the average reactive orbital linear momentum in Equation (17) 

turns out to vanish, i.e., avg

 =O 0 . 

Let us evaluate the pair ( ) ( ) Re ,Im+ −T T  in Equation (20) again by employing the 

fields in Equation (C1). To this goal, we observe the following according to the operators 

in Equation (C7). 

( ) ( )

( ) ( )

* * * * * *

* *

ˆ,
y yx x

x y x y

E HE H
H H E E

z z z z

      
 = +  = +           


 =  =

H E E H z

H E E H 0

. (C11) 

Therefore, we are left with only two terms from the four terms for T  in Equation 

(20) in the following manner. 

( ) ( )

( )

* * * * * *

* * * *

* * * *

* *

ˆ

ˆ2

ˆ

y yx x

x y x y

y yx x

D x y x y

x x x x

x x x x

x x

x x

E HE H
H H E E

z z z z

E HE H
Z H H E E

z z z z

E H H E
H E E H

z z z z

E H
H E E

z z

+

+

   
  −  = + − − 

    

   
= + − − 
     

    
= − − − − 

    

 
= + −

 

T H E E H z

T z

z

i

i i
i i

* * ˆx x

x x

H E
H

z z

  
− = 

  
z 0

. (C12) 

Likewise, 
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( ) ( )

( )

* * * * * *

* * * *

* * * *

* *

ˆ

ˆ2

ˆ

2

y yx x

x y x y

y yx x

D x y x y

x x x x

x x x x

x x

x x

E HE H
H H E E

z z z z

E HE H
Z H H E E

z z z z

E H H E
H E E H

z z z z

E H
H E

z z

−

−

   
  +  = + + + 

    

   
= + + + 
     

    
= − + + − 

    

  
= +

 

T H E E H z

T z

z

i

i i
i i

* * ˆx x

x x

D

E H
H E

Z z z
−

   
 = − +   

   
T z

i

. (C13) 

This time, we need to evaluate the above nonzero vector −T  for the circular vectors. 

( )
( )( )

( )( )

( )( )

( )( )

( )

*

*

* * * *

* * * *

2 22 * * * *

2

1
ˆIm Re

1
ˆIm

1
Im

x D

D x D

D D

D D D

D D

D

H Q k Z Q k

Z E Q k Z Q k

Q Z Q Q k Z Q k

Z Q Z Q Q k Z Q k

k Q Z k Q Z Q Q k Q Q k

Z k Q

+ + + − − −

−

+ + + − − −

+ + − − + + + − − −

+ + − − + + + − − −

+ + − − − − + + + + + − − −

+ +

  − 
= −  

+  +   

  −   − 
 =
 +  +   + 
 

− −   +  
=

+

T z

z

i i

i i

i i

i i

i

( )

( )

22 * * * *

2 22

ˆ

2
ˆIm

D D

D

D

Z k Q Z Q Q k Q Q k

k Q Z k Q
Z

− − − − + + + + + − − −

+ + − −

 
 
 − +   +  
 

= − =

z

z 0

i

. (C14) 

In short, ( ) ( )Re Im 0+ −= =T T . 

We are left with one pair of scalars introduced in Equation (12), which is now evalu-

ated with the help of Equation (C1). 

( ) ( )

( ) ( )
( )

* ** *

* *

* ** *

* * * *

2

y yx x

x y x y

x xx x

D x x x x

x x x x

x x x x

H EH E
g E E H H

z z z z

E HH E
Z g E H H E

z z z z

E E H H
E E H H

z z z z









   
   = − + − + 

     

 −  − 
= − + 

   

    
= + 

    

E H H E

i i
i i i

i

. (C15) 

Separating the above into its real and imaginary parts, we obtain the following pair. 

( ) ( )

2 22* *

2 2 2 2

0

1
2

2 2

Dx x

x x

D D

D

g

k Q Z k QE H
g E H

Z z z Z

k Q k Q k Q k Q
k

 

   


+

+ + − −

−

+ + − − + + − −

=

+  
= + = 

  

= + = +

i

i i

. 
(C16) 

Here, we employed the formula ( ) ( ) ( )2 2* * 22x x x x DE d dz E H d dz H k Q Z k Q+ + − −+ = +i  

obtained in Equation (C9). 
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