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Abstract

This work emphasizes some geometrical properties of the Maxwell–
Bloch equations. Based on these properties the closed-form solutions
of their equations are established. Thus, the Maxwell–Bloch equa-
tions are reduced to a nonlinear differential equation depending on
an auxiliary unknown function. The approximate analytical solu-
tions were built using the Optimal Homotopy Asymptotic Method
(OHAM). A good agreement between the analytical and correspond-
ing numerical results was found. The accuracy of the obtained results
is validated through the representative figures. This procedure could
be successfully applied for more dynamical systems with geometrical
properties. 1

1 Introduction

The study of dynamical systems was explored related their important applica-
tions in electrical engineering, medicine or economics, such as: complete synchro-
nization or optimization of nonlinear system performance, secure communications,
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and so on. The stabilization of the T system via linear controls was explored in [1].
The Rikitake two-disk dynamo system was studed by [2] and applied in modeling
the reversals of the Earth’s magnetic field [[3], [4]]. Other the geometrical properties
of the dynamical systems, such as integrable deformations, the equilibria points,
Hamiltonian realization was analyzed in [[5]-[21]].

The interaction between laser light and a material sample composed of two-
level atoms is described by Maxwell equations of the electric field and Schrodinger
equations for the probability amplitudes of the atomic levels. The Maxwell-Bloch
equations were obtained by coupling the Maxwell equations with the Bloch equation
and their important geometrical properties were explored in [[22]-[32]], and so on.

An important geometrical properties of the dynamical system is the existence
of symmetries. As it is well-known a dynamical system admits symmetry with
respect to the origin point O(0, 0, 0) or with the Oz− axis or the plan z = 0 if
it is invariant under the transformation (x, y, z) → (−x,−y,−z), respectively
(x, y, z) → (−x,−y, z) and (x, y, z) → (x, y,−z).

2 The Maxwell-Bloch equations

2.1 Hamilton-Poisson realization

The real-valued Maxwell-Bloch equations are (see [[33]-[36]] ):






ẋ = y

ẏ = x · z
ż = −x · y

, (1)

where the unknown functions x, y and z depend on t > 0 and ẋ denotes derivative
of the function x with respect to t.

Remark 1. Is easy to see that the considered system admits a symmetries with
respect to Oz− axis.
In this section we also recall [35] some geometrical properties of the system (1).

The considered system has a Hamilton-Poisson realization with the Hamiltonian
H(x, y, z) = 1

2(y
2 + z2) and a Casimir given C(x, y, z) = z + 1

2x
2.

Remark 2. If the initial conditions are

x(0) = x0 , y(0) = y0 , z(0) = z0 , (2)

then the phase curves of dynamics (1) are the intersections of the surfaces
1
2(y

2 + z2) = 1
2(y

2
0 + z20) and z + 1

2x
2 = z0 +

1
2x

2
0 .

2.2 Closed-form solutions

In this section we establish the closed-form solutions of the system Eq. (1) using
previously result.
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Making the transformations:

{

y = R ·
√
2 · sin(v(t))

z = R ·
√
2 · cos(v(t)) , R =

√

1

2
· (y20 + z20) , (3)

where v(t) is an unknown smooth function, then the second equation from Eq. (1)
yields to

x = v̇(t). (4)

Now, using the first equation from Eq. (1) we obtain:

v̈(t)−R ·
√
2 · sin(v(t)) = 0 . (5)

Using the initial conditions Eq. (2) and the relations Eqs. (3)-(4) the initial
conditions v(0) and v′(0) become:

v(0) = arctan
y0

z0
, v′(0) = x0, for z0 6= 0 . (6)

Remark 3. The relations Eqs. (3) and (4) give closed-form solution of the
system Eq. (1).

In the last decades there are several analytical methods for solving the nonlin-
ear differential problem given by Eqs. (5)-(6), such as: the Function Method [37],
the Multiple Scales Technique [38], the Optimal Homotopy Perturbation Method
(OHPM) [39], [40], the Least Squares Differential Quadrature Method [41], the Poly-
nomial Least Squares Method [42], the Optimal Iteration Parametrization Method
(OIPM) [43], the Optimal Homotopy Asymptotic Method (OHAM) [44], the Ho-
motopy Perturbation Method (HPM) and the Homotopy Analysis Method (HAM)
[45], the Variational Iteration Method (VIM) [46], the Optimal Variational Iteration
Method (OVIM) [47].

The approximate analytic solutions of the nonlinear differential problem given
by Eqs. (5)-(6) are analytically solved using the Optimal Homotopy Asymptotic
Method (OHAM).

3 Basic ideas of the OHAM technique

The general form for the nonlinear differential equation is chosen as [48]:

L
(

F (t)
)

+N
(

F (t)
)

= 0, (7)

with the boundary / initial conditions

B
(

F (t),
dF (t)

dt

)

= 0, (8)
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where L is an arbitrary linear operator, N is the corresponding nonlinear operator
and B is an operator characterizing the boundary conditions.

Taking into account of homotopic relation given by:

H
[

L
(

F (t, p)
)

, H(t, Ci), N
(

F (t, p)
)]

=

= L
(

F0(t)
)

+ p
[

L
(

F1(t, Ci)
)

−H(t, Ci)N
(

F0(t)
)]

= 0,

(9)

where p ∈ [0, 1] is the embedding parameter and H(t, Ci) 6= 0 is an auxiliary
convergence-control function depending of the variable t and of the parameters C1,
C2, ..., Cs, with the unknown function F (t, p) in the form:

F (t, p) = F0(t) + pF1(t, Ci), (10)

and equating the coefficients of p0 and p1, respectively, the deformations problems
are obtained.
These are:
- the zeroth-order deformation problem

L
(

F0(t)
)

= 0, B
(

F0(t),
dF0(t)

dt

)

= 0, (11)

- the first-order deformation problem

L
(

F1(t, Ci)
)

= H(t, Ci)N
(

F0(t)
)

,

B
(

F1(t, Ci),
dF1(t,Ci)

dt

)

= 0, i = 1, 2, ..., s.

(12)

By solving the linear Eq. (11) the initial approximation could be obtain.

In order to compute F1(t, Ci) by Eq. (12), taking into account the fact that the
nonlinear operator N has the general form:

N (F0(t)) =
∑n

i=1 hi(t)gi(t), (13)

where n is a positive integer, and hi(t) and gi(t) are known functions that depend
on F0(t) and on N .

Following the procedure described in [48], the computation of the function F1(t, Ci)
has the form:

F1(t, Ci) =
∑m

i=1Hi(t, hj(t), Cj)gi(t), j = 1, ..., s, (14)
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or
F1(t, Ci) =

∑m
i=1Hi(t, gj(t), Cj)hi(t), j = 1, ..., s,

B
(

F1(t, Ci),
dF1(t,Ci)

dt

)

= 0.
(15)

The above expressions of Hi(t, hj(t), Cj) contain linear combinations of the func-
tions hj , j = 1, ..., s and the parameters Cj , j = 1, ..., s. The summation limit m
is an arbitrary positive integer number.

For p = 1, the first-order analytical approximate solution of Eqs. (7) - (8), taking
into account Eq. (10), is:

F (t, Ci) = F (t, 1) = F0(t) + F1(t, Ci). (16)

The convergence-control parameters C1, C2, ..., Cs can be optimally identified by
means of various methods, such as: the Galerkin method, the least square method,
the collocation method, the Kantorowich method, or the weighted residual method.

The first-order approximate solution (16) is well-determined if the convergence-
control parameters are known.

4 Approximate analytic solutions via OHAM

For the unknown function v the approximate solutions of Eq. (5) with initial
conditions given by Eq. (6) are obtaining.

The linear operator L
(

v
)

has the following expression:

L
(

v
)

(t) = v′′ + ω2
0v, (17)

where ω0 > 0 is an unknown parameter at this moment. Therefore the form of the

nonlinear operator N
(

v
)

corresponding to the unknown function v is obtained from

Eq. (5) by:

N
(

v
)

(t) = −ω2
0v −R

√
2 · sin (v) , (18)

and using the power series expansion

sin (v) =
∞
∑

i=0

(−1)i · v2i+1

(2i+ 1)!
, (19)

There are a lot of possibilities to choose the auxiliary function H(t, Ci), one of
them could be:

H(t, Ci) = C, (20)
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or

H(t, Ci) = C1 cos(ω0t) +B1 sin(ω0t),

or

H(t, Ci) = C1 cos(ω0t) +B1 sin(ω0t) + C2 cos(3ω0t) +B2 sin(3ω0t),

or

H(t, Ci) = C1 cos(ω0t) +B1 sin(ω0t) + C2 cos(3ω0t) +B2 sin(3ω0t)+
+C3 cos(5ω0t) +B3 sin(5ω0t),

and so on.

The zeroth-order deformation problem

For the initial approximation v0, the Eq. (11) becomes:

v′′ + ω2
0v = 0, v(0) = arctan

y0

z0
, v′(0) = x0 (21)

with the solution

v0(t) = v(0) cos(ω0t) +
v′(0)

ω0
sin(ω0t). (22)

The first-order deformation problem

For the initial approximation v0(t) given by Eq. (22), using Eq. (19) the nonlinear
operator Eq. (18) becomes:

N (v0)(t) = −ω2
0

(

v(0) cos(ω0t) +
v′(0)
ω0

sin(ω0t)
)

+

+
∞
∑

i=1

(−1)i

(2i+ 1)!
·
(

v(0) cos(ω0t) +
v′(0)

ω0
sin(ω0t)

)2i+1
,

(23)

and depend on the elementary functions cos((2k + 1)ω0t), sin((2k + 1)ω0t), k =
1, 2, 3, · · · .

For H(t, Ci) choosing the expression given by Eq. 20, for the first-order defor-
mation problem given by Eq. (12), by integration the first approximation v1(t,Di),
from Eq. (14), becomes:

v1(t, Ci) =
∞
∑

k=1

Ck · cos((2k + 1)ω0t) +Bk · sin((2k + 1)ω0t), (24)

where Ci, Bi are unknown parameters, which
∞
∑

k=1

Bk = 0.
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The first-order analytical approximate solution v̄

From Eqs. (22) and (24) the first-order approximate solution given by Eq. (16) is
obtained:

v̄(t) = v0(t) + v1(t, Ci) = v(0) cos(ω0t) +
v′(0)

ω0
sin(ω0t)+

+
∞
∑

k=1

Ck · cos((2k + 1)ω0t) +Bk · sin((2k + 1)ω0t) ,
(25)

where the unknown parameters Ci, Bi, i = 1, 2, 3, · · · , are optimally identified.

5 Numerical results and Discussions

In this section, we discuss the accuracy of this method by taking into consider-
ation the first-order approximate solution given by Eq. (25) in following form:

v̄(t) = v0(t) + v1(t, Ci) = v(0) cos(ω0t) +
v′(0)

ω0
sin(ω0t)+

+

Nmax
∑

k=1

Ck · cos((2k + 1)ω0t) +Bk · sin((2k + 1)ω0t) ,
(26)

where Nmax ∈ {5, 10, 20, 25} is an arbitrary fixed positive integer number.

By means of the Eqs. (3), (4) and (26), the approximate closed-form solutions
of the Maxwell-Bloch equations are well-determined, via OHAM technique.

The accuracy of the obtained results is shown in Figs. 1 - 4 and Tables 1-2
by comparison of the above obtained approximate solutions with the corresponding
numerical integration results, computed by means of the shooting method combined
with fourth-order Runge-Kutta method using Wolfram Mathematica 9.0 software.
The convergence-control parameters Ci, Bi, i = 1, 2, 3, · · · Nmax, which appear in
Eq. (26), are computed by the least square method for different values of the known
parameterNmax. From these Figures we can notice that there are the symmetry with
respect to the Oz− axis. The Fig. 5 highlights the symmetry of the 3D trajectory.

The influence of the index number Nmax on the values of the relative errors is
examined in Table 3. The better approximate analytical solution corresponds to the
value Nmax = 25. This value was chosen for the efficiency of the solution.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2022                   doi:10.20944/preprints202209.0474.v1

https://doi.org/10.20944/preprints202209.0474.v1


8 R.-D. Ene; N. Pop; M. Lapadat; L. Dungan

5 10 15 20
t

1

2

3

4

5

vHtL

Figure 1: The auxiliary function v̄(t) given by Eq. (26) using the initial conditions
x0 = 0.5, y0 = 0.5, z0 = 0.5 for Nmax = 25:
OHAM solution (with lines) and numerical solution (dashing lines), respectively.

5 10 15 20
t

-5

-4

-3

-2

-1

vHtL

Figure 2: The auxiliary function v̄(t) given by Eq. 26 using the initial conditions
x0 = −0.5, y0 = −0.5, z0 = 0.5 for Nmax = 25:
OHAM solution (with lines) and numerical solution (dashing lines), respectively.

6 Conclusions

In the present paper, some geometrical properties of the Maxwell-Bloch equa-
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yHtL

xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 3: The set of solutions x(t), y(t), z(t) given by Eqs. (3), (4) using Eq. (26)
with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 for Nmax = 25:
OHAM solution (with lines) and numerical solution (dashing lines), respectively.

xHtL

yHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 4: The set of solutions x(t), y(t), z(t) given by Eqs. (3), (4) using Eq. (26)
with the initial conditions x0 = −0.5, y0 = −0.5, z0 = 0.5 for Nmax = 25:
OHAM solution (with lines) and numerical solution (dashing lines), respectively.

tions are emphasized and the approximate analytic solutions were established. A
good agreement between the approximate analytic solutions (using OHAM) and
corresponding numerical solutions (using the fourth-order Runge-Kutta method)
was found for symmetric solutions with respect to the Oz− axis. These obtained
solutions can be usefully in many applications of technological interest.
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-1

0

1

x

-0.5

0.0

0.5

y

-0.5

0.0

0.5

z

Figure 5: The parametric 3D curve x = x(t), y = y(t), z = z(t) given by Eqs.
(3), (4) using Eq. (26) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 for
Nmax = 25:
OHAM solution (with lines) and numerical solution (dashing lines), respectively.
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Appendices

If the initial conditions are x0 = 0.5, y0 = 0.5 and z0 = 0.5, for Nmax = 25, then the
approximate analytic solution v̄(t) given by Eq. 26 becomes:

v̄(t) =
= 0.7853981633 · cos(0.1212240932 · t) + 1.1280863071 · cos(0.3636722796 · t)−
−0.3186517885 · cos(0.6061204660 · t)− 0.1996129808 · cos(0.8485686525 · t)−
−0.2710466357 · cos(1.0910168389 · t)− 0.3867642849 · cos(1.3334650253 · t)−
−0.1216474671 · cos(1.5759132118 · t)− 0.0507600546 · cos(1.8183613982 · t)+
+0.0304281386 · cos(2.0608095846 · t) + 0.0919966107 · cos(2.3032577711 · t)+
+0.0738209429 · cos(2.5457059575 · t) + 0.0500084445 · cos(2.7881541439 · t)+
+0.0184363947 · cos(3.0306023304 · t)− 0.0066048451 · cos(3.2730505168 · t)−
−0.0150894385 · cos(3.5154987033 · t)− 0.0141512709 · cos(3.7579468897 · t)−
−0.0084535676 · cos(4.0003950761 · t)− 0.0029454477 · cos(4.2428432626 · t)+
+0.0002250235 · cos(4.4852914490 · t) + 0.0011645562 · cos(4.7277396354 · t)+
+0.0009265341 · cos(4.9701878219 · t) + 0.0004806715 · cos(5.2126360083 · t)+
+0.0001433717 · cos(5.4550841947 · t) + 0.0000179080 · cos(5.6975323812 · t)−
−1.648949 · 10−6 · cos(5.9399805676 · t)− 5.473392 · 10−6 · cos(6.1824287540 · t)+
+4.1245926179 · sin(0.1212240932 · t) + 2.7393061280 · sin(0.3636722796 · t)−
−1.1826779715 · sin(0.6061204660 · t)− 0.4498691209 · sin(0.8485686525 · t)−
−0.2374141078 · sin(1.0910168389 · t)− 0.1295416348 · sin(1.3334650253 · t)+
+0.1043902163 · sin(1.5759132118 · t) + 0.1379494664 · sin(1.8183613982 · t)+
+0.1184346449 · sin(2.0608095846 · t) + 0.0614542793 · sin(2.3032577711 · t)+
+0.0090494940 · sin(2.5457059575 · t)− 0.0275951341 · sin(2.7881541439 · t)−
−0.0382993000 · sin(3.0306023304 · t)− 0.0282586504 · sin(3.2730505168 · t)−
−0.0149834811 · sin(3.5154987033 · t)− 0.0024357526 · sin(3.7579468897 · t)+
+0.0040036967 · sin(4.0003950761 · t) + 0.0046957002 · sin(4.2428432626 · t)+
+0.0033601120 · sin(4.4852914490 · t) + 0.0014744782 · sin(4.7277396354 · t)+
+0.0002834667 · sin(4.9701878219 · t)− 0.0001047061 · sin(5.2126360083 · t)−
−0.0001492280 · sin(5.4550841947 · t)− 0.0000740989 · sin(5.6975323812 · t)−
−0.0000204246 · sin(5.9399805676 · t)− 3.372839 · 10−6 · sin(6.1824287540 · t)

(27)
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Table 1: Comparison between the first-order approximate solutions v given by Eq.
26 and numerical results for x0 = 0.5, y0 = 0.5 and z0 = 0.5 (relative errors:
ǫv = |vnumerical − v̄OHAM |)

t vnumerical v̄OHAM ǫv

0 0.7853981633 0.7853981633 1.110223 ·10−16

2 3.0048565944 3.0048564682 1.262252 ·10−7

4 5.4067162901 5.4067161112 1.789394 ·10−7

6 5.7469951320 5.7469952686 1.366081 ·10−7

8 4.3979496840 4.3979506058 9.217917 ·10−7

10 1.4842095296 1.4842108567 1.327083 ·10−6

12 0.4935555769 0.4935555528 2.405788 ·10−8

14 1.1089381894 1.1089371304 1.058989 ·10−6

16 3.8183645538 3.8183641247 4.291169 ·10−7

18 5.6402614592 5.6402619962 5.369389 ·10−7

20 5.6036661551 5.6036657121 4.429515 ·10−7

Table 2: Comparison between the first-order approximate solutions v given by Eq.
26 and numerical results for x0 = −0.5, y0 = −0.5 and z0 = 0.5 (relative errors:
ǫω = |vnumerical − v̄OHAM |)

t vnumerical v̄OHAM ǫv

0 -0.7853981633 -0.7853981633 1.110223 ·10−16

2 -3.0048565944 -3.0048564684 1.260096 ·10−7

4 -5.4067162901 -5.4067161110 1.790516 ·10−7

6 -5.7469951320 -5.7469952684 1.364679 ·10−7

8 -4.3979496840 -4.3979506057 9.216750 ·10−7

10 -1.4842095296 -1.4842108566 1.326997 ·10−6

12 -0.4935555769 -0.4935555528 2.408859 ·10−8

14 -1.1089381894 -1.1089371304 1.058966 ·10−6

16 -3.8183645538 -3.8183641248 4.290359 ·10−7

18 -5.6402614592 -5.6402619963 5.370392 ·10−7

20 -5.6036661551 -5.6036657119 4.431479 ·10−7
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Table 3: Values of the relative errors ǫv = |vnumerical−v̄OHAM | for x0 = 0.5, y0 = 0.5,
z0 = 0.5 and different values of the index number Nmax

t Nmax = 5 Nmax = 10 Nmax = 20 Nmax = 25

0 1.110223 ·10−16 8.881784 ·10−16 2.220446 ·10−16 1.110223 ·10−16

1/5 0.0057507451 0.0030455771 8.383820 ·10−4 1.313631 ·10−6

2/5 0.0227924915 0.0070594242 8.097412 ·10−4 1.229725 ·10−6

3/5 0.0494597939 0.0081429073 6.156841 ·10−5 3.482073 ·10−7

4/5 0.0825167222 0.0060042509 4.729830 ·10−4 6.687728 ·10−7

1 0.1176107773 0.0021559238 1.174198 ·10−4 5.808890 ·10−7

6/5 0.1499196854 0.0015691002 4.301057 ·10−4 3.152192 ·10−7

7/5 0.1749400518 0.0039327661 6.220876 ·10−4 4.754099 ·10−7

8/5 0.1892996460 0.0045783745 4.222215 ·10−4 1.913513 ·10−7

9/5 0.1914052506 0.0038272807 1.319308 ·10−4 2.917863 ·10−7

2 0.1817135046 0.0022665042 5.933946 ·10−6 1.262252 ·10−7
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