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Abstract: Sparse reward long horizon task is a major challenge for deep reinforcement learning al-
gorithm. One of the key barriers is data-inefficiency. Even in the simulation environment, it usually 
takes weeks to training the agent. In this study, a data-efficiency training framework is proposed, 
where a curriculum learning is design for the agent in the simulation scenario. Different distribu-
tions of the initial state are set for the agent to get more informative reward during the whole train-
ing process. A fine-tuning of the parameters in the output layer of the neural network for value 
function is conduct to bridge the gap between sim-to-real. An experiment of UAV maneuver control   
is conducted in the proposed training framework to verify the method more efficient. We demon-
strate that data-efficiency is different for the same data in different training stages. 
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1. Introduction 
Reinforcement learning (RL) has been one of the hottest topics in artificial intelligence 

community since it led to many successes in learning proper policies for sequential deci-
sion-making problems. As it is inspired by human beings’ trial-and-error learning process, 
RL algorithms usually experience many failures before they can achieve the optimal pol-
icies for the tasks. This learning paradigm makes the RL appropriate for simulation envi-
ronments and many progresses have been reported, such as playing the Atari games [1], 
defeating the best human player at the game of Go [2, 3], beating humans in the imperfect 
information game poker [4, 5], and creating master recordings at the games of Quake III 
Arena 2 [6] and StarCraft [7]. Besides the above simulation field application, there are also 
a few results in real industrial fields being reported recently [8-18]. 

Despite the conspicuous RL successes in both simulation and real domain, several 
challenges exist that inhibit wider adoption of reinforcement learning for industrial con-
trol domain. One of the challenges is the trial-and-error learning paradigm of RL. The 
typical RL algorithms interact with the environment and seek the proper policies for the 
tasks from random policies. The initial random policies cannot fulfill the tasks and often 
lead the agents to failure. For the simulation domain, failure means restarting of the game 
and causes little damages. But failure often leads to great losses and even disasters in the 
industrial control community. For example, in automatic driving domain, the initial ran-
dom policy may cause vehicle collision. So, the RL algorithm cannot be deployed in the 
vehicle until it is sufficiently trained in the simulation environment for the automatic driv-
ing domain. Similar situations will happen in the UAV, robot control, and many other 
industrial control fields. In order to address this challenge, sim-to-real transfer is intro-
duced into the RL, which means to train a policy in the simulation of the real domain, and 
then use transfer learning to meet the gap between the simulation and the real fields [19, 
20]. For tasks as complex as modern industrial control field, transfer learning from simu-
lation to the real domain is a challenge question. 
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Another challenge obstructing the application of RL in real control field is the data 
efficiency. Deep neural network (DNN) is used both to represent the continuous, high 
dimension state space of the control task and to approximate the policy function. The 
combination of the DNN and the RL is deep reinforcement learning (DRL). Data efficiency 
is the notorious problem in DRL. On one hand, training a complex DNN needs a lot of 
data. On the other hand, during the training process of the DRL, the policy updating pro-
cess keeps changing the stationary distribution of the state in the environment. Many data 
are necessary to evaluate the policy in each stationary distribution, and this means much 
more data are needed to train the DRL. In many real industrial fields, the time for training 
a DRL nets to get satisfied results is unacceptable. Take one of the most popular bench-
marks for DRL algorithm, Atari Learning Environment [21, 22], as an example. DRL needs 
millions of frames of images to play the games acceptably well [23, 24], which corresponds 
to days of pay experience using the standard frame rate. However, human players can get 
the same level in just minutes [25].  

The data for training DRL are different from those for training DNN in supervised 
learning (SL). The training data for SL are usually considered as independent and identi-
cally distributed. But the data for DRL is from interaction experiences between the agent 
and the environment. They have quite strong relativity. To circumvent this problem, ex-
perience replay is widely used in various DRL algorithms [26, 27]. 

Reward is the very important hint for the DRL algorithm to seek the optimal policy 
and distinguish the good policies from the bad ones. But in most environment, the agent 
can only get valid reward at the end of the episode when the agent reaches the terminal 
state [29]. At this time step, if the agent gets to the expected state, the task is accomplished 
and the policy will be reinforced. Otherwise, the algorithm will get into another episode 
and collect more data. As to the real industrial control tasks, the state spaces are continu-
ous and high dimensional. The expected state is a point in the state space. The agent, led 
by the initial random policy, has little chance to reach the expected state. Thus, the DRL 
algorithm has no informative data to update the policy. This is the sparse reward problem 
in DRL community. Many works have been carried out to address this problem. They can 
be classified as follow: reward shaping, curriculum learning, hierarchical reinforcement 
learning, and, hindsight experience replay. Reward shaping [30-32] is to design an extra 
reward for each state-action pair in the episode using domain knowledge or experts ex-
perience to lead the agent to an optimal policy. Reward shaping needs in-depth insight to 
the environment and task to construct proper extra reward functions. Curriculum learn-
ing [33-36] is a methodology to optimize the order in which experience is accumulated by 
the agent, in order to accelerate the training process and increase the performance. Hier-
archical reinforcement learning (HRL) [37-39] has recently shown its advantage in sample-
efficient learning on the difficult long-horizon tasks. The core in HRL is to divide a com-
plex problem into a hierarchy of more tractable subtasks. The high-level policy produces 
a subgoal for the policy in the low-level which can be achieved, so that the task can be 
solved efficiently. Another technic related closely to the HRL is hindsight experience re-
play (HER) [40, 41], which treats states in the history episodes as goal states.  

In this work we apply the sim-to-real training paradigm to the DRL, and in the sim-
ulation-based training scenarios, we design curriculum for the agent by setting the differ-
ent distributions of the initial state 0s in different training stages. The proposed approach 
can only be applied in simulation environment and achieve better results in our experi-
ments than other state-of-the-art curriculum learning methods. To bridge the gap between 
the simulation and reality scenarios, we fine-tune the output layer of the policy network 
and can get the proper policy through a few interactions with the reality environment. 
Specifically, the main contributions of this study are as follows: 

1. Curriculum design for the agent in simulation environment. 
We take advantage of the simulation environment, and set the initial state 0s close to 

the goal in the early stage of the training. With the training process going on, the distances 
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between 0s and the goal state are set longer. Thus, we design the curriculum heuristically 
from easy to difficult for the agent. 

2. Data efficiency analysis for the DRL. 
The data fed to the DRL agent is different from those to the SL. The sequential data 

that the agent collects during learning are not only correlated with each other but also with 
the behavior policy. We analyze the data efficiencies in different training stage. 

3. Transferring the learned policy from simulation scenario to reality one.   
To meet the gap between the simulation-based environment and the reality one, we 

set up a training frame to transfer the learned policy from the simulation scenario to reality. 
During the simulation-based training process, we add random noise to the state transition 
function to model the uncertainty in the simulation environment. And in the reality envi-
ronment, the parameters for the last layer of the neural network for policy or value func-
tion are fine-turned to remedy the gap between the sim-to-real. 

The remainder of this paper is structured as follows: The related work is discussed in 
section2. Section 3 presents the detailed methods. Experiment of UAV control is intro-
duced in Section 4.  And the results are present in Section 5. Finally, Section 6 concludes 
this paper.    

2. Related Work 
2.1 Hindsight experience replay 

To address the sparse reward problem in DRL, the technique of hindsight experience 
replay has been proposed [40]. The pivotal idea behind HER is, besides the goal for the 
agent to achieve, the algorithm can replay each episode with a different goal. Specifically, 
wherever the agent achieves at the end of the episode, the final state will be treated as a 
separate goal. The experience gathered in this episode may not help the agent to achieve 
the goal, but it still teaches the policy how to achieve the final state of the episode. So, HER 
is a multi-goal RL, and follow the principles from universal value function approximators 
[42], the policy and value function trained by HER takes as input not only the state, but 
also a goal. Although HER achieve the state-of-art performance in many RL benchmark 
environments, as we discuss above, HER maps a larger space (enlarged by the goal sub-
space) to policy and value function. This will instinctively need more data to approximate 
the function. 
2.2 Multi-level Hierarchical Reinforcement Learning 

Another proven and effective method to address the prohibitive data inefficiency 
problem of the DRL is multi-level HRL. This approach uses the divide-and-conquer idea 
to divide a problem into several short horizon subproblems. The high-level policy pro-
vides a subgoal for the low level to achieve, and the low level interacts with the environ-
ment directly to learn a policy to fulfill the task from the high-level policy [38]. The recent 
work finds that the primary advantage of HRL is that the low-level policies has improved 
their exploration capabilities [37]. Despite all their advantages, HRL has only heuristic 
method to design the reward function for the high-level actions, and it’s usually very hard 
to training the multiple levels of policies simultaneously. 

To design the reward function for the high-level actions, [43] combines the ideas of 
HER and HRL, and proposes nested policies and hindsight action transitions. The hierar-
chical Q-learning algorithm proposed by the authors can train the multi-policy immedi-
ately. 

In contrast, our work transfers the long horizon sparse reward task into short horizon 
one by directly setting the initial state distributed closely to the goal in the simulation 
scenario. We attribute the inaccuracy of the simulation environment into the noise in the 
state transition functions. The results of experiments of UAV control show that our 
method is more data-efficient than the state-of-art HER and HRL methods. 

3. Methods 
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In this section, we present our framework for training the data-efficient DRL. In the 
episodic task. The agent starts from some initial state 0s to interact with the environment. 

At each time step t , the agent receives some state of the environment ts and selects cor-

responding action ta according to the policy ( )t ta sπ | . This process continues until the 

agent receives the terminal state Ts . If the terminal state Ts is the goal of the task, the agent 
successes in the task and receives a positive reward. Otherwise, the agent fails in the task 
and receives the zero reward as the other time steps. This is the typical scenario of the 
sparse reward RL. Even in simulation environment, this problem is prohibitively data-
inefficient. We propose a data-efficient training framework for this problem.  
3.1. Curriculum in Simulation Scenario 

As we have discussed above, the DRL can rarely be deployed in the industrial control 
community directly. It is usually trained in simulation environment before it can be de-
ployed in reality. In the simulation environment, we design the curriculum by setting the 
initial state 0s distributed close to the goal to increase the probability for the agent to win 
the task and receive the informative reward. The informative reward can lead the learning 
process to get better policy. With better policy, the agent interacts with the environment 
more effectively and collect trajectories leading to the goal with more chance. So, in this 
framework, we can get the training process into the positive circle. As the training process 
goes on, the initial state 0s  is set farther from the goal so that the agent can explore more 
state space. Specifically, the algorithm counts the trajectories which lead to the goal in the 
end, and set the hyperparameter Γ  as threshold value. When the count of the successful 
trajectories reaches Γ , the initial state 0s is set to a new distribution farther from the goal. 
A new round of collecting data, counting the successful trajectories, training the policy 
goes on. Until the distribution of 0s reaches the original distribution in the task, the agent 
can collect data to training the proper policy for the task. 
3.2. Experience Replay Buffers 

Experience replay can reduce the correlation of the data fed to the online training 
of the DRL to accelerate the training process. It has been the standard composition in 
the DRL [1,44].  

As the unbalance data impose much difficulty in SL, there are rare data from suc-
cessful trajectories in the experience replay buffer during the early stage of the training 
process in DRL. To cope with this situation, we set two experience replay buffers. The 
data from the trajectories which achieve the task in the end are saved in one buffer, de-

noted as wB , and those from the failure trajectories saved in the other, denoted as lB . As 

it can be shown, in the early stage of the training process, the algorithm needs more suc-
cessful data to teach the agent which action will lead to the goal. The probability which 

the algorithm sample training data from the wB is set relatively high at this training stage. 

As the training process goes on, the algorithm needs data from the loss trajectories to 
teach the agent which action will lead to failure. The probability which the algorithm 

sample data from wB decay with the factor 1τ <  during the training process until it equals 

to 0.5: 

        ( ) max{ ( ) ,0.5}w wp B p B τ← ×                      (1) 
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The pseudocode for the DQN in our data-efficient training framework can be shown in the 
follow algorithm. 

 
Algorithm.  Data-efficient DQN  
Initialize:  experience replay buffer for win trajectories wB  

          experience replay buffer for lose trajectories lB  

          a temp buffer tB  
the count of win trajectories 0C =  

          the network for action-value function Q with random weightsθ  and the 

target action-value function Q with random weightsθ θ− =  
For episode = 1, M do 

If C < Γ : 
Sample initial state 0s  

Else: 
    Set the distribution of initial state 0s farther from the goal, and sample 0s  
For t=1, T do 
    With probability ε select a random action ta  

    otherwise select arg max ( , ; )t a t ta Q s a θ=  

Interact with the environment using ta and observe reward tr and the next 

state 1ts +  

Store transition 1( , , , )t t t ts a r s + in the temp buffer tB  
If the episode terminates and wins the task: 
    1C C← +  

Copy the temp buffer tB to wB   
        Elseif the episode terminates and lose the task: 

Copy the temp buffer tB to lB  

Sample random minibatch of transitions 1( , , , )j j j js a r s +  from wB with prob-

ability ( )wp B , otherwise sample the transitions from lB  

Set 
1

 1 is the end of the episode
ˆmax ( , ; ) otherwise
j

j
j a t

r if j
y

r Q s aγ θ −
′ +

+=  ′+
 

Perform a gradient descent step on 2( ( , ; ))j j jy Q s a θ− with repect to the net-

work parametersθ  
Every d steps reset Q̂ Q=  

End For 
Decay the probability of sample from win buffer ( )wp B according to function (1) 

End For 
 
3.3. Transfer from Simulation to Reality 

The data-efficient training method we discuss above can only be applied in simula-
tion environments. To deploy the policy into realistic scenarios, transfer learning tech-
niques must be used to bridge the gap between the sim-to-real [20]. In this study, we add 
random noise into the state the agent observed in the simulation-based training process. 
This approach is equivalent to meta learning trained over a distribution of tasks [45]. 
When the learned results are deployed in the reality environments, the input and hidden 
layers of the networks for the value function are frozen. The data collected from the 
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interaction with the reality environment are used to training the output layer of the net-
works. These are the fine-tuning techniques widely used in the transfer learning in the SL 
community. Because only parameters of one layer of the network are tuned, only a few 
episodes are needed.  

4. Experiment of UAV Maneuver Control  
In this section, we conduct an experiment to control the UAV’s maneuver in the air 

combat scenario. Because of the complexity of the air combat scenario, the conventional 
DRL needs prohibitively vast amount of data to training a reasonable policy. It will be 
shown that the data-efficient DRL training framework discussed above can be used to 
generate flight control commands to win the task in the air combat fields.  

4.1. Problem Formulation 
The aerial view of the air combat field is show in figure 1. The UAV starts from the 

origin of the field, denoted as S . The task for the UAV is to reconnoiter the enemy position, 
denoted as G , in the upper right of the field. The coordinates of the S and G are 
(0 ,0 ,0 )km km km and (20 ,20 ,0 )km km km , respectively. There is an enemy airport be-
tween the origin S and the goal G , and aircrafts will take off to intercept the UAV at any 
space in the field. A policy must be learned to make a sequence decision on the maneuver 
for the UAV to detach the enemy aircraft and make its way to the goal G . The task will 
be regarded as being achieved if the UAV can approach the target within a distance of 100 
meters. If the enemy aircraft can approach the UAV within the distance of 100 meters, the 
UAV is recked and loses the mission. 

 

 
Figure 1. Air combat field  

 
4.2 Dynamic Model for UAV 

In order to control the maneuver of the UAV, the motion model must be established. 
We use a three-degree-of-freedom particle model to describe the UAV. The ground coor-
dinate system is shown in figure 2. The ox axis points to the east, the oy axis points to the 
north, and the oz follows the right-hand rule of coordinate axis. The motion model of the 
UAV in the coordinate system is shown in 

              

cos sin
cos cos

sin

x v
y v

z v

γ ψ
γ ψ
γ

=
 =
 =







                                   (2) 

where x, y, and z represent the position of the UAV in the coordinate system. v represents 
speed, and , ,  and x y z   are the component values of the speed v on the three coordinate 
axes. The track angleγ denotes the angle between the velocity vector and the oxy plane. 
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The projection of v on the oxy plane is denoted as v′ . The heading angleψ is the angel 
between v′ and oy axis. In the same coordinate system, the dynamic model for the UAV 
can be shown as 

             

( sin )

( cos cos )

sin
cos

x

z

z

v g n
g n
v
gn
v

γ

γ µ γ

µψ
γ


 = −

 = −

 =








                          (3) 

where g is the acceleration of gravity. xn is the overload in the velocity direction. zn is 
the overload in the pitch direction. µ is the roll angle around the velocity v . 

3[ , , ]x zn n Rµ ∈ are the feasible basic control parameters in the UAV maneuver control 
model. 

 

z

y

x

v

v′

γ ψ

xn
zn

µ

 
Figure 2. Ground coordinate system for UAV 
 

4.3 State Space 
The state space of this scenario has two components. One is the enemy aircraft states. 

Because we don’t control the enemy aircraft, it can be seen as mass point. The states of the 
enemy aircraft have six dimensions to denote its position and velocity, denoted as
[ , , , , , ]x y z x y z   . In the experiment, the enemy aircraft flies towards the UAV with a ve-
locity of 150 m/s. The other component of the state space is the states for the UAV. Besides 
the position and velocity, the states of the UAV also include track angleγ and heading 
angle ψ , denoted as [ , , , , , , , ]x y z x y z γ ψ   . In order to facilitate the training of the neural 
network, each component of the states is normalized into the scale between [0,1] before 
can be fed into the input layer. 
4.4 Action Space 
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As we have discussed above, the action space for the UAV is 3[ , , ]x zn n Rµ ∈ . This 
is a continuous action space. In order to reduce the complex of the problem, we employ 
the idea from [46] and discretize the UAV action space into 15 actions. UAV can take 5 
types of actions for direction: forward, right-turn, left-turn, upward, and downward. 
And it takes 3 velocity types of action for each direction: deceleration, maintain, and ac-
celerate. It is shown in table 1. 

 
 Table 1. Maneuver library 

No           Maneuver 
Control Values 

xn                zn               µ  
1 forward maintain 
2 forward accelerate 
3 forward decelerate 
4 left turn maintain 
5 left turn accelerate 
6 left turn decelerate 
7 right turn maintains 
8 right turn accelerate 
9 right turn decelerate 
10 upward maintain 
11 upward accelerate 
12 upward decelerate 
13 downward maintain 
14 downward accelerate 
15 downward decelerate 

0                 1                0 
2                 1                0 
-1                1                0 
0                 8       -arccos(1/8) 
2                 8       -arccos(1/8) 
-1                8       -arccos(1/8) 
0                8         arccos(1/8) 
2                8         arccos(1/8) 
-1               8         arccos(1/8) 
0                8                  0 
2                8                  0 
-1               8                  0 
-1               8                 π  
2                8                π  
-1               8                 π  

  
At each time step, the agent selects an action a A∈ according to the state. the agent con-
trol vector can be figured out by Table 1, which means: 

            { }1 2, , , ,  15mA a a a m= =                        (4) 

            [ , , ],  1, 2, ,15i x ya n n iµ= =                        (5) 

4.5 Reward Function 
If the agent can get to the target finally, the reward of 1 is granted to the agent. If the 

agent is regarded as crashing with enemy aircraft, it gets a reward of -10. Otherwise, the 
agent gets 0, which can be shown as follow. 

2

2

1,             100

10,         100
0,            otherwise

t

t t t

if s G

r if s c

 − ≤


= − − ≤



 

Where ts denotes the position of the UAV at timestep t, which are the seventh to the nineth 

dimensions of the state vector. tc denotes the position of the enemy aircraft, which are the 
first three dimensions of the state vector. 
4.6 The Distributions of the Initial State 

In this study, we design the curriculum learning for the agent by setting the distribu-
tion of the initial state 0s close to the goal in the early training stage. With this method, the 
agent has more chance to reach the goal and get the informative reward. As the training 
process goes on, the initial state is set farther away to the goal. Designing the curriculum 
in this way is directly and intuitively. Heuristically, we divided oxy plane of the air com-
bat field into four parts as shown in figure 3. The initial state is set uniformly distributed 
in the No. 1 area in the combat field firstly. Then it is set in No.2 area, and so on, until it 
goes to the origin as the task. The threshold value Γ for counts of the successful 
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trajectories for each area is set 50. That means if the agent collects 50 trajectories that fulfil 
the task, the initial state goes to the next area. 
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Figure 3. Distribution of the initial state setting in curriculum learning  
 

4.7 Network Architecture for the Value Function 
The algorithm of DQN is applied to training the agent. A fully connected neural net-

work with three hidden layers is used to present the value function.  The input layer has 
14 units as the dimension of the state space, and the output layer has 15 units as that of 
the action space. The units for the hidden layers are 128, 512 and 64 respectively. The out-
put layer is a linear transformation, and the activation functions for the other layers are 
ReLU. We summary all the hyperparameter used in the study in table 2. 

 
 Table 2. Hyperparameter for the experiment 

Hyperparameter                                 value 
threshold for win trajectories Γ                     50 
parameter for decayε −                           0.995 
parameter for ( )wp B decayτ                        0.95 
discounting rate γ                                 0.98    
units for the NN                                 (14, 128, 512, 64, 15) 
learning rate α                                    0.002 
update the target net every d step                    100 
buffer size for the two experiments replays              5000 
minibatch size                                     64 
max velocity for the UAV                            200 m/s 
min velocity for the UAV                            80m/s 

 

5. Results 
We compare our training framework with three state-of-art methods in DRL commu-

nity. They are HER[40], HIRO[39], and MaxEnt_IRL[47]. We have discussed HER above. 
HIRO is hierarchical Reinforcement Learning with hindsight experiment replay, which 
using multi-layer policy to divide the task into multiple short horizon ones. As to the cur-
riculum learning, [47] designs the curriculum without human interference. Figure 4 is the 
learning curves for these four methods. The result is averaged for 30 rounds. 
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Figure 4. Training Curve for the four methods 
 
It can be shown form the learning curves, the proposed method in this study can get a 
good result in 196 episodes. After interacting with the environment for about 70 episodes 
in the first curriculum, the agent does a good job in this easy scenario. Then the agent 
interacts in a new curriculum, the learning curve shows that the performance degrades 
significantly. But the agent can catch up within a few episodes. But the other methods 
cannot get convergent in 2000 episode. 

As mentioned above, data-efficiency is different in different training stages. In the 
early stage, the agent needs data from successful trajectories to know how to get the task 
done. As the training processes go on, the agent needs to know which actions is wrong for 
the task. So, data from failure trajectories should be fed to the algorithm to get the agent 
to explore widely in the state space. We conduct another experiment in which more failure 
trajectories are fed to the algorithm in the first training stage. Then, we increase the suc-
cessful trajectories during the training process. The learning curve and that of our pro-
posed method can be shown in figure 5. It learns more slowly than our method does. 
 

 
Figure 5. Data-efficiency in different training stage 
 
The experiment is run on a computer with an Inter® Core™ i7-8700k CPU and 16G 

Ram, a NVIDIA GeForce Rtx 2060 graphics card is installed on this basis for Pytorch ac-
celeration. We present the time cost and total return in table 3. 
Table 3. Time cost and total return 
Method                          Time cost                   Total return 
Proposed data-efficient framework     28m                         0.95 
HER                                43m                         -7.3 
HIRO                               47m                         -5.4 
MaxEntIRL                          21m                         -3.2 
 

6. Conclusion 
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In this paper, we propose a data-efficient training framework for DRL. We designed 
a curriculum for the agent in a directly way in the simulation environment. Because we 
set the distribution of the initial state heuristically, the agent is not only more likely to get 
the informative reward, but also explore the state spaces where it rarely explores in the 
trajectories led by the learned policy. This may be another reason that the proposed 
method can find the proper policy quickly and precisely.  

Data-inefficiency is the notorious obstacle for DRL to be applied widely in industry. 
We find that data-efficiency is different between different training processes even for the 
same data. Data form the success trajectories are more efficient in the early training stage. 

We use DQN as base training algorithm in our training framework. Next, we will 
apply more DRL algorithms into the proposed training framework.  
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