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Abstract

Based on some geometrical properties of the Rabinovich system the closed-form 
solutions of the equations has been established. More-over the Rabinovich system is 
reduced to a nonlinear differential equation depending on an auxiliary unknown 
function. The approxi-mate analytical solutions are built using the Optimal Auxiliary 
Func-tions Method (OAFM). A good agreement between the analytical and 
corresponding numerical results has been performed. The accuracy of the obtained 
results emphasizes that this procedure could be suc-cessfully applied for more 
dynamical systems with these geometrical properties. 1

Key words: optimal auxiliary functions method; Rabinovich system; symmetries; Hamilton--Poisson realization; 
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1 Introduction

The Rabinovich system was first studied in [1] with the analysis of a concrete
realization in a magnetoactive non-isothermal plasma. This system is a dynamical
system of three resonantly coupled waves, parametrically excited [2].

The synchronization or optimization of nonlinear system performance,
secure communications, and other applications in electrical engineering

1Mathematical Subject Classification(2008): 65L60, 76A10, 76D05, 76D10, 76M55

Keywords and phrases: optimal auxiliary functions method, Rabinovich system, symmetries,

Hamilton–Poisson realization, periodical orbits.
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or medicine are based on the study of dynamical systems. In [3] was ex-
plored the stabilization of the T system via linear controls and in [4] was
studied the Rikitake two-disk dynamic system and applied in modeling
the reversals of the Earth’s magnetic field [5], [6]. Some geometrical prop-
erties of the dynamical systems: the integral deformations, the equilibria
points, Hamiltonian realization was analyzed in [7]-[38]. The symmetry
represents an important geometrical property of the dynamical system.
As it is well known, a dynamical system admits symmetry with respect
to the origin point O(0, 0, 0) or with the Oz− axis or the plan z = 0 if it is
invariant under the transformation (x, y, z) → (−x,−y,−z), respectively
(x, y, z) → (−x,−y, z) and (x, y, z) → (x, y,−z).

2 The Rabinovich system

2.1 Global analytic first integrals and Hamilton-Poisson realization

The Rabinovich system has the form (see [39], [7] ):







ẋ = yz − α1x+ βy

ẏ = −x · z − α2y + βx

ż = x · y − α3z

, (1)

where the unknown functions x, y and z depend on t > 0, (β, α1, α2, α3) ∈ R4

and ẋ denotes derivative of the function x with respect to t.
Remark 1. Is easy to see that the considered system admits a symmetry with

respect to Oz- axis, for β 6= 0 and symmetries with respect to Oz, Ox, Oy axes, for
β = 0, respectively.
In this section we also recall some geometrical properties of the system (1) [7].

The global analytic first integrals of the Rabinovich system are obtained in [39].
The considered system has a Hamilton-Poisson realization with the Hamiltonian

and the Casimir given by H(x, y, z) = 1
4(x

2 − z2) and C(x, y, z) = 1
4(x

2 + 2y2 + z2),

respectively, for β = 0, α1 = 0, α2 = 0, α3 = 0; H(x, y, z) = −β
2x

2 + β
2 y

2 + βz2 and
C(x, y, z) = − 1

4βx
2 − 1

4β y
2 + z, for β 6= 0, α1 = 0, α2 = 0, α3 = 0.

There exist three isolated cases:
H(x, y, z) = x2 − z2 − 2βz, for β ∈ R, α1 = 0, α2 6= 0, α3 = 0;
H(x, y, z) = y2 + z2 − 2βz, for β ∈ R, α1 6= 0, α2 = 0, α3 = 0;
H(x, y, z) = x2 + y2, for β = 0, α1 = 0, α2 = 0, α3 6= 0.

Remark 2. For the initial conditions

x(0) = x0 , y(0) = y0 , z(0) = z0 , (2)

the phase curves of dynamics (1) are the intersections of the surfaces
−β

2x
2 + β

2 y
2 + βz2 = −β

2x
2
0 +

β
2 y

2
0 + βz20 and − 1

4βx
2 − 1

4β y
2 + z = − 1

4βx
2
0 −
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1
4β y

2
0 + z0 , for β 6= 0, α1 = 0, α2 = 0, α3 = 0;

x2 − z2 = x20 − z20 and x2 + 2y2 + z2 = x20 + 2y20 + z20 , for β = 0, α1 =
0, α2 = 0, α3 = 0, respectively.

2.2 Closed-form solutions

In this section we establish the closed-form solutions of the system Eq. (1) using
previously results, taking into account of the real values for the physical parameters
as β, a1, a2, a3.

i) β 6= 0, α1 = 0, α2 = 0, α3 = 0.
Using the transformations:

{

y(t) = R
4β · 2v(t)

1+v2(t)

z(t) = β + R
4β · 1−v2(t)

1+v2(t)

, (3)

where R = 4
√

β · (Hβ − 2β2 · Cβ + β3), Hβ = −β
2x

2
0 +

β
2 y

2
0 + βz20 , Cβ = − 1

4βx
2
0 −

1
4β y

2
0 + z0, v(t) is an unknown smooth function.
The third equation from Eq. (1) yields to

x(t) = − 2v̇(t)

1 + v2(t)
. (4)

Now, using the first equation from Eq. (1) we obtain:

v̈(t) ·(1+v2(t))−2v(t) ·(v̇(t))2+ R2

16β2
·v(t) ·(1−v2(t))+

R

2
·v(t) ·(1+v2(t)) = 0 . (5)

Using the initial conditions Eq. (2) and the relations Eqs. (3)-(4) the initial
conditions v(0) and v̇(0) become:

v(0) =

√

√

√

√

1− 4β
R

· (z0 − β)

1 + 4β
R

· (z0 − β)
, v̇(0) = −x0

2
·
(

1 +
1− 4β

R
· (z0 − β)

1 + 4β
R

· (z0 − β)

)

. (6)

Remark 3. If the function v(t) is the exact solution of the problem given by
Eqs. (5)-(6), then the relations Eqs. (3) and (4) give closed-form solution of the
system Eq. (1). If the function v(t) is an analytic approximate solution of the
problem given by Eqs. (5)-(6), then the relations Eqs. (3) and (4) give approximate
closed-form solution of the system Eq. (1).

ii) β = 0, α1 = 0, α2 = 0, α3 = 0.
For this particular case the system (1) reduces to







ẋ = yz

ẏ = −x · z
ż = x · y

. (7)
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Making the transformations:







x(t) = sign(x0) ·R · 1√
1+u2(t)

y(t) = sign(y0) ·R · u(t)√
1+u2(t)

, (8)

where R =
√

x20 + y20 and u(t) is an unknown smooth function, then the second
equation from Eq. (7) yields to

z(t) = − sign(y0)

sign(x0)
· u̇(t)

1 + u2(t)
. (9)

Now, using the third equation from Eq. (7) we obtain:

ü(t)− 2u(t)

1 + u2(t)
· (u̇(t))2 +R2 · u(t) = 0 . (10)

Using the initial conditions Eq. (2) and the relations Eqs. (3)-(4) the initial
conditions u(0) and u̇(0) become:

u(0) =
sign(y0)

sign(x0)
· y0
x0

, u̇(0) = −sign(z0) · z0 ·
(

1 + u2(0)
)

. (11)

Remark 4. If the function u(t) is the exact solution of the problem given by
Eqs. (10)-(11), then the relations Eqs. (8) and (9) give closed-form solution of
the system Eq. (7). If the function v(t) is an analytic approximate solution of the
problem given by Eqs. (5)-(6), then the relations Eqs. (3) and (4) give approximate
closed-form solution of the system Eq. (7).

iii) β ∈ R, α1 = 0, α2 6= 0, α3 = 0.
The closed-form solutions can be put in the following form:

{

x(t) = R · 2·u(t)
1−u2(t)

z(t) = −β +R · 1+u2(t)
1−u2(t)

, (12)

where R =
√

(z0 + β)2 − x20, for (z0 + β)2 − x20 > 0, and

{

x(t) = R · 1+u2(t)
1−u2(t)

z(t) = −β +R · 2·u(t)
1−u2(t)

, (13)

where R =
√

x20 − (z0 + β)2, for x20 − (z0 + β)2 > 0, respectively.
Then the third equation from Eq. (1) yields to

y(t) =
2u̇(t)

1− u2(t)
. (14)
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The unknown smooth function u(t) is solution of the nonlinear problem:







ü(t) · (1− u2(t)) + 2u(t) · (u̇(t))2 +R2 · u(t) · (1 + u2(t))−
−2β ·R · u(t) · (1− u2(t)) + α2 · (1− u2(t)) · u̇(t) = 0
u(0) = sign(x0) · x0

z0+β+R
, u̇(0) = y0

2 ·
(

1− u2(0)
)

.

(15)

iv) β ∈ R, α1 6= 0, α2 = 0, α3 = 0.
The closed-form solutions can be put in the following form:

{

y(t) = R · 2·u(t)
1+u2(t)

z(t) = β +R · 1−u2(t)
1+u2(t)

, (16)

where R =
√

(z0 − β)2 + y20. Then the third equation from Eq. (1) yields to

x(t) = − 2u̇(t)

1 + u2(t)
. (17)

The unknown smooth function u(t) is solution of the nonlinear problem:











ü(t) · (1 + u2(t))− 2u(t) · (u̇(t))2 +R2 · u(t) · (1− u2(t))+
+2β ·R · u(t) · (1 + u2(t)) + α1 · (1 + u2(t)) · u̇(t) = 0

u(0) =
√

R−(z0−β)
R+(z0−β) , u̇(0) = −x0

2 ·
(

1 + u2(0)
)

.

(18)

v) β = 0, α1 = 0, α2 = 0, α3 6= 0.
The closed-form solutions can be put in the following form:

{

x(t) = R · cos(u(t))
y(t) = R · sin(u(t)) , (19)

where R =
√

x20 + y20. Then the first equation from Eq. (1) yields to

z(t) = −u̇(t) . (20)

The unknown smooth function u(t) is solution of the nonlinear problem:

{

ü(t) + α3 · u̇(t) + R2

2 · sin(2 · u(t)) = 0
u(0) = arctan y0

x0
, u̇(0) = −z0 .

(21)

In literature there are several analytical methods for solving the nonlinear dif-
ferential problem given by Eqs. (5)-(6), (10)-(11), (15), (18), (21) such as: the
Optimal Homotopy Asymptotic Method (OHAM) [40], [41], [42], the Optimal Ho-
motopy Perturbation Method (OHPM) [43], [44], the Optimal Variational Iteration
Method (OVIM) [45], the Optimal Iteration Parametrization Method (OIPM) [46],
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the Polynomial Least Squares Method [47], the Least Squares Differential Quadra-
ture Method [48], the Multiple Scales Technique [49], the Function Method [50],
the Homotopy Perturbation Method (HPM) and the Homotopy Analysis Method
(HAM) [51], the Variational Iteration Method (VIM) [52].

In this work the approximate analytic solutions of the nonlinear differential prob-
lem given by Eqs. (5)-(6), (10)-(11), (15), (18), (21) are analytically solved using
the Optimal Auxiliary Functions Method (OAFM).

3 Basic ideas of the OAFM technique

By means of the operator theory, Eq. (5) with the initial conditions (6) can be
written in a more general form as [42, 53]:

L
[

Φ(t)
]

+ g(t) +N
[

Φ(t)
]

= 0, (22)

where L is a linear operator, g is a known function and N is a given nonlinear
operator, t denotes independent variable and Φ(t) is an unknown smooth function.
The initial conditions are

B
(

Φ(t),
dΦ(t)

dt

)

= 0. (23)

It is hard to find an exact solution for strongly nonlinear equation (22) with
initial conditions (23). For obtain an approximate analytic solution of Eqs. (22)
and (23), was proposed the approximate solution written in the form with just two
components:

Φ(t) = Φ0(t) + Φ1(t, Ci), i = 1, 2, ..., s, (24)

where the initial approximation Φ0(t) and the first approximation Φ1(t, Ci) will be
determined as follows. Replacing Eq. (24) into Eq. (22), it results in:

L
[

Φ0(t)
]

+ L
[

Φ1(t, Ci)
]

+ g(t)+

+N
[

Φ0(t) + Φ1(t, Ci)
]

= 0.
(25)

The initial approximation Φ0(t) could be determined from the linear equation

L
[

Φ0(t)
]

+ g(t) = 0, B
(

Φ0(t),
dΦ0(t)

dt

)

= 0 . (26)

The first approximation Φ1(t, Ci) is obtained from the following equation

L
[

Φ1(t, Ci)
]

+N
[

Φ0(t) + Φ1(t, Ci)
]

= 0,

B
(

Φ1(t, Ci),
dΦ1(t, Ci)

dt

)

= 0.
(27)
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Now, the nonlinear term from Eq. (27) is expanded in the form

N
[

Φ0(t) + Φ1(t, Ci)
]

=

= N
[

Φ0(t)
]

+
∞
∑

k=1

Φk
1(t, Ci)

k!
N (k)

[

Φ0(t)
]

.
(28)

The difficulties that appears in solving of the nonlinear differential equation (27)
could be eliminated by acceleration the rapid convergence of the first approximation
Φ1(t, Ci) and implicit of the approximate solution Φ̄(t). Taking into account the
Eq. (28), the last term from Eq. (27) is chosen, such that the nonlinear differential
equation (27) can be written as a linear differential equation, , in the form:

L
[

Φ1(t, Ci)
]

+A1

[

Φ0(t), Ci

]

N
[

Φ0(t)
]

+

+A2

[

Φ0(t), Cj

]

= 0,
(29)

B
(

Φ1(t, Ci),
dΦ1(t, Ci)

dt

)

= 0, (30)

where A1 and A2 are two arbitrary auxiliary functions depending on the initial
approximation Φ0(t) and several unknown parameters Ci and Cj , i = 1, 2, ..., p,
j = p+ 1, p+ 2, ..., s.

The auxiliary functions A1 and A2 (called optimal auxiliary functions) are not

unique, and are of the same form like Φ0(t) or N
[

Φ0(t)
]

or combinations of the

forms of Φ0(t) and N
[

Φ0(t)
]

.

In all these sums, the coefficients of the polynomial, exponential, trigonometric
and so on functions, are the parameters C1, C2, ..., Cs.

For special case N
[

Φ0(t)
]

= 0 it is clear that Φ0(t) is an exact solution of Eqs.

(22) and (23). The unknown parameters Ci and Cj can be optimally identified via
different method such as: the least square method, the Ritz method, the Galerkin
method, the collocation method, the Kantorovich method or by minimizing the
square residual error, using:

J(Ci, Cj) =

∫ b

a

R2(β, α1, α2, α3, t) dt, (31)

where

R(β, α1, α2, α3, t) = L
[

Φ̄(t, Ci, Cj)
]

+ g(t)+

+N
[

Φ̄(t, Ci, Cj)
]

,

i = 1, 2, ..., p, j = p+ 1, p+ 2, ..., s,

(32)

a and b are two values depending on the given problem.
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The unknown parameters Ci, Cj can be optimally identified from the equations

∂J

∂C1
=

∂J

∂C2
= ... =

∂J

∂Cp
=

∂J

∂Cp+1
= ... =

∂J

∂Cs
= 0. (33)

Using this approach the approximate solution (24) is well determined.
An approximate analytic solution of the form Eq. (24) obtained via OAFM

technique is called OAFM solution.
Therefore, it is validated that this technique is a powerful tool for solving non-

linear problems not depending on small or large parameters. It should be mentioned
that this procedure contains the optimal auxiliary functions A1 and A2 which pro-
vides us with a simple way to adjust and control the convergence of the approximate
solutions after only one iteration. Also, it is remarkable that a nonlinear differential
problem is transformed into two linear differential problems.

4 Approximate analytic solutions via OAFM

We introduce the basic ideas of the OAFM by considering Eq. (5) with the initial
conditions given by Eq. (6). The linear operator L could be chosen by the form
[53]:

L
(

v(t)
)

= v̈(t) + ω2
0v(t), (34)

where ω0 > 0 is an unknown parameter.
Eq. (26) becomes (g(t) = 0):

v̈(t) + ω2
0v(t) = 0, v(0) =

√

√

√

√

1− 4β
R

· (z0 − β)

1 + 4β
R

· (z0 − β)
,

v̇(0) = −x0

2
·
(

1 +
1− 4β

R
· (z0 − β)

1 + 4β
R

· (z0 − β)

)

,

(35)

with the solution

v0(t) = v(0) · cosω0t+
v̇(0)

ω0
· sinω0t. (36)

The nonlinear operator N
(

v(t)
)

is obtained from Eqs. (5) and (34):

N
(

v(t)
)

= −ω2
0v(t)+v̈(t)·v2(t)−2v(t)·(v̇(t))2+ R2

16β2
·v(t)·(1−v2(t))+

R

2
·v(t)·(1+v2(t)) .

(37)
By means of the Eqs. (36) and (37) it is obtain

N
(

v0(t)
)

= M1 · cosω0t+N1 · sinω0t+M2 · cos 3ω0t+N2 · sin 3ω0t , (38)
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where

M1 = −ω2
0M − 5Mω2

0

4
(M2 +N2) +

R2M

64β2
(4− 3M2 − 3N2) +

RM

8
(4 + 3M2 + 3N2) ,

N1 = −ω2
0N − 5Nω2

0

4
(M2 +N2) +

R2N

64β2
(4− 3M2 − 3N2) +

RM

8
(4− 3M2 + 3N2) ,

M2 = −Mω2
0

4
(3N2 −M2) +

R2M

64β2
(3N2 −M2) +

RM

8
(M2 − 3N2) ,

N2 = −Nω2
0

4
(N2 − 3M2) +

R2N

64β2
(N2 − 3M2) +

RN

8
(3M2 −N2) ,

M = v(0) , N =
v̇(0)

ω0
.

(39)
Taking into account of the Eqs. (29), (34) and (38), the first approximation is

obtained from the equation:

v̈1 + ω2
0v1 +A2(cosω0t, sinω0t, cos 3ω0t, sin 3ω0t, Cj) +A1(cosω0t, sinω0t, cos 3ω0t, sin 3ω0t, Ci)×

×(M1 · cosω0t+N1 · sinω0t+M2 · cos 3ω0t+N2 · sin 3ω0t) = 0,
(40)

with the initial conditions
v1(0) = 0, v̇1(0) = 0 . (41)

There are opportunity to choose the optimal auxiliary functions A1 and A2 in
the following forms:

A1

[

v0(t), Ci

]

=

Nmax−1
∑

k=1

a
(1)
k · cos(2k + 1)ω0t+ b

(1)
k · sin(2k + 1)ω0t , (42)

A2

[

v0(t), Dj

]

=

Nmax
∑

k=1

a
(2)
k · cos(2k + 1)ω0t+ b

(2)
k · sin(2k + 1)ω0t , (43)

where the convergence-control parameters Ci ∈ {a(1)k

∣

∣

∣
k = 1, Nmax − 1}∪{b(1)k

∣

∣

∣
k =

1, Nmax − 1},
Dj ∈ {a(2)k

∣

∣

∣
k = 1, Nmax} ∪ {b(2)k

∣

∣

∣
k = 1, Nmax}, Nmax > 2 is an arbitrary fixed

integer number,
or

A1

[

v0(t), Ci

]

= 0,

A2

[

v0(t), Dj

]

= A2

[

v0(t), Dj

]

=

Nmax
∑

k=1

a
(2)
k · cos(2k + 1)ω0t+ b

(2)
k · sin(2k + 1)ω0t ,

where the convergence-control parameters Dj ∈ {a(2)k

∣

∣

∣
k = 1, Nmax} ∪ {b(2)k

∣

∣

∣
k =

1, Nmax},
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or yet

A1

[

v0(t), Ci

]

= C1 cosω0t+ C2 sinω0t ,

A2

[

v0(t), Cj

]

= C3 cos 3ω0t+ C4 sin 3ω0t,

and so on.
If the auxiliary functions A1 and A2 are given by Eqs. (42) and (43) then Eq.

(29) becomes:

v̈1 + ω2
0v1 =

Nmax
∑

k=1

a
(3)
k · cos(2k + 1)ω0t+ b

(3)
k · sin(2k + 1)ω0t , (44)

with the initial conditions given in Eq. (41), whose solution is:

v1(t, Ci) = a0 cosω0t+ b0 sinω0t+
Nmax
∑

k=1

a
(4)
k · cos(2k + 1)ω0t+ b

(4)
k · sin(2k + 1)ω0t ,

(45)
where

a0 = −
Nmax
∑

k=1

a
(4)
k , b0 = −

Nmax
∑

k=1

(2k + 1)b
(4)
k ,

with the unknown parameters a
(3)
k , b

(3)
k , a

(4)
k , b

(4)
k depending on the convergence-

control parameters a
(1)
k , b

(1)
k , a

(2)
k , b

(2)
k , so will be optimally identified.

Finally, the approximate analytic solution is obtain from the Eq. (24) in the
form:

vOAFM (t) = v0(t) + v1(t, Ci), i = 1, 2, ..., s, (46)

with v0(t) and v1(t, Ci) given by Eqs. (36) and (45), respectively.

Analogue, in the particular case β = 0, α1 = α2 = α3 = 0, the Eq. (10) could
be rewrite in the following form:

ü(t) · (1 + u2(t))− 2u(t) · (u̇(t))2 +R2 · u(t) · (1 + u2(t)) = 0 .

So, choosing the linear operator L
(

u(t)
)

= ü(t)+ω2
0u(t) and the nonlinear operator

N
(

u(t)
)

= −ω2
0u(t)+ü(t)·u2(t)−2u(t)·(u̇(t))2+R2·u(t)·(1+u2(t)), the approximate

analytic solution ū(t) of the Eq. (10) with the initial conditions given by Eq. (11)
can be obtain via OAFM technique in the form:

uOAFM (t) = u(0) · cosω0t+
u̇(0)

ω0
· sinω0t+ ã0 cosω0t+ b̃0 sinω0t+

+
Nmax
∑

k=1

ã
(4)
k · cos(2k + 1)ω0t+ b̃

(4)
k · sin(2k + 1)ω0t ,

(47)
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where the convergence-control parameters ω0, ã0, b̃0, ã
(4)
k , b̃

(4)
k will be optimally

identified.

Similarly, for the cases α1 6= 0, α2 = α3 = 0 or α2 6= 0, α1 = α3 = 0 respectively,
the linear operator can be

L(u(t)) = ü+ ω2
0 · u(t) .

Then, the corresponding nonlinear operator N (u(t)) is obtained from Eqs. (15)
and (18), respectively, as:

N (u(t)) = −ω2
0 · u(t)− ü(t) · u2(t) + 2u(t) · (u̇(t))2 +R2 · u(t) · (1 + u2(t))−
−2β ·R · u(t) · (1− u2(t)) + α2 · (1− u2(t)) · u̇(t)

and

N (u(t)) = −ω2
0 · u(t) + ü(t) · u2(t)− 2u(t) · (u̇(t))2 +R2 · u(t) · (1− u2(t))+

+2β ·R · u(t) · (1 + u2(t)) + α1 · (1 + u2(t)) · u̇(t) ,
respectively.

Therefore, applying the same procedure it obtain that the expression N (u0(t))
is a combination of the elementary functions cos(ω0t), sin(ω0t), cos(3ω0t), sin(3ω0t)
in the both cases. So, the first approximation u1(t) has the form by Eq. (45) and
the first-order approximate analytic solution ū(t) has the form by Eq. (46).

In the case α3 6= 0, β = α1 = α2 = 0, the linear operator is L
(

u(t)
)

= ü(t) +

ω2
0u(t) and the nonlinear operator is deduced from Eq. (21) asN

(

u(t)
)

= −ω2
0u(t)+

α3 · u̇(t) +
R2

2
· sin(2 · u(t)). The initial approximation is u0(t) = u(0) · cos(ω0t) +

u̇(0)
ω0

· sin(ω0t), solution of the equation L
(

u(t)
)

= 0, with initial conditions given by

Eq. (21). Then, the expression N
(

u0(t)
)

contain a combination of the elementary

functions cos(2ω0t), sin(2ω0t), cos(4ω0t), sin(4ω0t). So, the first approximation u1(t)
has the form by

uOAFM (t) = u(0) · cosω0t+
u̇(0)

ω0
· sinω0t+ ã0 cosω0t+ b̃0 sinω0t+

+
Nmax
∑

k=1

ã
(5)
k · cos(2k ω0t) + b̃

(5)
k · sin(2k ω0t) ,

(48)

where the convergence-control parameters ω0, ã0, b̃0, ã
(5)
k , b̃

(5)
k will be optimally

identified.

In this way the approximate analytic solutions of the nonlinear problems Eqs.
(15), (18), (21), can be constructed, via OAFM method.
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5 Numerical results and Discussions

In this section, we discuss the accuracy of the OAFM method by taking into
consideration the first-order approximate solutions given by Eqs. (46), (47), where
the index Nmax ∈ {10, 15, 25, 35} is an arbitrary fixed positive integer number.

By means of the Eqs. (3), (4), (46), for β 6= 0, α1 = 0, α2 = 0, α3 = 0, the Eqs.
(8), (9), (47), for β = 0, α1 = 0, α2 = 0, α3 = 0,

the Eqs. (12), (14), (46), for α1 = 0, α2 6= 0, α3 = 0, the Eqs. (16), (17), (46),
for α1 6= 0, α2 = 0, α3 = 0, and the Eqs. (19), (20), (48), for α1 = 0, β = 0, α2 = 0,
α3 6= 0, respectively, the approximate closed-form solutions of the Rabinovich system
are well-determined, via OAFM technique.

The accuracy of the obtained results is shown in the Figs. 1 - 2 (for β = 0.25 6= 0,
α1 = 0, α2 = 0, α3 = 0), the Figs. 4 - 5 (for β = 0, α1 = 0, α2 = 0, α3 = 0)
respectively, by comparison of the above obtained approximate solutions with the
corresponding numerical integration results, computed by means of the fourth-order
Runge-Kutta method using Wolfram Mathematica 9.0 software. On the other hand,
the cases α1 6= 0, α2 6= 0, α3 6= 0 are depicted in Figs. 7-12. The convergence-control

parameters C1 = a0+v(0), Ci = a
(4)
k−1, B1 = b0+

v̇(0)
ω0

, Bi = b
(4)
k−1, i = 2, 3, · · · Nmax,

which appear in Eqs. (46), (47), (48) are optimally identified by the least square
method for different values of the known parameter Nmax. As it could be observed
in the figures there are the symmetry with respect to the Oz- axis, for β 6= 0, α1 = 0,
α2 = 0, α3 = 0 and are the symmetry with respect to the all coordinate axes, for
β = 0, α1 = 0, α2 = 0, α3 = 0. The Figs. 3, 6 highlight the symmetry of the 3D
trajectory.

The convergence-control parameters are presented in the section Appendices.

The influence of the index number Nmax on the values of the relative errors is
examined in Tables 1-2. The better approximate analytical solution corresponds to
the value Nmax = 25 for β = 0.25, α1 = 0, α2 = 0, α3 = 0, and Nmax = 35 for β = 0,
α1 = 0, α2 = 0, α3 = 0, respectively. This values were chosen for the efficiency of
the solutions shown in Tables 3-5.

6 Conclusions

In the present paper, some geometrical properties of the Rabinovich system are
emphasized and the approximate analytic solutions were established. A good agree-
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5 10 15 20
t

-0.5

0.5

v�HtL

Figure 1: The auxiliary function v̄(t) given by Eqs. (46), (51) using the initial
conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0, α3 = 0 for
Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

yHtL

xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2: The set of solutions x(t), y(t), z(t) given by Eqs. (3), (4) using Eqs. (46),
(51) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0,
α2 = 0, α3 = 0 for Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

ment between the approximate analytic solutions (using OAFM) and corresponding
numerical solutions (using the fourth-order Runge-Kutta method) was found for
symmetric solutions with respect to the coordinate planes. These obtained solu-
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-0.5

0.0

0.5

x

-0.5

0.0

0.5

y

0.4

0.6

0.8

z

Figure 3: The points (0.5, 0.5, 0.5) (black), (−0.5,−0.5, 0.5) (red) and the paramet-
ric 3D curve x = x(t), y = y(t), z = z(t) given by Eqs. (3), (4) using Eqs. (46),
(51) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0,
α2 = 0, α3 = 0 for Nmax = 25:
OAFM solution (with gray line) and numerical solution (dashing red line), respec-
tively.

1 2 3 4 5 6
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

uHtL

Figure 4: The auxiliary function ū(t) given by Eqs. (47), (54) using the initial
conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0 for
Nmax = 35:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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yHtL

xHtL

zHtL

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0

1.5

Figure 5: The set of solutions x(t), y(t), z(t) given by Eqs. (8), (9) using Eqs. (47),
(54) with the initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0,
α2 = 0, α3 = 0 for Nmax = 35:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

1.
0

1.
2

1.
4

x

-
1

0

1

y

-
1

0

1

z

Figure 6: The points (1.5, 0.5, 1.25) (black), (1.5,−0.5,−1.25) (red) and the para-
metric 3D curve x = x(t), y = y(t), z = z(t) given by Eqs. (8), (9) using Eqs. (47),
(54) with the initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0,
α2 = 0, α3 = 0 for Nmax = 35:
OAFM solution (with gray line) and numerical solution (dashing red line), respec-
tively.

tions can be usefully in many applications of technological interest.
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Appendices

In the following we will present just the values of the convergence-control parameters
that appear in Eqs. (46), (47) and (48), respectively.

The case β 6= 0, α1 = 0, α2 = 0, α3 = 0

Example 1. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25.

a) for Eq. (46) with Nmax = 10:

ω0 = 0.0842084063, B1 = −7.7850095373, B2 = 1.1935759266,
B3 = 10.9766341996, B4 = 1.0576315879, B5 = −5.5540946245,
B6 = −1.3916077665, B7 = 1.2287912091, B8 = 0.3774505937,
B9 = −0.0856590499, B10 = −0.0177125387, C1 = 1.2647924166,
C2 = 9.8753733548, C3 = −0.2632330456, C4 = −8.4861481647,
C5 = −1.5913245793, C6 = 2.9461688979, C7 = 0.8568908158,
C8 = −0.3803812033, C9 = −0.1212724374, C10 = 0.0080186284;

(49)

b) for Eq. (46) with Nmax = 15:

ω0 = 0.0842084063, B1 = −7.8470508367, B2 = 2.2499897809,
B3 = 12.9280127794, B4 = −0.4712356520, B5 = −9.7259134278,
B6 = −1.3690509281, B7 = 4.4434866499, B8 = 1.1492580188,
B9 = −1.1762526193, B10 = −0.3861053828, B11 = 0.1603359895,
B12 = 0.0563660451, B13 = −0.0090989642, B14 = −0.0027442264,
B15 = 2.773923 · 10−6, C1 = 1.6353827930, C2 = 10.5668121613,
C3 = −1.8492817431, C4 = −11.8272674286, C5 = −0.7138152947,
C6 = 7.0224266784, C7 = 1.4476285900, C8 = −2.4512890639,
C9 = −0.7451197226, C10 = 0.4745313849, C11 = 0.1651164438,
C12 = −0.0436858802, C13 = −0.0147119639, C14 = 0.0012846915,
C15 = 0.0004718731;

(50)

c) for Eq. (46) with Nmax = 25:
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ω0 = 0.0842084063, B1 = 113.1906313266, B2 = 700.5143533516,
B3 = −63.8042262780, B4 = −1726.7156941065, B5 = −727.2541799033,
B6 = 1850.2472856376, B7 = 1458.7090868963, B8 = −1023.3252919624,
B9 = −1371.45280473155, B10 = 192.8265190738, B11 = 763.9333733724,
B12 = 118.7239396963, B13 = −261.2640026833, B14 = −98.9226990064,
B15 = 51.1015243215, B16 = 33.0902447676, B17 = −3.9323646180,
B18 = −5.8957249378, B19 = −0.3704710427, B20 = 0.5357572940,
B21 = 0.0886533581, B22 = −0.0195324516, B23 = −0.0045186018,
B24 = 0.0001056260, B25 = 0.0000356013, C1 = 237.0082862136,
C2 = −181.1626337930, C3 = −1260.1800896233, C4 = −266.1579780903,
C5 = 1943.0958639398, C6 = 1170.9065813163, C7 = −1501.3433857085,
C8 = −1520.5635275053, C9 = 554.5650629146, C10 = 1087.6826289541,
C11 = 26.0903663084, C12 = −475.6102111380, C13 = −128.1837256078,
C14 = 125.1740070213, C15 = 62.1706696066, C16 = −16.9073998070,
C17 = −15.0951778584, C18 = 0.2064815885, C19 = 1.9508776536,
C20 = 0.2353541523, C21 = −0.1178869685, C22 = −0.0237146201,
C23 = 0.0021457461, C24 = 0.0005641598, C25 = 3.317757 · 10−6.

(51)

Now, for the initial conditions x0 = −0.5, y0 = −0.5, z0 = 0.5 and Nmax =
25, β = 0.25 the convergence-control parameters for the symmetric solution (with
respect to the Oz-axis) given by Eq. (46) are given in Eq. (51).

The remarkable case β = 0, α1 = 0, α2 = 0, α3 = 0

Example 2. The initial conditions are x0 = 1.5, y0 = 0.5, z0 = 1.25.

a) for Eq. (47) with Nmax = 15:

ω0 = 0.1869876739, B1 = −554.4037761129, B2 = 226.7457730999,
B3 = 782.3721160745, B4 = −48.5974967462, B5 = 49.4030334587,
B6 = −957.7117203144, B7 = 283.2006105162, B8 = −159.1917408848,
B9 = 674.7077918425, B10 = 23.5125177445, B11 = −495.1189399730,
B12 = 141.3482748307, B13 = 50.5506946689, B14 = −16.7536940267,
B15 = −0.0634441781, C1 = −93.4671025566, C2 = 1047.0086776914,
C3 = −495.9436000281, C4 = −133.5434805609, C5 = −746.4077270771,
C6 = 236.7019711439, C7 = 421.4165739752, C8 = 177.1891806165,
C9 = 254.4730564674, C10 = −758.0078082782, C11 = 147.8047599915,
C12 = 204.0625242583, C13 = −66.0059654899, C14 = −6.0287025308,
C15 = 1.8659955242;

(52)

b) for Eq. (47) with Nmax = 25:
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ω0 = 0.1869876739, B1 = 516.1242386938, B2 = −370.2739755607,
B3 = −438.3744282729, B4 = 232.6309328533, B5 = −282.3256743841,
B6 = 387.5617017331, B7 = −47.8049293623, B8 = 162.7251241075,
B9 = −117.3367937705, B10 = 59.7546990652, B11 = −111.8077188524,
B12 = 71.8237012001, B13 = −149.4299059907, B14 = 60.2531991051,
B15 = −76.3055734495, B16 = 113.6663413024, B17 = −16.3900394802,
B18 = 108.9340003143, B19 = −91.5339247140, B20 = −72.0679666456,
B21 = 67.2469830900, B22 = −0.6349607714, B23 = −7.3149658364,
B24 = 0.8138266745, B25 = 0.0661089513, C1 = 54.6954626367,
C2 = −889.6642684770, C3 = 678.0047311577, C4 = −235.8685894546,
C5 = 401.5470307526, C6 = −43.0268550584, C7 = 40.6366633629,
C8 = −169.6938622093, C9 = 23.4686692840, C10 = −115.4282122040,
C11 = 73.1279637248, C12 = −92.7226387177, C13 = 55.3435319845,
C14 = 12.4804646698, C15 = 67.0157693986, C16 = 29.4365871710,
C17 = −9.0367780737, C18 = −25.8911752609, C19 = −126.8226917481,
C20 = 103.3382634787, C21 = 20.0135321168, C22 = −27.9178547423,
C23 = 2.5193238481, C24 = 1.0883135883, C25 = −0.0948041290;

(53)

c) for Eq. (47) with Nmax = 35:
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ω0 = 0.1869876739, B1 = 27.1589347487, B2 = 12.0827987658,
B3 = −31.2924026686, B4 = −6.2126489550, B5 = −8.4925801994,
B6 = −13.9924569422, B7 = 6.0373789169, B8 = 19.7307983361,
B9 = −1.4098763264, B10 = −23.1824059776, B11 = 19.5047102382,
B12 = 18.0959242465, B13 = −20.3437872078, B14 = −2.3657500207,
B15 = 8.0506645554, B16 = 2.1157429592, B17 = 8.2577036885,
B18 = −24.5293827842, B19 = 9.7431739692, B20 = −13.3366939523,
B21 = 21.0972405836, B22 = 1.3733966515, B23 = −10.4215638468,
B24 = −0.6346613181, B25 = 3.7660664321, B26 = −6.3989961662,
B27 = 14.1834202800, B28 = −8.4270149394, B29 = −5.0794721575,
B30 = 6.5727871915, B31 = −1.2212175488, B32 = −0.6570547398,
B33 = 0.2354677108, B34 = −0.0056214482, B35 = −0.0026220746,
C1 = 19.7054442097, C2 = −54.4346582382, C3 = −0.8103617202,
C4 = −1.8697297809, C5 = 5.5410468189, C6 = 4.1456744599,
C7 = 25.1576973040, C8 = −4.3010254027, C9 = −18.3207242611,
C10 = 9.5312211886, C11 = 21.8263082280, C12 = −20.0001654379,
C13 = −14.6586935042, C14 = 21.2392716691, C15 = −9.2030700586,
C16 = 10.5290971616, C17 = −24.7946288753, C18 = 8.9376532008,
C19 = 1.1913707498, C20 = 8.9900769507, C21 = 8.2043548306,
C22 = −16.8096509190, C23 = −1.8558514640, C24 = 8.7834639788,
C25 = −5.1597513330, C26 = 6.9589549263, C27 = −0.6370483091,
C28 = −12.0432828958, C29 = 10.0288355195, C30 = 0.0799417017,
C31 = −2.6893238533, C32 = 0.7569825071, C33 = 0.0695529173,
C34 = −0.0388832605, C35 = 0.0017247410.

(54)

Now, for the initial conditions: x0 = −1.5, y0 = −0.5, z0 = 1.25 (symmetry with
respect to the Oz-axis) and Nmax = 35, β = 0, x0 = 1.5, y0 = −0.5, z0 = −1.25
(symmetry with respect to the Ox-axis) and Nmax = 35, β = 0, x0 = −1.5, y0 = 0.5,
z0 = −1.25 (symmetry with respect to the Oy-axis) and Nmax = 35, β = 0, the
convergence-control parameters for the symmetric solution (with respect to the Oz-
axis) given by Eq. (47) are given in Eq. (54).

The case β = 0.25, α1 = 0, α2 = 0.05, α3 = 0

Example 3. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and Nmax = 25.
The convergence-control parameters for the approximate analytic solution ū(t) given
by Eq. (46) are:
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ω0 = 0.0694543429, B1 = −69.5705751030, B2 = −120.8993887304,
B3 = 134.8567394227, B4 = 80.2715486367, B5 = 133.5091139810,
B6 = −1.6079535511, B7 = −107.8296608169, B8 = −89.0630671934,
B9 = −153.5628496068, B10 = 103.8865887516, B11 = 81.7020914138,
B12 = 124.0154016728, B13 = 71.0190829276, B14 = −279.0140436547,
B15 = −47.4832381804, B16 = 186.4926850959, B17 = −1.6034548489,
B18 = −58.0109625378, B19 = 5.9577818217, B20 = 8.6271212497,
B21 = −1.2371738255, B22 = −0.5383432616, B23 = 0.0738473761,
B24 = 0.0093636835, B25 = −0.0006547226, C1 = −65.0212060551,
C2 = 146.9430296120, C3 = 122.0164695356, C4 = −12.7416766751,
C5 = −35.4755424788, C6 = −188.0064243933, C7 = −37.3549977788,
C8 = −42.6527153638, C9 = 125.7222674988, C10 = 160.3454312782,
C11 = −9.0512355641, C12 = 14.4067469635, C13 = −234.7064480557,
C14 = −74.8990251987, C15 = 253.4010415854, C16 = 16.8710869660,
C17 = −113.8065189746, C18 = 7.2254321395, C19 = 24.6401183173,
C20 = −3.1759631665, C21 = −2.4394846206, C22 = 0.3573106958,
C23 = 0.0874588482, C24 = −0.0098968427, C25 = −0.0005010425 .

(55)
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Figure 7: The auxiliary function ū(t) given by Eqs. (46), (55) using the initial
conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0.05, α3 = 0 for
Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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Figure 8: The set of solutions x(t), y(t), z(t) given by Eqs. (12), (14) using Eqs.
(46), (55) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25,
α1 = 0, α2 = 0.05, α3 = 0 for Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

The case β = 0.25, α1 = 0.05, α2 = 0, α3 = 0

Example 4. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and Nmax = 25.
The convergence-control parameters for the approximate analytic solution ū(t) given
by Eq. (46) are:
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ω0 = 0.0979970641, B1 = −7.86946701639623‘, B2 = −6.4646829651,
B3 = 8.7356943964, B4 = 16.3328135131, B5 = 5.1958788407,
B6 = −10.8702566280, B7 = −12.6215405753, B8 = −1.5426658313,
B9 = 6.8534549134, B10 = 5.3338415271, B11 = −0.1190016122,
B12 = −2.4166370753, B13 = −1.2668179431, B14 = 0.1849844809,
B15 = 0.4668487148, B16 = 0.1558661112, B17 = −0.0410984637,
B18 = −0.0439753213, B19 = −0.0079302657, B20 = 0.0031640290,
B21 = 0.0015152397, B22 = 0.0000782713, B23 = −0.0000586884,
B24 = −7.908883 · 10−6, B25 = 2.571457 · 10−7, C1 = −1.7097438990,
C2 = 10.0351472420, C3 = 12.4760001691, C4 = −2.2874375788,
C5 = −15.6734001521, C6 = −10.8070637066, C7 = 4.2334673452,
C8 = 10.7552729215, C9 = 4.7764382238, C10 = −2.8811116370,
C11 = −4.1426512477, C12 = −1.1302932517, C13 = 0.9994302741,
C14 = 0.8951531888, C15 = 0.1235578694, C16 = −0.1781342705,
C17 = −0.0986544376, C18 = −0.0025652300, C19 = 0.0143255850,
C20 = 0.0043772770, C21 = −0.0003038516, C22 = −0.0003624506,
C23 = −0.0000398691, C24 = 5.795421 · 10−6, C25 = 7.292742 · 10−7 .

(56)
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Figure 9: The auxiliary function ū(t) given by Eqs. (46), (56) using the initial
conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0.05, α2 = 0, α3 = 0 for
Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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Figure 10: The set of solutions x(t), y(t), z(t) given by Eqs. (16), (17) using Eqs.
(46), (56) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25,
α1 = 0.05, α2 = 0, α3 = 0 for Nmax = 25:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

The case β = 0, α1 = 0, α2 = 0, α3 = 0.15

Example 5. The initial conditions are x0 = 1.5, y0 = 0.5, z0 = 1.25 and Nmax = 35.
The convergence-control parameters for the approximate analytic solution ū(t) given
by Eq. (48) are:
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ω0 = 0.2172006104, B1 = −7.3251070555, B2 = −0.1087849966,
B3 = 4.1113264263, B4 = 4.21373739429, B5 = 1.0687156558,
B6 = −1.5599721276, B7 = −1.43202796290, B8 = 0.7373618607,
B9 = 2.3909438155, B10 = 1.77937304336, B11 = −0.5409997087,
B12 = −2.5317090264, B13 = −2.67997580834, B14 = −1.1492629171,
B15 = 0.6922268586, B16 = 1.59791789658, B17 = 1.3153031289,
B18 = 0.4470104143, B19 = −0.2651316628, B20 = −0.4881158033,
B21 = −0.3386938091, B22 = −0.0985227111, B23 = 0.0470955155,
B24 = 0.0741216873, B25 = 0.0431448916, B26 = 0.0106926238,
B27 = −0.0035675339, B28 = −0.0047137818, B29 = −0.0021456860,
B30 = −0.0004138394, B31 = 0.0000775657, B32 = 0.0000738535,
B33 = 0.0000199500, B34 = 1.929570 · 10−8, B35 = −8.095036 · 10−8,

C1 = 4.8320147836, C2 = 6.1545928815, C3 = 2.7172376117,
C4 = −0.9374420135, C5 = −2.9359918166, C6 = −1.5185091234,
C7 = 0.9997803324, C8 = 1.8049281860, C9 = 0.1894325635,
C10 = −2.1155718115, C11 = −2.9032537901, C12 = −1.5215478343,
C13 = 0.7804328110, C14 = 2.2301227152, C15 = 2.0399788427,
C16 = 0.7655400005, C17 = −0.4739199152, C18 = −0.9603870342,
C19 = −0.7236971824, C20 = −0.2267309158, C21 = 0.1229722256,
C22 = 0.2088434889, C23 = 0.1332553039, C24 = 0.0359490437,
C25 = −0.0146330134, C26 = −0.0212551967, C27 = −0.0111045215,
C28 = −0.0024764806, C29 = 0.0006442642, C30 = 0.0007496569,
C31 = 0.0002808121, C32 = 0.0000431036, C33 = −4.960082 · 10−6,

C34 = −3.110982 · 10−6, C35 = −3.647933 · 10−7 .

(57)
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Figure 11: The auxiliary function ū(t) given by Eqs. (48), (57) using the initial
conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0.15 for
Nmax = 35:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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Figure 12: The set of solutions x(t), y(t), z(t) given by Eqs. (19), (20) using Eqs.
(48), (57) with the initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0,
α2 = 0, α3 = 0.15 for Nmax = 35:
OAFM solution (with lines) and numerical solution (dashing lines), respectively.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2022                   doi:10.20944/preprints202209.0484.v1

https://doi.org/10.20944/preprints202209.0484.v1


30 R.-D. Ene; N. Pop; M. Lapadat

Table 1: Comparison between the relative errors: ǫv = |vnumerical − v̄OAFM | for
β = 0.25, α1 = 0, α2 = 0, α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5 and different values
of the index Nmax;
v̄OAFM obtained from Eqs. (46), (49), (50), (51)

t Nmax = 10 Nmax = 15 Nmax = 25

0 1.332267 ·10−15 4.440892 ·10−16 2.646771 ·10−13

7/5 0.0002311701 9.690649 ·10−7 5.424820 ·10−10

14/5 0.0001494743 9.806902 ·10−7 3.389437 ·10−10

21/5 0.0001987102 1.243573 ·10−6 1.842952 ·10−10

28/5 0.0000961699 5.341956 ·10−8 6.126734 ·10−10

7 0.0001210484 2.545193 ·10−6 4.273881 ·10−10

42/5 0.0000661653 1.815027 ·10−6 2.335903 ·10−10

49/5 9.306109 ·10−6 2.151637 ·10−6 5.521745 ·10−10

56/5 0.0000211790 2.055369 ·10−6 4.816658 ·10−10

63/5 0.0001510944 2.318730 ·10−7 7.166223 ·10−11

14 0.0001919623 1.595892 ·10−6 1.900378 ·10−10

Table 2: Comparison between the relative errors: ǫu = |unumerical − ūOAFM | for
β = 0, α1 = 0, α2 = 0, α3 = 0, x0 = 1.5, y0 = 0.5, z0 = 1.25 and different values of
the index Nmax;
ūOAFM obtained from Eqs. (47), (52), (53), (54)

t Nmax = 15 Nmax = 25 Nmax = 35

0 9.475753 ·10−14 1.587063 ·10−13 7.716050 ·10−15

3/5 3.504900 ·10−4 3.316779 ·10−5 8.194535 ·10−8

6/5 2.914220 ·10−4 2.904368 ·10−5 7.775160 ·10−8

9/5 4.067788 ·10−4 3.306752 ·10−5 1.002242 ·10−7

12/5 5.020959 ·10−4 3.350227 ·10−5 1.013316 ·10−7

3 2.399299 ·10−4 3.095774 ·10−5 6.350594 ·10−8

18/5 7.499806 ·10−5 3.033164 ·10−5 9.363366 ·10−8

21/5 2.634217 ·10−4 3.698857 ·10−5 7.855941 ·10−8

24/5 1.023441 ·10−4 3.459891 ·10−5 2.951037 ·10−8

27/5 1.061241 ·10−4 3.200782 ·10−5 4.558553 ·10−8

6 1.528191 ·10−4 3.492756 ·10−5 5.671638 ·10−8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2022                   doi:10.20944/preprints202209.0484.v1

https://doi.org/10.20944/preprints202209.0484.v1


Approximate closed-form solutions for the Rabinovich system via OAFM 31

Table 3: Comparison between the approximate analytic solutions ūOAFM given by
Eq. (46) and corresponding numerical solution for β = 0.25, α1 = 0, α2 = 0.05,
α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5 and the index Nmax = 25;
(relative errors: ǫu = |unumerical − ūOAFM | )

t unumerical ūOAFM ǫu

0 0.3819660112 0.3819660112 6.566969 ·10−14

8/5 0.5487198876 0.5487198871 4.569626 ·10−10

16/5 0.3347566620 0.3347566624 4.373337 ·10−10

24/5 -0.0474300084 -0.0474300074 9.474402 ·10−10

32/5 -0.3828045448 -0.3828045450 2.316530 ·10−10

8 -0.5042437854 -0.5042437838 1.624801 ·10−9

48/5 -0.3375790298 -0.3375790299 8.105455 ·10−11

56/5 -0.0332606638 -0.0332606646 8.140353 ·10−10

64/5 0.2599740718 0.2599740722 3.694533 ·10−10

72/5 0.4407383794 0.4407383798 4.701539 ·10−10

16 0.4140215615 0.4140215610 5.571915 ·10−10

Table 4: Comparison between the approximate analytic solutions ūOAFM given by
Eq. (46) and corresponding numerical solution for β = 0.25, α1 = 0.05, α2 = 0,
α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5 and the index Nmax = 25;
(relative errors: ǫu = |unumerical − ūOAFM | )

t unumerical ūOAFM ǫu

0 0.6180339887 0.6180339887 8.881784 ·10−16

8/5 -0.0321978118 -0.0321978110 7.381383 ·10−10

16/5 -0.5983010647 -0.5983010645 2.040423 ·10−10

24/5 -0.6430063264 -0.6430063265 1.829493 ·10−10

32/5 -0.1556677170 -0.1556677166 3.093710 ·10−10

8 0.4057018841 0.4057018832 9.304779 ·10−10

48/5 0.5626679938 0.5626679941 3.481130 ·10−10

56/5 0.1791865300 0.1791865294 6.380252 ·10−10

64/5 -0.3292856584 -0.3292856577 6.622721 ·10−10

72/5 -0.4774573136 -0.4774573135 1.349091 ·10−10

16 -0.1296948250 -0.1296948251 8.001704 ·10−11
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Table 5: Comparison between the approximate analytic solutions ūOAFM given by
Eq. (48) and corresponding numerical solution for β = 0, α1 = 0, α2 = 0, α3 = 0.15,
x0 = 1.5, y0 = 0.5, z0 = 1.25 and the index Nmax = 35;
(relative errors: ǫu = |unumerical − ūOAFM | )

t unumerical = 15 ūOAFM ǫu

0 0.3217505543 0.3217505543 1.665334 ·10−16

3/5 -0.4222547682 -0.4222561402 1.371977 ·10−6

6/5 -0.8296437373 -0.8296451162 1.378897 ·10−6

9/5 -0.7776543854 -0.7776557673 1.381888 ·10−6

12/5 -0.3129872607 -0.3129886423 1.381552 ·10−6

3 0.3239044822 0.3239031031 1.379085 ·10−6

18/5 0.6815903593 0.6815889752 1.384109 ·10−6

21/5 0.5989387285 0.5989373473 1.381160 ·10−6

24/5 0.1453366672 0.1453352855 1.381609 ·10−6

27/5 -0.3742949616 -0.3742963398 1.378268 ·10−6

6 -0.5850269138 -0.5850282851 1.371267 ·10−6
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