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 Abstract: Effective prediction of wastewater treatment is beneficial for precise control of wastewater treat-

ment processes. The nonlinearity of pollutant indicators such as COD and TP makes the model difficult to 

fit and has low prediction accuracy. The classical deep learning methods have been shown to perform non-

linear modeling. However, there are enormous numerical differences between multi-dimensional data in 

the prediction problem of wastewater treatment, such as COD above 3000 mg/L and TP around 30 mg/L. It 

will make current normalization methods challenging to handle effectively, leading to the training failing to 

converge and the gradient disappears or exploding. This paper proposes a multi-factor prediction model 

based on deep learning. The model consists of a combined normalization layer and a codec. The combined 

normalization layer combines the advantages of three normalization calculation methods: z-score, Interval, 

and Max, which can realize the adaptive processing of multi-factor data, fully retain the characteristics of 

the data, and finally cooperate with the codec to learn the data characteristics and output the prediction 

results. Experiments show that the proposed model can overcome data differences and complex nonlinear-

ity in predicting industrial wastewater pollutant indicators and achieve better prediction accuracy than 

classical models. 
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1. Introduction 

In order to protect water resources and reduce the pollution of production and do-

mestic wastewater to the environment, it is necessary to reduce the discharge of pollutants 

through the harmless treatment of wastewater [1]. Therefore, the effect of wastewater 

treatment has received extensive attention, and innovative technologies and management 

methods have become a current research focus. 

Anaerobic biological treatment technology, also known as anaerobic digestion (AD), 

is widely used in the sewage treatment link of wastewater treatment plants (WWTPs) [2]. 

Its processing cost includes anaerobic granular sludge (AnGS) bed reactors, e.g., the up-

flow anaerobic sludge blanket (UASB) reactor, the expanded granular sludge bed (EGSB) 

reactor, and the internal circulation (IC) reactor [3], etc. Due to the complexity of sludge 

composition, its application has limitations, mainly in the inability to fully use functional 

anaerobic microorganisms, resulting in a slow hydrolysis rate and poor biodegradability 

[4]. Although ultrasonic irradiation and other methods can improve the efficiency of an-

aerobic treatment, improper use of parameters will inhibit sludge metabolism and affect 

the economy of wastewater treatment [5]. Moreover, the anaerobic biological action in the 

reactor is vulnerable to the impact of influent water, and thus the action is reduced. For 
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example, during heavy rain, the anaerobic biological reactor is under a high hydraulic 

load to treat low-concentration sewage. It will lead to a period of famine.  

In the case of industrial wastewater, the influent composition and flow rate are more 

prone to large fluctuations or even complete disruptions, affecting the microbial activity 

and the treatment capacity of wastewater treatment systems [2]. A large amount of sur-

plus sludge will be discharged with the effluent, affecting the environment [6, 7]. There-

fore, effectively removing sludge from anaerobic reactors or reducing sludge production 

has become an essential topic in recent years. Another disadvantage is that the removal 

rate of nitrogen and phosphorus is low. The enhancement of endogenous microbial me-

tabolism will also promote the release of nutrients such as nitrogen and phosphorus in 

microbial cells, increasing the nutrients in the water and affecting the removal efficiency 

of nitrogen and phosphorus [7]. 

Anaerobic/aerobic conditions (A/O) biological nitrogen removal process is a biologi-

cal sewage treatment system composed of anoxia and aerobic reaction. After the sewage 

enters the anoxic pool, it successively goes through the stages of anoxic denitrification, 

aerobic removal of organic matter, and nitrification. The advantages of the A/O process 

are lower operating costs, higher organic matter removal efficiency, less aerobic sludge, 

and no pH correction [8]. In the process of aerobic sludge treatment, the endogenous res-

piration rate is high, so the content of aerobic sludge in the effluent is small [7]. 

Aerobic/anoxic/anaerobic conditions(A/A/O), an anoxic tank was added to the A/O. 

Part of the mixed liquid from the aerobic tank was returned to the front of the anoxic tank 

to achieve the purpose of nitrification and denitrification. It can keep the function of ni-

trogen and phosphorus removal of activated sludge to the maximum extent. Moreover, 

the standby time is greatly improved, quickly recovering the activity when the wastewater 

is fed back [9]. This combination process combines the advantages of each of the three 

reactors. The combined process is more energy efficient. Although most chemical oxygen 

demand (COD) and suspended solids can be removed under anaerobic and anoxic condi-

tions, the aerobic process can further reduce the concentration of pollutants in the 

wastewater [10]. 

China has strict discharge standards for wastewater pollutants and has limited water 

quality indicators such as COD and suspended solids (SS) in the treated wastewater. Take 

the beer industry pollutant discharge standard (GB19821-2005) [11] as an example: COD, 

SS, total nitrogen (TN), and total phosphorus (TP) should be lower than 80 mg/L, 70 mg/L, 

15 mg/L, and 3 mg/L respectively. To ensure that the wastewater can be discharged up to 

the standard, some studies consider using the time series prediction method to model and 

predict the COD and other indicators at historical moments to provide a basis for adjust-

ing treatment strategies. 

The modeling methods commonly used in current research are divided into machine 

learning [12] and deep learning methods [13]. Machine learning methods, such as K-near-

est neighbor (KNN), artificial neural network (ANN), etc., have the advantages of conven-

ient modeling and few parameters and have specific applications in some simple predic-

tion tasks. However, in the face of multi-factor and complex nonlinear data, its prediction 

accuracy is difficult to meet expectations. The deep learning methods are currently the 

most widely used methods, mainly including recurrent neural network (RNN), long 

short-term memory (LSTM) neural network, and so on. Deep learning relies on data-

driven modeling and has a solid fitting ability. It usually obtains better results than ma-

chine learning methods in robust nonlinear and random modeling [14]. 

However, in the prediction of wastewater treatment indicators, classical deep learn-

ing methods also face some difficulties [15]. The first is the difficulty of data processing. 

Because wastewater treatment requires multi-factor forecasting, many forecasted indica-

tors and the values of each indicator vary greatly, making it difficult for a single normali-

zation method to achieve sound treatment effects for all indicators. The second is the high 

data complexity. In prediction tasks, it is often necessary to learn from long historical data, 

coupled with the nonlinearity and strong randomness of the data, which seriously affects 

the model's prediction accuracy. 
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The solution to this problem is to modify the normalization processing part of the 

model so that the data can be reasonably limited to a specific range, reducing the com-

plexity of the data and speeding up the convergence of the model. The current research 

considers adaptive normalization layer, automatic selection of normalization layer, etc., 

and adopts a data-driven way to select a suitable normalization method adaptively. How-

ever, these improvements are primarily for univariate forecasting, and the final calcula-

tion method is still one. In the prediction task with multiple factors and significant data 

differences, it is effective to consider multiple normalization processing methods. 

In summary, this paper considers a combined normalization codec (CNC) model for 

predicting water quality indicators in wastewater treatment. The model consists of a com-

bined normalization layer, a denormalization layer, and a codec. The advantages of the 

processing method can be improved to improve the model's prediction accuracy. 

Our main contributions are summarized as follows:  

(1) A combined normalized encoder structure is proposed for the multi-factor pre-

diction problem of wastewater pollutant indicators. This structure combines the ad-

vantages of three normalization methods, which can adaptively normalize and encode 

pollutant index data of different magnitudes, simplify complex index data processing pro-

cesses, and improve the data processing capability in multi-factor prediction. 

(2) A combined renormalized decoder structure is proposed for the prediction task. 

The structure uses three renormalization methods to adaptively renormalize the output 

value of the decoder and map to obtain the real prediction result. Its feature of adaptively 

adjusting parameters in model optimization can improve model prediction accuracy. 

The rest of this paper is organized as follows: Section 2 introduces related research 

work in this area, Section 3 describes the proposed method in detail, Section 4 validates 

and analyzes the proposed model through experiments, and Section 5 summarizes the 

work and suggests future work. The abbreviations used in this paper are shown in Table 

1. 

Table 1. List of abbreviations. 

Full name Abbreviation 

anaerobic digestion AD 

wastewater treatment plants WWTPs 

anaerobic granular sludge AnGS 

up-flow anaerobic sludge blanket UASB 

expanded granular sludge bed EGSB 

internal circulation IC 

anaerobic/aerobic conditions A/O 

aerobic/anoxic/anaerobic conditions A/A/O 

chemical oxygen demand COD 

suspended solids SS 

total nitrogen TN 

total phosphorus TP 

K-nearest neighbor KNN 

artificial neural network ANN 

recurrent neural network RNN 

long and short-term memory LSTM 

combined normalization codec CNC 

extreme learning machine ELM 

least squares support vector machine LS-SVM 

convolutional neural networks CNN 

shared weight long short-term memory SWLSTM 

Gaussian process regression GPR 

exponential weighted moving average EWMA 

deep neural network DNN 
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gated recurrent unit GRU 

mean square error MSE 

mean absolute error MAE 

mean absolute percentage error MAPE 

Pearson correlation coefficient R 

2. Related Work 

Currently, some studies use machine learning methods to predict the quality of 

wastewater treatment. Arismendy et al. [16] developed an intelligent system based on 

multilayer perceptrons. The system can predict the COD index to support the relevant 

decision-making of the sewage treatment plant. Hilal et al. [17] used the BKNN-ELM 

model combining KNN and extreme learning machine (ELM) to predict the SS index, and 

the prediction accuracy reached 93.56%. Liu et al. [18] used the least squares support vec-

tor machine (LS-SVM) to build a prediction model, which was validated in the COD pre-

diction of an anaerobic wastewater treatment system. These models based on machine 

learning can complete the prediction of water quality indicators in practice but generally 

target a single factor. Because the models are relatively simple, the prediction accuracy 

still needs to be improved. 

Therefore, there are studies considering prediction models based on deep learning. 

Han et al. [19] used an adaptive fuzzy neural network to achieve multi-objective predic-

tive control. They dealt with conflicting control objectives by capturing the nonlinear be-

havior of the sewage treatment plant to improve its operational performance of the sew-

age treatment plant. Farhi et al. [20] used LSTM to build a wastewater prediction model, 

which showed better results than machine learning in predicting ammonia and nitrate 

concentrations in wastewater. Wan et al. [21] integrated the spatial feature of convolu-

tional neural networks (CNN), the temporal feature of sharing-weight long short-term 

memory (SWLSTM), and the probabilistic reliability of Gaussian process regression (GPR) 

to construct a new water quality prediction CSWLSTM-GPR. And it is applied to high-

precision point prediction and interval prediction monitoring of papermaking wastewater 

treatment systems. 

These applications demonstrate the superiority of deep learning methods in 

wastewater treatment quality prediction. However, with the increase in pollutant index 

modeling needs and training data, deep learning methods also expose some problems. 

When faced with multiple factors and numerical differences, due to the enormous amount 

of training data, the existing data processing methods are complicated to operate and dif-

ficult to meet the processing requirements. Studies have shown improper normalization 

can significantly affect model performance, reducing model generalization and prediction 

accuracy [22]. Therefore, more efficient data processing methods must be adopted to cope 

with the growing demand for forecasting [23]. 

Passalis et al. [24] designed an adaptive normalization layer based on the z-score nor-

malization method and applied it to the field of time series forecasting. The model adap-

tive optimization method can achieve better processing results than a fixed normalization 

scheme. Since this study only considers one basic normalization method, it is challenging 

to adapt widely to multiple forecasting scenarios. Jin et al. [25] combined z-score, Interval, 

decimal, and Min-Max normalization methods to design the normalization layer and 

renormalization layer and obtained the best predictions for a greenhouse weather dataset. 

Based on the above analysis, this paper proposes the CNC model in combination with 

the actual characteristics of the deep learning state estimation method. In this paper, the 

combined normalization method is adopted, the advantages of various normalization 

methods are integrated, the data processing effect is improved, and the normalization 

layer and renormalization layer for the prediction task of wastewater treatment indicators 

are designed. 
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3. Combined normalized codec prediction model 

The structure of the proposed combined normalized codec prediction model is 

shown in Figure 1. The model contains a variety of data normalization methods, which 

can adaptively integrate the advantages of multiple data processing methods through the 

end-to-end model optimization process. Thereby, the learning effect of the model on 

multi-dimensional data is improved, and the purpose of improving the prediction accu-

racy is finally achieved. 

 

Figure 1. Schematic diagram of the model structure. 

The CNC model is mainly composed of three parts: combined normalization en-

coder, attention mechanism, and combined renormalization decoder. The combined nor-

malization encoder integrates an adaptive combined normalization layer containing three 

normalization calculation methods: z-score, Interval, and Max normalization. During the 

model training process, the unprocessed pollutant indicator data are directly input into 

the adaptive combined normalization layer in batches. Three normalized calculations are 

obtained by separately obtaining the batch data's mean, variance, and other statistics. In 

order to synthesize the advantages of the three calculation methods and get the optimal 

processing effect, the results of the three normalization calculations are weighted and se-

lected based on the Softmax function. The weights are obtained from the model training 

to finally generate the weighted normalized processing results. These results are scaled 

and panned by the learnable parameter  s that can be dynamically adjusted according 

to the current model training effect. The exponential weighted average method is used to 

fit the global distribution of the data, and the iterative estimation is performed according 

to the statistics of each batch of data. The optimal global statistics are retained, and the 

prediction accuracy of the data by the final training model is improved. The normalized 

data are encoded by a multilayer LSTM [26]. 

The attention mechanism [27] focuses on the encoded features, selecting the most 

favorable features for the model output values and ignoring the unimportant ones, thus 

reducing the model's internal parameters and learning more distant historical 
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information. The features filtered by the attention mechanism are fed into the combined 

renormalization decoder. 

The combined renormalization decoder decodes the data features. The decoding of 

features is mainly achieved by multilayer LSTMs containing sophisticated gating mecha-

nisms that preserve and learn long-term information about the sequence. After decoding 

the prediction values, the final prediction values are output through the adaptive com-

bined renormalization layer. Corresponding to the adaptive combined normalization 

layer, this layer contains three renormalization algorithms, which respectively perform 

renormalization calculation on the output features of the LSTM according to the statistics 

during data normalization. This layer also uses the Softmax function to weight the three 

sets of renormalized results and comprehensively considers the three sets of results 

through the trainable combined weights to obtain the best estimation results. Also, this 

layer adds similar trainable parameters   and   as the normalization layer to scale and 

translate the results, and the values of   and   can also be trained by backpropagation. 

The structure of the switched normalization encoder and the switched renormalization 

decoder will be described below. 

3.1. Combined normalized encoder 

The schematic structure of the combined normalized encoder is shown in Figure 2. 

The combined normalization encoder integrates the combined normalization layer on top 

of the conventional encoder. Therefore, it can automatically switch the normalization 

method of the input data and improve the effect of normalization processing, and finally 

improve the feature coding capability of the encoder. In the combined normalization 

layer, we use a normalization method that includes z-score, Interval and Max. It is calcu-

lated as respectively: 
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where x  represents the input data, x̂  represents the normalized calculation result. 

min , max , mean ,  2  represent the minimum, maximum, mean, and variance of the 

source data, respectively, and a, b represents the normalized interval. △ represents a 

fixed, smaller positive number. 

Each of the three normalizations has its strengths and can process the input data to 

the standard normal distribution, (a, b) specific interval, and between (-1, 1), respectively, 

to exert different effects on the data. Among them, z-score processing can obtain data con-

forming to the standard normal distribution and reduce data distribution differences [28]; 

Interval method processing fixes the results in a specific interval to prevent gradient dis-

appearance and gradient explosion problems; Max is scaling normalization scales down 

the input data without changing the scale characteristics of the input data. 

In order to use the effect of the three normalization methods on the input data, this 

paper uses the adaptive combined normalization method to weigh the calculation results 

of normalization and determine the most suitable normalization calculation method. In 

the combined normalization layer, the Softmax function acts as a combined function and 

is calculated as follows: 
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where t is the trainable parameter. It can optimize end-to-end by error backpropagation 

and is dynamically adjusted according to the model training effect. In this paper, three 

trainable parameters are set to output the combined weights for the results of the three 
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normalization calculations to enhance the effectiveness of the combined normalization 

method. The calculation formula for combining using the Softmax function [29] is: 

  +  + 
1 1 2 1 3 3

=Softmax( ) Softmax( ) Softmax( )X t x t x t x  (5) 

where 1
t , 2

t  and 3
t  denote the three selected trainable parameters, 1

x , 2
x  and 3

x  

denote the results obtained from the three normalization calculations, Softmax denotes 

the Softmax function, X  represents the final output, and   denotes matrix multiplica-

tion. 

 

Figure 2. Combined normalized encoder structure. 

In order to make the output of combined normalization better adaptable to complex 

data, in this paper, the trainable parameters   and   are used as scaling and transla-

tion factors, respectively. The two parameters can be back-propagated to be trained and 

updated end-to-end during training. The output of the combined normalization method 

is adjusted according to the training effect. The trainable parameters are calculated as: 

  = +Y X  (6) 

where Y denotes the output of the normalized layer of the batch, X denotes the value of 

the batch after normalization calculation,   is the scaling factor, and   is the transla-

tion factor. Finally, the combined normalized output adjusted by trainable parameters is 

encoded by an encoding structure composed of LSTMs to obtain the encoded features. 

In the model training, in order to grasp the global distribution of the data according 

to the batch data and ensure the fitting effect of the model to the input data at the end of 

the training, this paper uses the exponential weighted moving average (EWMA) method 

[30] to iteratively estimate the statistics of each batch and record the optimal statistical 

distribution. It is calculated as: 
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variance at the moment with t and t-1, and m  denotes the weight of retaining the infor-

mation of the previous moment, respectively. In this paper, we set it to 0.6. The flow of 

the algorithm for combined normalization layer is shown in Algorithm 1. 

Algorithm 1: Combined normalization Layer 

Input：data: 1
={x , ,x }

m
R ，Interval: ,a b ，Forgetting weight: m， 

Learning parameters:  
1 2 3
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3.2. Attention mechanism 

In this paper, the scaled dot product attention mechanism is used to pay attention to 

the input features of the combined normalization encoder. By adaptively selecting rele-

vant feature information, highly relevant features are retained, and irrelevant features are 

ignored, thereby improving the renormalization encoding. The structure of the scaled dot 

product attention mechanism is shown in Figure 3. 
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Figure 3. Attention mechanism. 

We can see that, the feature vectors from the combined normalized coder are passed 

through three different linear layers to obtain the query vector Q, the key vector K and the 

value vector V. Firstly, the dot product calculation is performed on Q and K to obtain the 

similarity matrix of Q and K. Next, the similarity matrix is scaled. Then, the attention 

weights are obtained by normalizing the values of the similarity matrix using the Softmax 

function. The purpose of using the Softmax function is to ensure that the sum of the 

weights is 1. Then, the attention weights and V are computed as a dot product to obtain 

the final result. The calculation process is as follows: 

 
•

•( , , ) = Softmax( )
TQ K

Attention Q K V V
d

 (8) 

where d denotes the scaling multiplier, Q, K, and V denote the query vector, key vector, 

and value vector, respectively, Softmax denotes the Softmax function, and Attention (Q, K, 

V) denotes the final result. 

3.3. Combined renormalized decoder 

The combined renormalization decoder consists of an LSTM model and an adaptive 

combined renormalization layer. Figure 4 shows the schematic structure of the combined 

renormalization decoder layer. The output features of the attention mechanism first goes 

through a decoder consisting of multiple layers of LSTMs, which decode the features into 

normalized predicted values. In order to get the actual predicted value, this value needs 

to be processed using a combined renormalization layer. Corresponding to the normali-

zation calculation, the adaptive merging and renormalization layer includes three renor-

malization calculations, which are calculated as follows: 

 = + +△2ˆ *x x mean  (9) 
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 ˆ | |
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where x  represents the data after renormalization, x̂  represents the data without 

renormalization, and min , max , mean , and  2  represent the maximum value, mini-

mum value, mean value, and variance of the input data, respectively, which all share the 

statistics from the normalization calculation and are updated with different batches of 

values. a and b, on the other hand, represents the interval set by the renormalization 

method and △ represents a fixed smaller positive number. 
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Figure 4. Combined denormalization decoder. 

In order to combine the results of the three renormalization calculations and improve 

the overall data processing, the Softmax combining function is also added to the combined 

renormalization layer to select the results. This function is used as a combining function 

to calculate three trainable parameters and output the combined weights for the results of 

the three renormalization calculations. Three trainable parameters can be optimized by 

error backpropagation to improve the effectiveness of the renormalization combination. 

The Softmax function for combining is calculated as follows: 

  +  + 
1 1 2 1 3 3

=Softmax( ) Softmax( ) Softmax( )H c h c h c h  (12) 
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Softmax( )
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e
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where 1
c , 2

c  and 3
c  denote the three selected trainable parameters, 1

h , 2
h  and 3

h  

denote the results obtained from the three renormalization calculations, Softmax denotes 
the Softmax function, H  denotes the final output, and   denotes the matrix multipli-
cation. 

Similarly, the combined renormalization layer incorporates the learnable parameters 

λ and ν as the scaling and translation factors, respectively. In the output of the renormal-

ization layer, the two parameters can scale the fixed renormalization output and dynam-

ically adjust the output values according to the model training effect. The expression at 

the output of the renormalization layer can be expressed as: 

  = +O H  (14) 

where O  denotes the actual value output by the inverse normalization layer, H  de-

notes the value after the renormalization calculation,   is the scaling factor, and   is 

the translation factor. Finally, O is output as the state estimate of the model. The flow of 

the algorithm for combined renormalization layer is shown in Algorithm 2.  
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Algorithm 2: Combined renormalized layer 
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4. Experiment 

The experiments in this paper use actual data from beer production wastewater treat-

ment. Beer is an alcoholic beverage brewed with malt grain, hops, and water as the pri-

mary raw materials, through liquid gelatinization and saccharification and then through 

liquid fermentation [31]. Beer is the fifth largest consumer beverage globally, second only 

to tea, carbonated beverages, milk, and coffee, with an average consumption of 23 liters 

per person per year [32]. The beer uses a lot of water to produce; for each cubic meter of 

beer produced, the water consumed in general is 10-20 m3, of which more than 90% will 

be discharged into a sewer system, and wastewater is produced at all stages of production 

[33]. Moreover, beer wastewater has a high concentration of soluble organic pollutants 

and SS [34], and the COD of the wastewater produced in the production process is high 

because most organic matter in the water is made up of sugars, starches, and proteins [35]. 

The biological methods commonly used for beer wastewater treatment include aerobic 

sequential batch reactor, cross-flow ultrafiltration membrane anaerobic reactor, and 

UASB [36]. Beer wastewater produces methane [35], and better wastewater treatment 

strategies could lead to better economic benefits while protecting the environment. 

The concentration of pollutants such as COD, SS, TN, and TP detected in the 

wastewater treatment process is an essential indicator of wastewater treatment, and 

whether it meets the national discharge standards is the determining factor for judging 

the effect of wastewater treatment. Predicting the future treatment effect according to the 

pollutant concentration index of the input wastewater at a historical time to assist in de-

cision-making is a hot issue in current research. However, due to the multi-factor, com-

plex, and nonlinear characteristics of forecasting tasks, higher requirements are placed on 

forecasting models' data processing and modeling capabilities. Therefore, this study uses 

COD, SS, TN, and TP data before and after brewery wastewater treatment to verify the 

model's prediction accuracy. 

4.1. Experimental procedure and evaluation index 

Based on the data of pollutant concentration indicators in the actual brewery 

wastewater treatment process, the prediction accuracy of the proposed model and seven 

classical prediction models, including ANN [37], deep neural network (DNN) [38], LSTM 

[26], gated recurrent unit (GRU) [39], Attention_LSTM [40], Attention_GRU [41] and Co-

dec [42] are compared. 

We build predictive models based on the open-source Tensorflow deep learning 

framework. In comparative experiments, we set the hyperparameters of the model. Spe-

cifically, all prediction models were optimized using the Adam hyperparameter optimi-

zation algorithm, and the optimized learning rate was set to 0.0001; the batch size of the 

data input network was set to 10; and the number of iterations per training was 300. In 
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order to avoid the influence of random errors of the model on the prediction results, all 

comparative experiments were repeated 10 times independently, and the average value 

was taken as the final result. 

In this paper, four evaluation indicators are used to evaluate the experimental results: 

root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE), and Pearson correlation coefficient (R). All four evaluation indicators can 

measure the difference between the prediction value given by the model and the actual 

value and evaluate the model's performance. The smaller RMSE, MAE, and MAPE values 

represent the minor difference between the prediction value given by the model and the 

actual value. In comparison, the larger R values represent the model's better fitting ability. 

The calculation equations (15)-(18) for the four evaluation indicators are as follows. 

 
=

= −
2

1

1
ˆ( )

n

i i
i

RMSE y y
n

 (15) 

 
=

−
1

1
ˆ= ( )

n

i i
i

MAE y y
n

 (16) 

 
=

−
= 

1

ˆ1

ˆ

n
i i

i i

y y
MAPE

n y
 (17) 

 =

= =

− −

− −



 

1

2 2

1 1

ˆ ˆ( )( )

=

ˆ ˆ( ) ( )

n

i i i i
i

n n

i i i i
i i

y y y y

R

y y y y

 (18) 

where n  is the total amount of data, ŷ  denotes the actual value of the data, y  is the 

state estimate given by the model, ŷ  is the mean of the actual values, and y  denotes 

the mean of the prediction values. 

4.2. Validation results 

The dataset consists of four pollutant concentration indicators of COD, SS, TN, and 

TP detected during the brewery wastewater treatment. The data set was collected from a 

wastewater treatment station. 720 sets were collected from June 11 to July 11, 2022. The 

data sampling interval was 1 h. Each data set includes four pollutant concentration indi-

cators at the inlet and outlet. The structure of the dataset used is shown in Figure 5.  
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(a) (b) 

Figure 5. Data comparison of water inlet and outlet. (a) COD, SS, TN, and TP detected at the water 

inlet. (b) COD, SS, TN, and TP detected at the outlet. 

This experiment compares the CNC model with other classical prediction models 

and verifies the superiority of the improvement proposed in this paper compared with 

other models in applying actual wastewater treatment effect prediction. The comparison 

models include: ANN [37], DNN [38], LSTM [26], GRU [39], Attention_LSTM [40], Atten-

tion_GRU [41] and Codec model [42]. The experiment uses the pollutant concentration 

index of the water inlet from time t-30 to t to predict the pollutant concentration index of 

the water outlet at time t+1, and the data set is divided into 90% training set and 10% test 

set. 

The prediction accuracy evaluation indexes of each comparative model are shown in 

Table 2. Figure 6 compares the predicted and actual values of each model. The comparison 

results show that the model proposed in this paper has better performance indicators, and 

the prediction results are closer to the actual situation. RMSE, MAE, and MAPE of the 

proposed model are reduced by 1.5%, 3.2%, and 0.5%, respectively, and the R indicator is 

increased by 0.1%, which verifies the improvement proposed in this paper. 

Table 2. Comparison of results of evaluation indicators. 

Model RMSE MAE MAPE R 

ANN [37] 4.5633 3.3221 1.0059 0.9722 

DNN [38] 4.5525 3.3194 0.9983 0.9723 

LSTM [26] 4.4786 3.2571 1.0215 0.9733 

GRU [39] 4.4888 3.2808 1.0135 0.9731 

Attention_LSTM [40] 4.4478 3.2330 1.0086 0.9735 

Attention_GRU [41] 4.4221 3.2171 1.0121 0.9738 

Codec [42] 4.4221 3.2171 1.0121 0.9738 

The proposed CNC 4.3547 3.1126 1.0071 0.9749 
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Figure 6. Comparison of predicted and actual values given by the model, based on four pollutant 

indicators. (a) COD, (b) SS, (c) TN, (d) TP. The last orange-red band is the actual ground-truth value, 

and the prediction results of all methods are compared using dashed lines. It can be seen that the 

red band (the method proposed in this paper) is the closest to the actual value. 

5. Conclusions 

The harmless treatment of wastewater is related to environmental protection and 

health. However, due to the volatility and nonlinear characteristics of wastewater treat-

ment, it is difficult to carry out predictive modeling and guide early regulation, which 

seriously affects treatment efficiency.  

Considering the prediction of pollutant indicators in brewery wastewater treatment 

to assist management, we propose an improved deep learning prediction model. The 

model is based on a combined normalized codec prediction for multi-factor and strongly 

nonlinear scenarios prediction tasks. In this model, the multi-factor pollutant index data 

such as COD and SS are first input into the combined normalization encoder, and the data 

is adaptively processed by combining the advantages of the three normalization methods. 

The encoder extracts the features of the data. Then, the decoder performs feature decoding 

after the features are paid attention to by the attention mechanism. Finally, a combined 

renormalization layer adaptively renormalizes the data and outputs the prediction results. 

The constructed CNC model was used to predict the four pollutant indicators of COD, SS, 

TN, and TP in brewery wastewater treatment and compared with the classical prediction 

model. The proposed model's RMSE, MAE, and MAPE indicators were 4.355, 3.113, and 

1.007, and the R index reached 0.975, which is better than the comparison model. The ex-

perimental results show that the model is more suitable for managing and applying 

wastewater treatment.  

In future work, we will continue to improve the model to enhance the accuracy of 

data predictions. Meanwhile, we will apply the model to more scenarios to verify the 

method's applicability. 
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