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Abstract: The evidence supports the occurrence of environmentally induced paternal epigenetic in-

heritance shaping the offspring phenotype in the absence of direct or indirect paternal care, and the 

empirical results clearly indicate that sperm epigenetics is one of the major actors mediating these 

paternal effects. However, sperm often make up only a small fraction of the male ejaculate in ani-

mals. Males also have a complex mixture of proteins, peptides, types of small RNAs and cell-free 

DNA fragments in their seminal fluid. These molecules are in close contact with reproductive cells, 

tissues, organs and other molecules of both males and females during reproduction. Moreover, their 

production and use are very sensitive to environmental conditions which makes them potential 

modulators of environmentally and developmentally induced paternal effects on next generation(s). 

Although there is some intriguing evidence of seminal fluid mediated paternal epigenetic effects, 

the underlying molecular mechanisms remain poorly defined. In this review, I discuss the current 

evidence regarding the association between seminal fluid and environmentally induced paternal 

effects, and the possible trajectories and the mechanisms which seminal fluid can involve to mediate 

paternal epigenetic inheritance. 
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1. Introduction 

Epigenetic mechanisms including DNA methylation, histone modification, and 

transmission of small RNAs (i.e., non-coding small RNA molecules; sRNAs), and their 

functions in genome regulation and cell-to-cell transmission, are not being considered as 

revolutionary subjects in today’s biology research. Organisms encounter varying external 

and internal environmental conditions altering their phenotypes which are regulated by 

these epigenetic mechanisms over developmental and lifetime. However, the heritability 

of epigenetically acquired phenotypes via the transfer of alternative functional states of 

these mechanisms to the next generations is a hot topic [1–5], which, I believe, will soon 

lead to an explosion of new analytical approaches in the various aspects of evolutionary 

biology and heredity research [6–11]. In the same way as in the genes, epigenetic variation 

occurs within populations that can be transmitted across generations [1,12,13]. Thus, there 

is now a greater effort in constructing conceptual frameworks of Extended Heredity con-

sidering the inheritance of epigenetically acquired phenotypes [14–18]. Furthermore, in-

creasing number of empirical studies have been focusing on mechanisms of epigenetic 

inheritance, especially on the role of female and male germline [19–21]. 

Studies of paternal epigenetic inheritance through sperm cells indicate the significant 

role of sperm epigenetic status in the alteration of the offspring phenotype in an adaptive 

or maladaptive way [22–31]. On the contrary, paternal effects through factors other than 

sperm epigenetics were generally assumed to be absent or less important in the absence 

of conventional paternal care in which the male role is often thought to be limited by 

transferring his DNA to offspring [15,32]. Apart from sperm, males transfer a complex 

mixture of varying molecules (e.g., lipids, carbohydrates, water etc.) and microbes in the 
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seminal fluid during mating [33,34]. Notably, the seminal fluid also contains a number of 

proteins, peptides, sRNAs, and cell-free DNA (cfDNA) fragments that closely interact 

with male reproductive tracts and sperm, as well as female reproductive tracts and mole-

cules, and eventually eggs and embryos. Furthermore, studies have explicitly revealed in 

many taxa that seminal fluid composition exhibits high plasticity in responding to varying 

environmental factors [35–44] and is also subjected to the interaction between genotypes 

and environments [45,46]. Therefore, seminal fluid protein and nucleic acid (here after re-

ferred as seminal fluid for simplicity) contents could play a more significant role in epigenetic 

inheritance and mediating environmentally induced paternal effects on next generations 

than has hitherto been suspected [14,47–52]. 

In this mini review, I focus on the evidence of seminal fluid-mediated paternal effects 

on offspring and discuss the proximate mechanisms of seminal fluid within the concept 

of transgenerational epigenetic inheritance (i.e., inheritance of variations to the next gen-

erations that are not derived from differences in the DNA sequence [2,53]). Note that, I 

prefer to use the term epigenetic inheritance instead of transgenerational epigenetic inheritance 

because it is a much broader term including mechanisms of both cell-to-cell and 

(grand)parent-to-(grand)offspring transmissions and seminal fluid-borne epigenetic in-

heritance mechanisms may comprise both. I also rather chose not to use the term nonge-

netic inheritance while referring to any parental effect that derived from one or more of 

those defined epigenetic mechanisms. In fact, Epi is a prefix in Greek often used to refer 

something “upon, on, over, near or at” of something else, and rarely used to refer something 

“beyond” something else. Indeed, epigenetic mechanisms tightly work with, on or near the 

genes throughout the genome, therefore I believe that terms such as nongenetic inheritance 

are confounding and cause confusion about the concept of epigenetic inheritance. 

2. Association between seminal fluid and the offspring phenotype 

The most supportive evidence of the link between environmentally induced seminal 

fluid composition of the father and the phenotype of the offspring comes from a few recent 

studies. Some of these studies used a sort of double-mating assay where a female mates 

with two males in turn or receives a mix of two males’ ejaculates, and estimated seminal 

fluid-mediated effects by decomposing sources of own or step offspring phenotypic vari-

ance. In their seminal study, Crean et al. (2014) used a so-called telegony approach in the 

neriid flies Telostylinus angusticollis where the female mates with two conditionally ma-

nipulated males, and the effects of first male’s condition on step-offspring phenotype (i.e., 

body size in their study) is estimated [54]. In their experiment, females received sperm 

and seminal fluid of first male that were raised in different nutritional conditions (either 

high- or low-quality) before the time of full maturation. The second mating took place 

after females became mature; therefore, the second male sired a large majority of the off-

spring. Afterwards they tested for the relationship between the first male condition and 

step-offspring body size and found that body size was influenced significantly by the con-

dition of the first male indicating an effect derived from seminal fluid of first males. Alt-

hough they did report no direct paternal effect, because it was seen in step-offspring, the 

seminal fluid effect on the body size of the subsequent generation cannot be overlooked 

as a potential mediator of epigenetically acquired phenotype. 

Using the similar approach in the red flour beetles Tribolium castaneum that seminal 

fluid of the males exposed to bacterial infection were used as one of the two males mated 

with the female, it has been shown that step-offspring immune resistance is altered by 

seminal fluid of exposed males [55]. The associations between paternal diet and metabolic 

dysfunction in offspring have been also shown repeatedly in mice that are mediated either 

by sperm-borne or seminal fluid-borne processes [56–58]. In another study using artificial 

ejaculation in European whitefish Coregonus lavaretus, the existence of foreign seminal 

fluid in the ejaculate has been shown increases the swimming performance of the off-

spring [59].  
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Similar experimental settings were also used to measure embryo survival as the ob-

served offspring phenotype that could be affected by seminal fluid. For example, the var-

iance in embryo viability is partially explained by seminal fluid composition in the cricket 

Teleogryllus oceanicus [60], and seminal fluid of males on low protein - high carbohydrate 

diet decreased the embryo viability [61]. These results undoubtedly indicate an associa-

tion between seminal fluid composition and the reproductive success of seminal fluid do-

nors; however, these results need to be cautious while interpreted within the scope of 

paternal effect to the inheritance of a fitness trait, indeed population of interest has died 

before data collection. 

Another line of studies has particularly focused on the effect of the absence of seminal 

fluid, or its producing and storage organs. These studies often result in a lack of fertiliza-

tion or embryo growth [59,62–67], however, some of them have clearly indicated the 

changes in the phenotypes of the offspring in the absence of seminal fluid. For example, 

the ablation of the seminal fluid content by removing organs affected the metabolic health 

of male offspring in mice [68] and caused developmental and behavioral changes in off-

spring of golden hamsters [69,70]. In the fruit flies Drosophila melanogaster, it has been 

shown that females that received seminal fluid had daughters with higher fertility com-

pared to females did not receive [71]. Moreover, when two males from different popula-

tions were mated with a female in D. melanogaster, an enhanced fecundity of stepdaugh-

ters was shown due to the effects of seminal fluid and mother interactions [72]. 

3. The potential mechanisms of seminal fluid-mediated paternal epigenetic inher-

itance 

As mentioned above, there is now compelling evidence of seminal fluid-mediated 

paternal effects occurring, and furthermore, considering the examples come from a wide 

range of taxa such as insects, fishes, and mammals, they can be widespread among ani-

mals. It would be also not surprising that seminal fluid could have unique pathways 

which have the capacity to act epigenetically. Because, unlike the majority of other organic 

molecules, seminal fluid is in close contact with several reproductive tissues, and germ 

cells in both sexes and eventually somewise reaches to embryos. In this framing, seminal 

fluid can have at least three different routes, though they are likely to be interrelated, to 

control environmentally induced paternal epigenetic inheritance. The confined studies in 

the area of epigenetics research provide key ideas into the mechanistic questions by show-

ing seminal fluid is capable of altering epigenetic status of (1) sperm, (2) female reproduc-

tive tracts, (3) eggs and embryos, as discussed below. 

3.1. Seminal fluid mediates sperm epigenetics 

The sperm epigenetic pattern and its role in the formation of offspring health and 

phenotype are now well known [23,28,29,73]. DNA methylation, histone modification, 

and sRNA contents of sperm are the best-established epigenetic mechanisms [22,23,53,74–

78] that can be stable and heritable across generations [22,79–81]. The environmental con-

ditions such as nutrition, toxins, social, stress, temperature, etc. alter these epigenetic 

mechanisms, which are incorporated into the sperm and transferred into the embryo that 

controls and modifies changes in embryonic development and/or adulthood of the off-

spring [56,57,82–84]. Therefore, considering seminal fluid is produced and used depend-

ing on such environmental conditions while in close contact with sperm in the time be-

tween meiosis and ejaculation, its contribution to sperm epigenetic modifications based 

on conditions do seem inevitable. 

First of all, there is substantial evidence linking seminal fluid content to the control 

of sperm RNA composition. In animals, seminal fluid carries various kinds of extracellular 

vesicles (e.g., micro- and nano-vesicles, exosomes, etc.) that contain different molecules 

including proteins, peptides, mRNAs, and sRNAs [85–91], and this cargo has many essen-

tial functions for sperm fertilization success [87,88,91–97]. These extracellular vesicles of 

seminal fluid can be transferred between cells and tissues, and release their content to a 
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targeted cell [98–101]. For example, in mammals, seminal vesicles and epididymis - tissues 

where some seminal fluid contents are produced and secreted - origin vesicles can attach 

to the sperm membrane and release their content to sperm [100,102]. As a matter of fact, 

seminal fluid is known to be able to adjust small non-coding RNA composition of the 

sperm by transferring a variety of sRNAs within the extracellular vesicles, as well as, as 

free molecules in the plasma [22,91,100,103–106]. Moreover, there are also cell-free DNA 

fragments [107,108], mRNAs, RNAases, and double-stranded RNAs in seminal fluid [109–

112]. Recent findings showed that the mature sperm has also permeability to take exoge-

nous DNA [113–115], as well as capacity to internalize the mRNA to DNA through reverse 

transcriptase [116]. The exposed somatic cells communicating their exposures to the 

germline through the transfer of extracellular vesicles can induce changes in offspring 

[23,106,117–120]. For instance, in mice, seminal fluid-originated extracellular vesicles me-

diating the sRNAs in sperm cause a persistent transmission of paternal stress conditions 

that alters transcriptomic patterns in offspring [121]. The artificial injection of testis-spe-

cific sRNAs to one-cell embryo also shown as mediates paternal effects of diet-induced 

obesity and metabolic disorders [122]. Furthermore, it is also known that the production 

of seminal fluid vesicles and their cargo, as well as free protein and peptide composition 

are adjusted depending on various environmental conditions [35–44,123–125]. Therefore, 

a novel role seems plausible that seminal fluid to be a messenger collecting information 

from other tissues and transferring it to sperm that are embedded into forms of nucleic 

acids to modify sperm epigenetic status that can ultimately shape offspring phenotype 

[23,119,120]. 

The level of seminal fluid gene expression and/or abundance of a specific protein in 

the seminal fluid can be also related to sperm epigenetics. For example, the expression 

level of Heat-Shock Protein coding genes depending on population density were found to 

be related with change in offspring morphology in a locust Locusta migratoria, and that 

HSP level was suggested as a potential mechanism of paternal epigenetic regulation and 

maintenance of transgenerational plasticity [126,127]. Supporting the notion that some 

HSP proteins were commonly identified in the seminal fluid which are also transferred to 

female in fruit flies Drosophila melanogaster [128,129], the red flour beetle Tribolium  casta-

neum [130], boars [131] and human [132], a potential role of seminal fluid HSPs in epige-

netic inheritance is obtainable. 

There is also a potential of seminal fluid-mediated DNA methylation and chromatin 

modification of the sperm genome. Such epigenetic modifications in sperm often occur 

prior to ejaculation in which sperm cells are stored often with seminal fluid content in the 

storage organs [73]. For example, the absence of glands producing seminal fluid disturbs 

epigenetic reprogramming by affecting histone acetylation in the sperm of golden ham-

sters [69]. The exposure to toxicants in seminal fluid is associated with spermatozoa DNA 

hyper- or hypo-methylation in human [133]. Interestingly, seminal fluid was shown asso-

ciated with the zinc profile of sperm chromatin which is controlling chromatin stability in 

mammals [134,135]. 

On the other hand, the genes responsible to produce seminal fluid contents are them-

selves could be also subject to specific DNA methylation and/or histone modification pat-

terns, since many genes are expressed at the appropriate time and levels are required in 

male reproductive organs producing seminal fluid contents. For example, DNA methyla-

tion profiling of  the seminal vesicles, where some seminal fluid contents are produced 

in mouse, following a toxicity exposure affects developmental reprogramming at adult-

hood has been shown by using genome-wide transcriptome and DNA methylation pro-

filing of the seminal vesicles [136]. A very interesting study found that the methylation 

level of some testis-specific promotors within cell-free DNA is highly correlated to the 

methylation level of promoters in the testicular tissues [108]. Moreover, the cell-free DNA 

fragments were shown as a potential courier for DNA methylation pattern of testis and 

epididymis-specific gene promoters in human semen [137]. In point of fact, this associa-

tion suggests that seminal fluid has the potential to preserve and carry the information for 

DNA methylation pattern of specific genes related to seminal fluid production. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2022                   doi:10.20944/preprints202209.0473.v1

https://doi.org/10.20944/preprints202209.0473.v1


 

 

As evidence has pointed out, seminal fluid may have different routes to mediate 

sperm epigenetics, and these eventually affect offspring phenotype, therefore can be con-

sidered within the scope of epigenetic inheritance. The novel idea that the paternal envi-

ronment can affect offspring through mechanisms involving the transfer of information 

between seminal fluid and sperm via seminal fluid protein, peptide, and nucleic acid con-

tents is a very promising and exciting hypothesis. However, the mechanism of how sem-

inal fluid factors are formed in somatic cells, and alters sperm epigenetics, in other words, 

causality and the details of mechanisms are yet to be explained. 

3.2. Seminal fluid mediates female epigenetics 

Seminal fluid is transferred to females along with sperm during mating, and its con-

tent is capable of causing physiological and behavioral changes in the females [138–144]. 

Notably, the effects of receiving seminal fluid proteins and peptides have been extensively 

studied in the model organism Drosophila melanogaster including studies that showed 

changes in female remating latency, receptivity, ovulation, oogenesis, sperm storage and 

survival, egg-laying rate, and a number of other reproductive functions [142,145–149]. 

Many of these seminal fluid-mediated effects in females have been also defined in many 

other species [34,146,150–157]. The most plausible mechanism explaining female manip-

ulation via seminal fluid is that seminal fluid causes a change in gene regulation in females 

which indeed alters the epigenetics of the female. Females show transcriptional responses 

to mating [158], and several gene expression studies have repeatedly found evidence of 

seminal fluid-mediated gene regulations in mated females in D. melanogaster including 

genes related to egg development, immunity, nutrient sensing, and behavior [158–161]. A 

recent study has also showed that receiving seminal fluid triggers a wide transcriptional 

regulation in female reproductive tissues in mosquitos [162]. Although it is clear that re-

ceiving seminal fluid causes transcriptional regulation in females, our knowledge on the 

mechanisms and pathways of how seminal fluid involves in these processes is scarce. 

There is some evidence of the extracellular cargo of seminal fluid containing vectors 

and molecular signals influences the female epigenetic responses by targeting female tis-

sues and cells [163,164]. For example, seminal fluid contents interacting with cells in fe-

male reproductive tracts to initiate immune responses have been widely studied [68,164–

172]. Moreover, the exosomes present in seminal fluid are shown as involved in the im-

mune-related gene regulation in the uterus in boars [169]. The male-induced maternal care 

has been also explored in many animals [26,173] and females can moderate their food 

intake and investment in eggs and offspring also depending on seminal fluid signals. For 

instance, effects on female egg investment found in D. melanogaster as related to existence 

of a specific seminal fluid protein (i.e., sex peptide) [174,175]. Other studies showed also 

that altered maternal investment to egg or placenta affects offspring phenotype. In ro-

dents, the placental phenotypes such as weight and size were found altered by the absence 

of seminal fluid, and the modified placental composition aroused metabolic dysfunctions 

in offspring [68]. The testosterone level in the seminal fluid of the chicken Gallus g. gallus 

affects maternal investment to eggs and ultimately offspring body weight [176]. In domes-

tic species, the absence of seminal fluid during artificial insemination were suggested 

likely related to offspring health problems [139,177]. Overall, the effect of seminal fluid 

contents that act in the female reproductive tract altering female immune or nutritional 

responses go well beyond to the induction of successful fertilization, and modify offspring 

phenotype. 

Inevitably, any seminal fluid-mediated maternal environment can affect offspring 

phenotype predictably from the outcome of maternal epigenetic inheritance research that 

clearly shows maternal effects on next generations [178–183]. But there are many unan-

swered questions such as how female plays a role to modify offspring phenotype accord-

ing to the information comes from males’ seminal fluid, what are the mechanisms to con-

vert information into paternally derived heritable epigenetic information, especially 

which specific proteins or peptides act as signals to transmit paternal information. 
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3.3. Seminal fluid mediates egg and embryo epigenetics 

Apart from seminal fluid-mediated epigenetic modifications in sperm and female re-

productive tracts discussed above, seminal fluid may also directly reach developing or 

mature eggs and embryos that can affect changes in offspring phenotype. However, we 

have yet very limited evidence of direct interactions between seminal fluid contents and 

eggs or embryos. For instance, a study showed the isotope-labeled amino acids of seminal 

fluid proteins from the ejaculate to be incorporated into eggs in the cricket Teleogryllus 

oceanicus [184]. The direct fusion of seminal fluid content into the egg can cause epigenetic 

modifications considering their known role and potential mechanisms in modifying 

sperm epigenetics, however, the existence of seminal fluid content in eggs after insemina-

tion remains to be yet demonstrated in other species. On the other hand, the perturbation 

of seminal fluid altered the histone modification in fertilized oocytes and DNA methyla-

tion pattern of embryos in golden hamster suggesting also a direct role of seminal fluid in 

egg and embryo epigenetic status [69] however its route to reach to eggs or embryo re-

mains unclear.  

There are some evidence that sperm delivers not just DNA but mRNA and sRNAs to 

eggs that could be originated from seminal fluid producing organs [185,186]. For example, 

one major sperm protein responsible for oocyte maturation in females is provided by 

sperm to oocytes in extracellular vesicles carried in the seminal fluid has been shown in 

the model organism Caenorhabditis elegans [187]. The sRNAs that are transfer to sperm via 

seminal fluid are essential for embryonic development in mice have been also shown 

[106]. Interestingly, the sperm originated sRNAs were identified making the 10% of em-

bryonic RNA that were transferred via sperm into the oocyte upon fertilization in C. ele-

gans [188] having important functions such as constituting a memory of gene expression, 

controlling gene silencing, regulating antiviral immune response in subsequent genera-

tions [189–193]. Moreover, the use of injection of testis originated sRNAs to male mice fed 

with a high-fat diet into one-cell embryos resulted in some pathological phenotypes in the 

adult offspring that were not observed when sRNAs from healthy control males were 

used [122]. These evidence suggest seminal fluid could deliver its content using sperm as 

a transporter that can eventually cause changes in offspring phenotype. 

4. Conclusion and future directions 

The literature of paternal effects on offspring phenotype, health and fitness is large 

[15,47,51,194], however, as to my knowledge only a very small part of the studies focused 

on seminal fluid-mediated effects, and their underlying exclusive mechanisms. As men-

tioned above, overall evidence has pointed out that seminal fluid mediated paternal ef-

fects on offspring phenotypes occur and mediated by or involve in regulations of epige-

netic mechanisms. In order to gain a better understanding of the molecular mechanisms 

of seminal fluid-mediated inheritance, more research is needed on how the acquired en-

vironmental message can form heritable information through modifications within the 

seminal fluid composition. It will, therefore, be of interest to determine the seminal fluid-

mediated paternal epigenetic inheritance in different taxa and under different environ-

mental conditions. Further studies are also needed to cover a wide range of different phe-

notypes in offspring such as life history traits, social and mating behaviors etc. which will 

also allow to focus on specific pathways of epigenetic mechanisms via seminal fluid. In 

addition, there is need for comprehensive studies on the occurrence, pattern and inher-

itance of seminal fluid gene regulation in specific reproductive tissues under different 

conditions to better elucidate the mechanisms involving seminal fluid-mediated paternal 

epigenetic inheritance. 

As summarized here, a number of studies have shown that protein and nucleic acid 

contents of seminal fluid which are either freely carried into the plasma or into the extra-

cellular vesicles have great potential mediating paternal inheritance. Therefore, studies 

including high-throughput seminal fluid profiling of protein, peptide, mRNAs, sRNAs 

and cell-free DNAs under different environmental conditions are needed that can be used 
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to test links between offspring phenotype and specific seminal fluid contents. Another 

very exciting field is represented by the potential role played by the other non-sperm frac-

tion of the seminal fluid such as microbiomes were not discussed in this review. For ex-

ample, studies on microbiome of the seminal fluid have shown associations between male 

conditions and seminal fluid microbe composition that could affect offspring during de-

velopment [195–197]. 

Experiments are also needed to be carefully designed to estimate seminal-fluid me-

diated paternal effects and study its mechanisms. First, they need to disentangle factors 

carried by sperm which are derived independent of seminal fluid from factors related to 

seminal fluid. The use of animal models such as genetically modified males that can only 

produce and transfer seminal fluid can help to control for different factors. On the other 

hand, methods such as artificial insemination that can allow to control of seminal fluid 

origin can have advantages in studying with ecologically relevant species possibly in their 

natural context. On the other hand, the confounding genetic effects and female and male 

interactions must be also controlled while testing for seminal fluid-mediated paternal ef-

fect. Especially it is evident that paternally driven maternal effects are an important con-

sideration when designing experiments. Controlling such effects while estimating envi-

ronmentally induced paternal effects on offspring phenotype, a quantitative epigenetics 

approach can be very useful to improve study designs [9,10,198].  

Going forward, a deeper understanding of the role of seminal fluid and associated 

environmental factors on paternal epigenetic inheritance will improve critically to the ad-

vancement of the fields of evolutionary epigenetics and extended heredity. If selection 

favors an environmentally induced seminal fluid-mediated phenotype on offspring that 

maximize seminal fluid-borne benefits, that could therefore be evolutionary adaptive. 

Considering the well-known rapid evolutionary pattern of seminal fluid proteins and 

peptides [199–203], to better understand the role of epigenetic inheritance on evolution of 

seminal fluid proteins can shed light on rapid evolution of reproductive proteins. 
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